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Abstract. We introduce an approach to detecting inconsistencies in large bio-
logical networks by using Answer Set Programming. To this end, we build upon
a recently proposed notion of consistency between biochemical/genetic reactions
and high-throughput profiles of cell activity. We then present an approach based
on Answer Set Programming to check the consistency of large-scale data sets.
Moreover, we extend this methodology to provide explanations for inconsisten-
cies in the data by determining minimal representations of conflicts. In practice,
this can be used to identify unreliable data or to indicate missing reactions.

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more data than was procurable before. Furthermore, there is an increas-
ing number of biological repositories on the web, such as KEGG, AraCyc, EcoCyc,
RegulonDB, and others, incorporating thousands of biochemical reactions and genetic
regulations. For combining huge amounts of experimental data with the knowledge
gathered in these repositories, one needs appropriate and powerful knowledge repre-
sentation tools that allow for modeling complex biological systems and their behavior.

In this paper, we deal with the analysis of high-throughput measurements in molec-
ular biology, like microarray data or metabolic profiles [1]. Up to now, it is still a com-
mon practice to use expression profiles merely for detecting over- or under-expressed
genes under specific conditions, leaving the task of making biological sense out of tens
of gene identifiers to human experts. However, many efforts have also been made these
years to make a better use of high-throughput data, in particular, by integrating them
into large-scale models of transcriptional regulation or metabolic processes [2,3].

One possible approach consists in investigating the compatibility between the ex-
perimental measurements and the knowledge available in reaction databases. This can
be done by using formal frameworks, for instance, those developed in [4] and [5]. A
crucial feature of this methodology is its ability to cope with qualitative knowledge
(for instance, reactions lacking kinetic details) and noisy data. In this work, we rely
on the so-called Sign Consistency Model (SCM) due to Siegel et al. [4]. SCM imposes
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constraints between experimental measurements and a graph representation of cellular
interactions, called an influence graph [6].

Building on SCM, we develop declarative techniques based on Answer Set Pro-
gramming (ASP) [7,8,9] to detect and explain inconsistencies in large data sets. This
approach has several advantages. First, it allows us to formulate biological problems
in a declarative way, thus easing the communication with biological experts. Second,
although we do not detail it here, the rich modeling language facilitates integrating
different knowledge representation and reasoning techniques, like abduction, planning,
explanation, prediction, etc., in a uniform and transparent way. And finally, modern ASP
solvers are based on advanced Boolean constraint solving technology and thus provide
us with highly efficient inference engines. Apart from modeling the aforementioned bi-
ological problems in ASP, our major concern lies with the scalability of the approach.
To this end, we do not only illustrate our application domain on an example but, more-
over, design an artificial yet biologically meaningful benchmark suite indicating that an
ASP-based approach scales well on the considered class of applications.

To begin with, we introduce SCM in Section 2. Section 3 briefly describes ASP,
providing the syntax and semantics used in our application. In Section 4, we develop
an ASP formulation of checking the consistency between experimental profiles and
influence graphs. We further extend this approach in Section 5 to identifying minimal
representations of conflicts if the experimental data is inconsistent with an influence
graph. Section 6 is dedicated to an empirical evaluation of our approach along with
an exemplary case study illustrating our application domain. Section 7 concludes this
paper with a brief discussion and an outlook on future work.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs [6] are a common representation for a wide range of dynamical sys-
tems. In the field of genetic networks, they have been investigated for various classes
of systems, ranging from ordinary differential equations [10] to synchronous [11] and
asynchronous [12] Boolean networks. Influence graphs have also been introduced in the
field of qualitative reasoning [13] to describe physical systems where a detailed quan-
titative description is not available. This has also been the main motivation for using
influence graphs for knowledge representation in the context of biological systems.

An influence graph is a directed graph whose vertices are the input and state vari-
ables of a system and whose edges express the effects of variables on each other. An
edge j→ i means that the variation of j in time influences the level of i. Every edge
j→ i of an influence graph is labeled with a sign, either + or –, denoted by σ(j, i),
where + (–) indicates that j tends to increase (decrease) i. An example influence graph
is given in Figure 1; it represents a simplified model for the operon lactose in E. coli.

In SCM, experimental profiles are supposed to come from steady state shift exper-
iments where, initially, the system is at steady state, then perturbed using control pa-
rameters, and eventually, it settles into another steady state. It is assumed that the data
measures the differences between the initial and the final state. Thus, for genes, pro-
teins, or metabolites, we know whether the concentration has increased or decreased,
while quantitative values are unavailable, unessential, or unreliable. By µ(i), we denote
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Fig. 1. Simplified model of operon lactose in E. coli, represented as an influence graph. The
vertices represent either genes, metabolites, or proteins, while the edges indicate the regulations
among them. Green edges with an arrow stand for positive regulations (activations), while red
edges with a tee head stand for negative regulations (inhