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Abstract. We provide a general and modular framework for describing infer-
ences in Answer Set Programming (ASP) that aims at an easy incorporation of
additional language constructs. To this end, we generalize previous work charac-
terizing computations in ASP by means of tableau methods. We start with a very
basic core fragment in which rule heads and bodies consist of atomic literals. We
then gradually extend this setting by focusing on the concept of an aggregate, un-
derstood as an operation on a collection of entities. We exemplify our framework
by applying it to conjunctions in rule bodies, cardinality constraints as used in
smodels, and finally to disjunctions in rule heads.

1 Introduction

Answer Set Programming (ASP; [1]) has become an appealing tool for declarative prob-
lem solving. Unlike the related area of satisfiability checking (SAT; [2]), it however
lacked a formal framework for describing inferences conducted by ASP solvers, such
as the resolution proof theory in SAT [3]. This deficiency has led to a great heterogeneity
in the description of ASP algorithms and has impeded their formal comparability. We
addressed this problem in [4] by introducing a family of tableau calculi [5] for ASP. The
idea is to view answer set computations as derivations in an inference system: A branch
in a tableau corresponds to a successful or unsuccessful computation of an answer set;
an entire tableau represents a traversal of the search space. This approach provided a
uniform proof-theoretic framework for analyzing and comparing different operations,
strategies, or even algorithms of ASP solvers. Among others, we related the approaches
of existing ASP solvers to appropriate tableau calculi, in the sense that computations of
solvers are described by tableaux in corresponding calculi.

In this work, our primary goal is to generalize this approach towards a flexible and
modular framework that is easily amenable to new language constructs. We begin with
characterizing inferences in a basic core fragment in which rule heads and bodies con-
sist of atomic literals. We then gradually extend this setting by focusing on aggregates.
An aggregate is understood as an operation on a collection of entities. To obtain a basic
understanding of how to describe inferences on aggregates, we view conjunctions in
rule bodies as simple Boolean aggregates. We then extend the framework to cardinality
constraints, as used in smodels [6], and to disjunctions in rule heads.

After establishing the formal background, we introduce in Section 3 our generic
tableau framework. In Section 4, 5, and 6, we gradually extend this framework with
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conjunctions, cardinality constraints, and disjunctions, respectively. Section 7 is dedi-
cated to the proof complexity associated with these constructs. Finally, we discuss our
approach in Section 8.

2 Background

We are interested in an extensible proof-theoretic framework dealing with logic pro-
grams incorporating composite language constructs, like aggregates. To this end, we
need a semantic account of answer sets being, on the one hand, flexible and gen-
eral enough to accommodate a variety of composite language constructs, and, on the
other hand, conservative enough to correspond to standard answer set semantics on
well-established language fragments. Among several proposals [6–10], we have chosen
Paolo Ferraris’ approach [10] that deals with propositional theories and gives meaning
to complex constructs by mapping them into propositional formulas.

We start by recalling Ferraris’ answer set semantics [10]. A propositional theory is
a finite set of propositional formulas, constructed of atoms from an alphabet P and the
connectives ⊥, ∧, ∨, and→. Any other connective is considered as an abbreviation, in
particular, ¬φ stands for (φ→ ⊥). An interpretation X , represented by the set of atoms
true in X , is a model of a propositional theory Φ if X |= φ for all φ ∈ Φ. The reduct,
ΦX , of Φ wrt X is a propositional theory, (recursively) defined as follows:

ΦX =
{
φX | φ ∈ Φ

}
φX =

⊥ if X 6|= φ
φ if φ ∈ X
φX

1 ◦ φX
2 if X |= φ and φ = φ1 ◦ φ2 for ◦ ∈ {∧,∨,→}

Intuitively, all (maximal) subformulas of Φ that are false in X are replaced by⊥ in ΦX ,
all other subformulas of Φ stay unchanged. It is clear that any model of ΦX is also
a model of Φ, since ΦX contains ⊥ if X 6|= φ for some φ ∈ Φ. Also note that all
occurrences of negation, that is, subformulas of the form (φ → ⊥), are replaced by
constants in ΦX , since either φ or (φ → ⊥) is false in X . An interpretation X is an
answer set of a propositional theory Φ if X is a minimal model of ΦX .

We next consider logic programs. Given an alphabet P , a logic program is a finite
set of rules of the form α ← β where α and β are literals, understood here as expres-
sions over P possibly preceded by the negation as failure operator not . In the following
sections, we gradually refine heads α and bodies β for obtaining particular classes of
logic programs. The semantics of logic programs is given by the answer sets of cor-
responding propositional theories, obtained via particular translations to be provided
in the following sections. However, the proof-theoretic characterizations below apply
directly to logic programs, without translating them into propositional theories.

We describe calculi for the construction of answer sets from logic programs. Such
constructions are associated with an (initial) assignment and a binary tree called a
tableau [5]. An assignment A is a partial mapping from the expressions in a program
into {T ,F }, indicating whether a member of the domain of A, denoted by dom(A),
is true or false, respectively. The domain of A, dom(A), varies throughout this paper



depending on the considered language fragment. We define AT = {v ∈ dom(A) |
A(v) = T } and AF = {v ∈ dom(A) | A(v) = F }. We also denote A by a set of
signed expressions: {T v | v ∈ AT } ∪ {F v | v ∈ AF }. Furthering this notation, we
call an assignment that leaves all expressions undefined empty and denote it by ∅.

The nodes of tableaux are (mainly) signed expressions, that is, expressions preceded
by either T or F , indicating an assumed truth value. A tableau for a logic program Π
and an initial assignment A is a binary tree such that the root node of the tree consists
of the rules in Π and all members of A. The other nodes in the tree are entries of the
form T v or F v, where v ∈ dom(A), generated by extending a tableau using tableau
rules (given in the following sections) in the standard way [5]: Given a tableau rule
and a branch in the tableau containing the prerequisites of the rule, the tableau can be
extended by adding new entries to the end of the branch as specified by the rule. If the
rule is the cut rule (cf. (g) in Figure 1), then entries T v and F v are added as the left and
the right children to the end of the branch. For the other rules, the consequents are added
to the end of the branch. For convenience, the representation of tableau rules makes use
of two conjugation functions, t and f . For a literal l, define:

tl =
{

T l if l ∈ dom(A)
F v if l = not v for v ∈ dom(A) f l =

{
F l if l ∈ dom(A)
T v if l = not v for v ∈ dom(A)

Some rule applications are subject to provisos. For instance, (v ∈ Γ ) guides the appli-
cation of the cut rule by restricting cut objects to members of Γ (cf. Figure 1).

A tableau calculus T is a set of tableau rules. An entry T v (or F v) can be deduced
in a branch if T v (or F v) can be generated from nodes in the branch by applying rules
of T . Note that any branch corresponds to a pair (Π,A) consisting of a program Π and
an assignment A; we draw on this relationship for identifying branches in the sequel.
A branch in a tableau is contradictory if it contains both entries T v and F v for some
v ∈ dom(A). A branch is complete if it is contradictory or if it is closed under all rules
in T , except for the cut rule, and either T v ∈ A or F v ∈ A for each v ∈ dom(A). A
tableau is complete if all its branches are complete. A complete tableau for a program Π
and the empty assignment ∅ such that all branches are contradictory is a refutation
for Π; provided that T is a complete calculus, it means that Π has no answer set.

3 Generic Tableau Rules

We begin with a simple class of unary programs where rules α ← β are restricted to
atomic literals, that is, α and β are either equal to p or not p for some atom p ∈ P . The
semantics of a unary program Π is given by the answer sets of a propositional theory,
τ [Π], (recursively) defined as follows:

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π} (1)

τ [π] =
{
¬τ [v] if π = not v
π if π ∈ P (2)

For illustration, consider Π1 = {a ← not b;not a ← c; b ← c; c ← b}, whose
corresponding propositional theory is τ [Π1] = {¬b→ a; c→ ¬a; c→ b; b→ c}. The



sets X1 = {a} and X2 = {b, c} are models of τ [Π1], their reducts are (τ [Π1])X1 =
{¬⊥ → a;⊥ → ⊥} and (τ [Π1])X2 = {⊥ → ⊥; c→ ¬⊥; c→ b; b→ c}. Clearly, X1

is the unique minimal model of (τ [Π1])X1 , thus, X1 is an answer set of Π1. The unique
minimal model of (τ [Π1])X2 is ∅, that is, X2 is not an answer set of Π1.

Unlike the semantics, our tableau framework directly deals with logic programs.
The global design, however, follows the two semantic requirements for answer sets:
modelhood wrt a program and (non-circular) support wrt the reduct. To begin with, we
define for a program Π , two sets S, S′ ⊆ atom(Π), viz. the set of atoms occurring
in Π , and an assignment A:

supA(Π,S, S′) = {(α← β) ∈ Π | fβ 6∈ A, ←−supA(α, S), −→supA(β, S′)} (3)

The purpose of supA(Π,S, S′) is to determine all rules in Π that can, wrt A, provide
a support for the atoms in S external wrt S′. Of particular interest are the cases where
supA(Π,S, S′) is empty or a singleton {α ← β}. In the first case, the atoms in S
cannot be supported and are prone to be false, while the second case tells us that α← β
is the unique support for S external wrt S′ so that β must be true to (non-circularly)
support S.

Looking at the definition of supA(Π,S, S′) in (3), we note that a rule α ← β such
that fβ ∈ A cannot provide any support wrt A. Otherwise, we check via ←−supA(α, S)
that α can support S and via−→supA(β, S′) that β does not (positively) rely on S′. For the
simple case of unary programs, these concepts are defined as follows:

←−supA(p, S) if p ∈ S (4)
−→supA(p, S′) if p ∈ (P \ S′) (5)

−→supA(not v, S′) for every expression v (6)

The universal validity of (6) is because only positive dependencies are taken into ac-
count. Also note that a rule α ← β such that α = not v cannot support any set S of
atoms. (We further illustrate the above concepts after Theorem 1.)

The tableau rules constituting our basic calculus are given in Figure 1. Rules I ↑
and I ↓ provide basic rule-based inferences such as modus ponens and modus tollens.
Tableau rules N ↑ and N ↓ amount to negation and support for atoms stemming from
Clark’s completion [11]. Note that the derivability of an atom p and thus the appli-
cability of tableau rules N ↑ and N ↓, respectively, is determined by supA(Π, {p}, ∅).
In the general case, rule N ↓ makes use of two further constructs, minA(α, S) and
maxA(β, S′), that are used to determine entries that must necessarily be added to A
in order to support some atom in S via rule α ← β without positively relying on S′.
However, these concepts play no role in the setting of unary programs:

minA(p, S) = ∅ for p ∈ P (7)
maxA(p, S′) = ∅ for p ∈ P (8)

maxA(not v, S′) = ∅ for every expression v (9)

Tableau rules U ↑ and U ↓ take care of unfounded sets [12], either by identifying atoms
that cannot be non-circularly supported (U ↑) or by preventing true atoms to become



α← β
tβ

tα

α← β
fα

fβ

(a) Implication (I ↑) (b) Contraposition (I ↓)

Π, A
(p ∈ atom(Π), supA(Π, {p}, ∅) = ∅)F p

(c) Negation (N ↑)
Π, A

(p ∈ (AT ∩ atom(Π)), supA(Π, {p}, ∅) = {α← β})tβ,minA(α, {p}),maxA(β, ∅)
(d) Support (N ↓)

Π, A
(S ⊆ atom(Π), p ∈ S, supA(Π, S, S) = ∅)F p

(e) Unfounded Set (U ↑)
Π, A

(S ⊆ atom(Π), (AT ∩ S) 6= ∅, supA(Π, S, S) = {α← β})tβ,minA(α, S),maxA(β, S)

(f) Well-founded Set (U ↓)

(v ∈ Γ )T v | F v

(g) Cut (C[Γ ])

Fig. 1. Generic tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting (g).

unfounded (U ↓). The applicability of U ↑ and U ↓ is determined by supA(Π,S, S) for
a set S of atoms; hence, these rules subsume N ↑ and N ↓ relying on supA(Π, {p}, ∅).
We nonetheless include N ↑ and N ↓ since their applicability is easy to determine, and
so they have counterparts in virtually all ASP solvers. Finally, the cut rule C[Γ ] in (g)
constitutes the only rule introducing multiple branches. It allows for case analysis on
the expressions in Γ , if the deterministic tableau rules do not yield a complete branch.

Note that the definition of supA(Π,S, S′) in (3) is common to both support-driven
(viz. N ↑ and N ↓) and unfoundedness-driven (viz. U ↑ and U ↓) inferences. As we
demonstrate in the following sections, an additional language construct is then in-
corporated into the basic tableau calculus by supplying tableau rules for handling its
truth value and by extending the definition of←−supA(α, S) and −→supA(β, S′) (along with
minA(α, S) and maxA(β, S′)) to impose an appropriate notion of support.

For a unary program Π , we fix the domain of assignments A as well as the cut
objects used by C[Γ ] to dom(A) = Γ = atom(Π). This allows us to characterize the
answer sets of unary programs by tableaux.

Theorem 1. Let Π be a unary program and ∅ the empty assignment.
Then, the following hold for the tableau calculus consisting of tableau rules (a-g):

1. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.
2. If Π has an answer set X , then every complete tableau for Π and ∅ has a unique

non-contradictory branch (Π,A) such that X = AT ∩ atom(Π).



3. If a tableau for Π and ∅ has a non-contradictory complete branch (Π,A), then
AT ∩ atom(Π) is an answer set of Π .

For illustration, consider the program Π2 = {a ← not b; b ← not a; c ← not a}.
Cutting on c results in branches with T c and F c, respectively. The first one can be
extended by tnot a = F a via N ↓. Indeed, sup{T c}(Π2, {c}, ∅) = {c ← not a} tells
us that c← not a is the only rule that allows for supporting c, which necessitates a to be
false. To be more precise, we have fnot a = T a 6∈ {T c}, and both←−sup{T c}(c, {c}) and
−→sup{T c}(not a, ∅) are satisfied; the proviso of N ↓ is thus established with respect to rule
c ← not a, so we deduce tnot a = F a. The two remaining sets, min{T c}(c, {c}) =
max{T c}(not a, ∅) = ∅, are superfluous in the simple language fragment of unary
programs. Having deduced F a, we can either apply I ↑ or I ↓ to conclude T b and so to
obtain a complete branch. The second branch with F c can be extended by fnot a = T a
via I ↓. From this, we deduce F b, either by N ↑ or N ↓, obtaining a second complete
branch. The two complete branches tell us that {b, c} and {a} are the answer sets of Π2.

Further, consider the program Π3 = {a← b; b← a; b← c; c← not d; d← not c}
along with the following two complete branches:

Π3

T d (C[atom(Π)])
F c (N ↑,N ↓,U ↑,U ↓)
F a (U ↑)
F b (I ↓,N ↑,U ↑)

Π3

T a (C[atom(Π)])
T b (I ↑,N ↓,U ↓)
T c (U ↓)
F d (N ↑,N ↓,U ↑,U ↓)

We have chosen these branches for illustrating the application of the unfounded set rule
(U ↑) and the well-founded set rule (U ↓), respectively. (Along the branches, we indi-
cate all possible inferences leading to the same result.) We first inspect the deduction
of F a by U ↑ in the left branch. Taking set {a, b} (and its element a) makes us check
whether sup{T d,F c}(Π3, {a, b}, {a, b}) is empty. To this end, we have to inspect all
rules that allow for deriving an atom in {a, b} (as stipulated via←−sup{T d,F c}(α, {a, b})).
Given fc = F c, we only need to consider a ← b and b ← a. Neither rule satisfies
−→sup{T d,F c}(β, {a, b}), which leaves us with sup{T d,F c}(Π3, {a, b}, {a, b}) = ∅. The
well-founded set inference of T c in the right branch requires a set of atoms, some of
whose elements is true, such that only one rule can non-circularly support the set. Tak-
ing {a, b}, we can verify that sup{T a,T b}(Π3, {a, b}, {a, b}) = {b ← c}. The mem-
bership of b ← c is justified by the fact that fc = F c 6∈ {T a,T b}, and that both
←−sup{T a,T b}(b, {a, b}) and −→sup{T a,T b}(c, {a, b}) hold. Furthermore, neither a ← b nor
b← a is included in sup{T a,T b}(Π3, {a, b}, {a, b}) because −→sup{T a,T b}(b, {a, b}) and
−→sup{T a,T b}(a, {a, b}) do not hold. Hence, only tc = T c can justify T a and T b.

4 Conjunctive Bodies

Having settled our basic framework, we now allow rule bodies to contain conjunctions.
While rule bodies themselves are often regarded as conjunctions, we here take a slightly
different perspective in viewing conjunctions as (simple) Boolean aggregates, which
like atoms can be preceded by not . This gives us some first insights into the treatment



tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(h) True Conjunction (TC↑) (i) Falsify Conjunction (TC↓)

f li
F {l1, . . . , li, . . . , ln}

T {l1, . . . , ln}
tl1, . . . , tln

(j) False Conjunction (FC↑) (k) Justify Conjunction (FC↓)

Fig. 2. Tableau rules for conjunctions.

of more sophisticated aggregates like cardinality constraints to be dealt with in the next
section.

A conjunction over an alphabet P is an expression of the form {l1, . . . , ln} where
li is an atomic literal for 1 ≤ i ≤ n. We denote by conj (P) the set of all conjunctions
that can be constructed from atoms in P . A rule α ← β such that α is an atomic
literal and β is an atomic literal or a (possibly negated) conjunction of atomic literals
is a conjunctive rule. A logic program is a conjunctive program if every rule in it is
conjunctive. For defining the semantics of conjunctive programs, we add the following
case to translation τ [π] in (2):

τ [π] =
∧

l∈πτ [l] if π ∈ conj (P)

For accommodating conjunctions within the generic tableau rules in Figure 1, we
extend the previous concepts in (4-9) in a straightforward way:

−→supA({l1, . . . , ln}, S′) if −→supA(l, S′) for every l ∈ {l1, . . . , ln}
maxA({l1, . . . , ln}, S′) =

⋃
l∈{l1,...,ln}maxA(l, S′)

Note that maxA({l1, . . . , ln}, S′) is still empty since maxA(l, S′) = ∅ for every atomic
literal l ∈ {l1, . . . , ln}. It thus has no effect yet, but this changes in the next section.

For a conjunctive program Π , we fix the domain dom(A) of assignments A and
the cut objects Γ of C[Γ ] to dom(A) = Γ = atom(Π) ∪ conj (Π), where conj (Π)
is the set of conjunctions occurring in Π . The additional tableau rules for handling
conjunctions are shown in Figure 2. Their purpose is to ensure that T {l1, . . . , ln} ∈ A
iff (AT ∩P) |= (τ [l1]∧ · · · ∧ τ [ln]). By augmenting the basic calculus with the tableau
rules in Figure 2, Theorem 1 extends to conjunctive programs.

Theorem 2. Let Π be a conjunctive program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-k).

5 Cardinality Constraints

We define a cardinality constraint over an alphabet P as an expression of the form
j{l1, . . . , ln}k where li is an atomic literal for 1 ≤ i ≤ n and j, k are integers such that



0 ≤ j ≤ k ≤ n. We denote by card(P) the set of all cardinality constraints that can
be constructed from atoms in P . For v ∈ (P ∪ card(P)), we say that v and not v are
cardinality literals. A rule α← β such that α is a cardinality literal and β is a cardinality
literal or a (possibly negated) conjunction of cardinality literals is a cardinality rule. A
logic program is a cardinality program if it consists of cardinality rules.

Several syntactic classes of programs with cardinality constraints (and other ag-
gregates) can be found in the literature [6–10]. Furthermore, the semantics differ on
aggregates in the heads of rules; which semantics is the right one depends on the in-
tention and cannot be answered a priori. On the one hand, we here adopt the approach
of [6–8] and interpret cardinality constraints in heads as “choice constructs,” that is,
derived atoms within a cardinality constraint are not minimized. On the other hand, the
syntactic class of programs (or formulas, respectively) considered in [10] is presumably
the most general one. It allows for arbitrary aggregates over arbitrary formulas, so that
cardinality constraints and rules as defined here form a syntactic fragment. The other
approaches [6–9], however, do not cover our notion of a cardinality rule. As before, we
thus embed cardinality programs into the framework of [10] to fix their semantics.

The fact that true atoms are not minimized within cardinality constraints in heads
of rules necessitates an extended translation of cardinality programs into propositional
theories, since the semantics of the latter per default relies on the minimization of true
atoms.1 We now replace the definition of τ [Π] in (1) with the following one:

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π,α 6∈ card(P)} ∪ (10)
{τ [β]→

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)
| (α← β) ∈ Π,α ∈ card(P)}

where atom(j{l1, . . . , ln}k) = {l1, . . . , ln}∩P for (j{l1, . . . , ln}k) ∈ card(P). Note
that conjuncts

∧
p∈atom(α)(p ∨ ¬p) are tautological and thus neutral as regards the

(classical) models of τ [Π]. Given an interpretation X , they rather justify the truth of all
p ∈ atom(α)∩X in (τ [Π])X where ¬p is replaced by ⊥. We further add another case
to translation τ [π] in (2), which amounts to the aggregate translation given in [10]:

τ [π] =
(∨

C⊆{l1,...,ln},|C|=jτ [C]
)
∧ ¬

(∨
C⊆{l1,...,ln},|C|=k+1τ [C]

)
if (π = j{l1, . . . , ln}k) ∈ card(P)

Notably, the upper bound k is translated into a negative subformula, and only the sub-
formula for the lower bound j still appears potentially in the reduct wrt a set of atoms.
Also note that τ [j{l1, . . . , ln}k] is of exponential size. Even if auxiliary atoms are used
to obtain a polynomial translation, like the one described in [6], compilation approaches
incur a significant blow-up in space. Our proof-theoretic characterizations, provided in
the following, apply directly to cardinality constraints and thus avoid any such blow-up.

Figure 3 shows the tableau rules for cardinality constraints. For a cardinality pro-
gram Π , we fix the domain dom(A) of assignments A and the cut objects Γ of C[Γ ] to
dom(A) = Γ = atom(Π)∪conj (Π)∪card(Π), where card(Π) is the set of cardinal-
ity constraints occurring in Π . For a cardinality constraint j{l1, . . . , ln}k, the tableau
rules in Figure 3 ensure that T (j{l1, . . . , ln}k) ∈ A iff (AT ∩P) |= τ [j{l1, . . . , ln}k].

1 Interpreting aggregates in rule heads as “choice constructs” avoids an increase of complexity
by one level in the polynomial hierarchy. If derived atoms were to be minimized, it would be
straightforward to embed disjunctive programs (see next section) into cardinality programs.



tl1, . . . , tlj , f lk+1, . . . , f ln
T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k

(l) True Bounds (TLU ↑)

F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlj−1, f lk+1, . . . , f ln

f lj , . . . , f lk

F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k
tl1, . . . , tlj , f lk+2, . . . , f ln

tlj+1, . . . , tlk+1

(m) Falsify Lower Bound (TL↓) (n) Falsify Upper Bound (TU ↓)

f lj , . . . , f ln
F j{l1, . . . , lj , . . . , ln}k

tl1, . . . , tlk+1

F j{l1, . . . , lk+1, . . . , ln}k
(o) False Lower Bound (FL↑) (p) False Upper Bound (FU ↑)

T j{l1, . . . , lj , lj+1 . . . , ln}k
f lj+1, . . . , f ln

tl1, . . . , tlj

T j{l1, . . . , lk, lk+1 . . . , ln}k
tl1, . . . , tlk

f lk+1, . . . , f ln
(q) Justify Lower Bound (FL↓) (r) Justify Upper Bound (FU ↓)

Fig. 3. Tableau rules for cardinality constraints.

For illustration, consider the cardinality constraint

γ = 2{a, b, c,not d,not e}3 ,

having n = 5 literals, lower bound j = 2, and upper bound k = 3. For an assignment A,
tableau rule TLU ↑ allows for deducing T γ if at least j = 2 literals l of γ are true (i.e.,
tl ∈ A) and at least n− k = 2 literals l of γ are false (i.e., f l ∈ A). This holds, for in-
stance, for assignment A1 = {T a,F b, T d, F e}; hence, T γ can be deduced via TLU ↑.
Indeed, the lower and upper bound of γ are satisfied in every non-contradictory branch
that extends A1, no matter whether T c or F c is additionally included. Rules TL↓ and
TU ↓ are the contrapositives of TLU ↑, ensuring that either the lower or the upper bound
of γ is violated if F γ belongs to an assignment. For instance, F c and T e can be deduced
via TL↓wrt assignment A2 = {F γ, T a,F b, T d}. Observe that the upper bound k = 3
cannot be violated in non-contradictory extensions of A2 since n−k = 2 literals of γ are
already false wrt A2, as it contains F b and T d. Conversely, TU ↓ allows for deducing
T c and F e wrt {F γ, T a,F b, F d} in order to violate the upper bound of γ; the lower
bound of γ cannot be violated because of T a and F d. The remaining four tableau rules
in Figure 3 either allow for deducing F γ, if its lower bound (FL↑) or its upper bound
(FU ↑) is violated, or make sure that the lower bound (FL↓) and the upper bound (FU ↓)
are satisfied, if T γ belongs to an assignment. For γ as above, F γ can be deduced via
FL↑ wrt assignment {F b, F c,T d, T e} or via FU ↑ wrt assignment {T b, T c,F d, F e}.
Conversely, FL↓ allows for deducing T a and F e wrt {T γ, F b, F c,T d}, and FU ↓ al-
lows for deducing F a and T e wrt {T γ, T b, T c,F d}.



To integrate cardinality constraints into the generic setting of the tableau rules in
Figure 1, we also have to extend the concepts in (4-9):

←−supA(j{l1, . . . , ln}k, S) if {l1, . . . , ln} ∩ S 6= ∅ and
|{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| < k

−→supA(j{l1, . . . , ln}k, S′) if |{l ∈ ({l1, . . . , ln} \ S′) | f l 6∈ A}| ≥ j

minA(j{l1, . . . , ln}k, S) =

{f l | l ∈ ({l1, . . . , ln} \ S), tl 6∈ A}
if |{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| = k − 1

∅ if |{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| 6= k − 1

maxA(j{l1, . . . , ln}k, S′) =

{tl | l ∈ ({l1, . . . , ln} \ S′), f l 6∈ A}
if |{l ∈ ({l1, . . . , ln} \ S′) | f l 6∈ A}| = j

∅ if |{l ∈ ({l1, . . . , ln} \ S′) | f l 6∈ A}| 6= j

Recall that←−supA(α, S) is used to determine whether a rule with head α can provide sup-
port for the atoms in S. If α = j{l1, . . . , ln}k, then some atom of S must be contained
in {l1, . . . , ln}. Furthermore, if ({l1, . . . , ln} \ S) already contains k (or more) literals
that are true wrt A, then the addition of T p to A for p ∈ ({l1, . . . , ln}∩S) would violate
the upper bound k, so that the corresponding rule α ← β cannot support S. This also
explains the false literals in minA(j{l1, . . . , ln}k, S) that can be deduced if k− 1 liter-
als of ({l1, . . . , ln} \ S) are already true wrt A. If one more literal in ({l1, . . . , ln} \ S)
were made true, S would lose its last (external) support α ← β, though containing
some atom that is true wrt A (cf. N ↓ and U ↓ in Figure 1). In addition, −→supA(β, S′) is
used to verify whether a support via β is external wrt S′. If, for a rule α ← β, either
β = j{l1, . . . , ln}k or β is a conjunction such that j{l1, . . . , ln}k ∈ β, then there must
be enough non-false literals in ({l1, . . . , ln}\S′) to achieve the lower bound j. Further-
more, if the number of such literals is exactly j, then all of them must be true for pro-
viding a support that is external wrt S′. This is expressed by maxA(j{l1, . . . , ln}k, S′).

For illustration, consider the following cardinality program Π4:2

Π4 =

 r1 : 0{c, d, e}3←
r2 : 1{a, b}2← c, d r4 : 1{b, d}2← 1{a, c}2
r3 : 0{a, d}1← 1{b,not e}2 r5 : 1{a, d}2← b


Let assignment A contain T a, F c, and F {c, d}, and note that tableau rule U ↓
(or N ↓) does not apply to set {a} since supA(Π4, {a}, {a}) = {r3, r5}. Let us
however consider set {a, b}. Given that {c, d, e} ∩ {a, b} = ∅ and F {c, d} ∈ A,
we have r1 6∈ supA(Π4, {a, b}, {a, b}) and r2 6∈ supA(Π4, {a, b}, {a, b}). Consider-
ing r5, we have b ∈ {a, b} and thus −→supA(b, {a, b}) does not hold. For r4, we have
{a, c} \ {a, b} = {c} and fc = F c ∈ A, so that there are no non-false literals in
{a, c} \ {a, b}. That is, the lower bound 1 of 1{a, c}2 cannot be achieved indepen-
dently from {a, b}, and thus −→supA(1{a, c}2, {a, b}) does not hold. We have now estab-
lished that only r3 is potentially contained in supA(Π4, {a, b}, {a, b}). Since (not e) ∈
{b,not e} is a non-false literal not belonging to {a, b}, −→supA(1{b,not e}2, {a, b})
holds. Furthermore, ←−supA(0{a, d}1, {a, b}) holds because td = T d does not belong

2 In the sequel, we skip set notation for conjunctive bodies within rules, like {c, d} in rule r2.



tli
T {l1; . . . ; li; . . . ; ln}

F {l1; . . . ; ln}
f l1, . . . , f ln

(s) True Disjunction (TD↑) (t) Falsify Disjunction (TD↓)

f l1, . . . , f ln
F {l1; . . . ; ln}

T {l1; . . . ; li−1; li; li+1; . . . ; ln}
f l1, . . . , f li−1, f li+1, . . . , f ln

tli
(u) False Disjunction (FD↑) (v) Justify Disjunction (FD↓)

Fig. 4. Tableau rules for disjunctions.

to A. We thus have supA(Π4, {a, b}, {a, b}) = {r3}. As literals deducible via U ↓,
we obtain T (1{b,not e}2), maxA(1{b,not e}2, {a, b}) = {tnot e = F e}, and
minA(0{a, d}1, {a, b}) = {fd = F d}. Finally, note that, if T d had been contained
in A, we would have obtained supA(Π4, {a, b}, {a, b}) = ∅, so that deducing F a via
U ↑ would have led to a contradiction. Indeed, {a, b} is the only answer set of Π4 com-
patible with T a and F c.

The tableau calculus for cardinality programs is obtained by adding the rules in
Figure 3 to those in Figure 1 and 2. Then, Theorem 1 extends to cardinality programs.

Theorem 3. Let Π be a cardinality program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-r).

6 Disjunctive Heads

A disjunction over an alphabet P is an expression of the form {l1; . . . ; ln} where li is
an atomic literal for 1 ≤ i ≤ n. We denote by disj (P) the set of all disjunctions that
can be constructed from atoms in P . For v ∈ (P ∪ card(P) ∪ disj (P)), v and not v
are disjunctive literals. A rule α ← β such that α is a disjunctive literal and β is a car-
dinality literal or a (possibly negated) conjunction of cardinality literals is a disjunctive
rule. A logic program is a disjunctive program if it consists of disjunctive rules.

In contrast to cardinality constraints serving as “choice constructs,” the common se-
mantics for disjunctions relies on the minimization of derived atoms. Hence, we adhere
to the definition of τ [Π] in (10) and just add another case to τ [π] in (2):

τ [π] =
∨

l∈πτ [l] if π ∈ disj (P)

We further extend the concepts in (4-9) to disjunctive heads:

←−supA({l1; . . . ; ln}, S) if {l1, . . . , ln} ∩ S 6= ∅ and
{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A} = ∅

minA({l1; . . . ; ln}, S) = {f l | l ∈ ({l1, . . . , ln} \ S)}

For a disjunctive program Π , we fix the domain dom(A) of assignments A and the cut
objects Γ of C[Γ ] to dom(A) = Γ = atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π),



where disj (Π) is the set of disjunctions occurring in Π . The additional tableau rules
for handling disjunctions are shown in Figure 4. Their purpose is to ensure that
T {l1; . . . ; ln} ∈ A iff (AT ∩ P) |= (τ [l1] ∨ · · · ∨ τ [ln]). The tableau calculus for
disjunctive programs is obtained by adding the rules in Figure 4 to those in Figure 1, 2,
and 3. In this way, Theorem 1 extends to disjunctive programs.

Theorem 4. Let Π be a disjunctive program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-v).

7 Proof Complexity

For comparing different tableau calculi, we use the concept of proof complexity [3, 13,
14]. Intuitively, proof complexity is concerned with lower bounds on the run-times of
proof-finding algorithms independent from heuristic influences. We thus compare the
sizes of minimal refutations for unsatisfiable logic programs, that is, programs without
answer sets. The size of a tableau is determined in the standard way as the number of
nodes it contains. A tableau calculus T is not polynomially simulated by another tableau
calculus T ′ if there is an infinite (witnessing) family {Πn} of unsatisfiable programs
such that minimal refutations of T ′ for Π are asymptotically exponential in the size of
minimal refutations of T for Π . A tableau calculus T is exponentially stronger than a
tableau calculus T ′ if T polynomially simulates T ′, but not vice versa.

We have shown in [4] that the cut rule has a major influence on proof complex-
ity. For normal logic programs Π , both C[atom(Π)] and C[conj (Π)] yield sound and
complete tableau calculi. However, the calculus obtained with C[atom(Π)∪ conj (Π)]
is exponentially stronger than both of them [4]. It is thus an interesting question whether
cutting on other composite constructs, namely, cardinality constraints and disjunctions,
leads to stronger calculi. In this context, let us stress that cutting on atoms is sufficient
for obtaining complete calculi even in the presence of language extensions, provided
that the truth values of all composite constructs can be deduced from atomic literals via
(deterministic) tableau rules. For cardinality constraints and disjunctions, this is possi-
ble using the tableau rules in Figure 3 and 4. In general, the assumption that knowing the
atoms’ truth values is enough to evaluate all constructs in a program seems reasonable.

We first consider cardinality programs Π . Let Tc = {(a-f), (h-r), C[atom(Π) ∪
conj (Π) ∪ card(Π)]} and Tc = {(a-f), (h-r), C[atom(Π) ∪ conj (Π)]}. Both calculi
contain all deterministic tableau rules dealing with cardinality programs; the difference
is that cutting on cardinality constraints is allowed with Tc, but not with Tc. Since every
refutation of Tc is as well a refutation of Tc, it is clear that Tc polynomially simulates Tc.

As the following result shows, the converse does not hold.

Theorem 5. Tableau calculus Tc is exponentially stronger than Tc.

This result is witnessed by the following unsatisfiable cardinality programs:

Πn
c =

{
x← 1{a1, b1}2, . . . , 1{an, bn}2,not x
ai ← not bi bi ← not ai

∣∣∣∣ i = 1..n

}



Roughly, a branch containing F (1{ai, bi}2) for 1 ≤ i ≤ n yields an immediate con-
tradiction because F ai and F bi can be deduced via TL↓, violating the last two rules
in Πn

c . The unrestricted cut rule of Tc permits cutting on 1{ai, bi}2 for 1 ≤ i ≤ n, and
the resulting minimal refutation has linear size in n. In contrast to this, Tc must cut on
atoms ai or bi, spanning a complete binary tree whose size is exponential in n.

The practical consequence of Theorem 5 is that ASP solvers dealing with cardinality
constraints can gain significant speed-ups by branching on them. Notably, the compi-
lation of cardinality constraints into so-called “basic constraint rules” [6], as done by
lparse [15], introduces auxiliary atoms abbreviating cardinality constraints. In this way,
smodels can (implicitly) branch on cardinality constraints although its choices are re-
stricted to atoms. In contrast to this compilation approach introducing abbreviations,
we here however consider cardinality constraints as self-contained structural entities.

Regarding disjunctive programs, we mention that verifying the non-applicability
of tableau rules U ↑ and U ↓, dealing with unfounded sets, is coNP-hard [16].3 Thus,
tableaux for disjunctive programs are generally not polynomially verifiable, unless
P=NP. Different from cardinality constraints occurring in bodies of rules, the syntax
of disjunctive programs usually restricts disjunctions to occur in heads of rules; this is
done here as well. If this restriction were dropped, program Πn

c could be rewritten using
disjunctions {ai; bi} rather than 1{ai, bi}2 for 1 ≤ i ≤ n. This would yield the same
exponential separation between cut rules with and without disjunctions as encountered
on cardinality constraints. With disjunctions {l1; . . . ; ln} restricted to heads of rules,
the crux is that the information gained in the branch of T {l1; . . . ; ln} is rather weak.
We thus conjecture that, with disjunctions restricted to heads, the possibility to branch
on them does not yield exponential improvements, though it is certainly convenient to
apply the cut rule to disjunctions as well. The effect of allowing or disallowing cutting
on disjunctions in heads of rules however remains a subject to future investigation.

Finally, when looking at the inferences of existing ASP solvers, an asymmetry can
be observed in unfounded set handling [4]. While (non-SAT-based) ASP solvers make
inferences that can be described by tableau rule U ↑, no solver implements U ↓. This
brings our attention to the question whether omitted inferences deteriorate proof com-
plexity. (Of course, the available inferences must still be strong enough to guarantee
soundness.) In what follows, we denote by R↑ and R↓ the forward and backward vari-
ant, respectively, of any of the (deterministic) tableau rules in Figure 1 to 4. Given a
tableau calculus T , we say that T ′ ⊆ T is an approximation of T if (T \ T ′) ⊆ {R↓ |
R↑ ∈ T ′}. (We assume that TLU ↑ ∈ T ′ if {TL↓,TU ↓} ∩ (T \ T ′) 6= ∅ given
that TLU ↑ has two backward counterparts, viz. TL↓ and TU ↓.) That is, if T contains
both R↑ and R↓, then an approximation T ′ of T might drop R↓. Of course, R↓ can
also be kept, so that T is an (the greatest) approximation of itself. It is clear that every
approximation T ′ of T is polynomially simulated by T .

Assuming an unrestricted cut rule, the next result shows that the converse also holds.

Theorem 6. Let T be a tableau calculus and T ′ an approximation of T .
If C[atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π)] ∈ T ′, then T is polynomially

simulated by T ′.
3 For cardinality programs, verifying the absence of unfounded sets is tractable. Suitably ad-

justed, the operations described in [8] could be used to accomplish this task.



In fact, an inference conducted by R↓ can alternatively be obtained by cutting on the
consequent of R↓. Then, one of the two branches becomes contradictory by apply-
ing R↑. However, recall that proof complexity assumes an optimal heuristics determin-
ing the “right” objects to cut on, which is inaccessible in practice. Hence, it is reasonable
to also deduce the consequents of R↓ within an ASP solver whenever it is feasible.

8 Discussion

In contrast to propositional logic, where the proof-theoretic foundations of SAT solvers
are well-understood [2, 3, 13], little work has so far been done on proof theory for ASP
and its solving approaches. The imbalance becomes even more apparent in view of the
comprehensive semantic characterizations that nowadays exist for ASP. For instance,
the approach in [10] specifies answer sets for propositional theories, going beyond the
syntax of logic programs; it also provides a general semantics for aggregates. Though
the latter are a key issue in ASP, where knowledge representation is a major objec-
tive, the support of such composite constructs in ASP solvers is rather ad hoc. This
can, for instance, be seen with lparse compiling away negative weights within weight
constraints, sometimes leading to counterintuitive results [10], and with dlv [17] not
supporting aggregates in the heads of rules. While we have in [4] restricted our atten-
tion to normal logic programs, whose role in ASP is comparable to CNF in SAT, in
this work, we have primarily aimed at language extensions and their integration into
a common proof-theoretic framework. On the examples of cardinality constraints and
disjunctive heads, we have seen that tableaux are well-suited for augmenting the core
language and basic inference mechanisms with additional constructs.

Several lessons can be learned from the illustrative integration of cardinality con-
straints and disjunctive heads. Independently of the construct under consideration, in-
ference rules follow two major objectives: first, making sure that solutions correspond
to models of programs, and second, verifying that all true atoms are non-circularly sup-
ported. Different notions of support are possible. For instance, atoms derived via com-
posite constructs in heads of rules might be subject to minimization, as with disjunc-
tions, or not, as with cardinality constraints allowing for “choices.” Such issues need to
be settled in order to specify the required inference patterns. This also concerns compu-
tational complexity; for instance, it increases by one level in the polynomial hierarchy
with disjunctive heads or negative weights within weight constraints. Furthermore, the
proof complexity of an approach critically depends on the cut rule determining the ob-
jects available for case analysis. Composite constructs often constitute structures that
are valuable in this respect, as it has been shown for conjunctions and cardinality con-
straints. We conclude that complex language constructs deserve particular attention in
the context of ASP solving. For solvers using learning, like clasp [18], it is important
not only that inferences are performed but also that their reasons are properly identi-
fied. The declarative nature of tableau rules provides a basis to describe such reasons.
Importantly, the extensibility of the framework also allows for combining the processes
of designing novel language constructs and of fixing their proof-theoretic meaning.
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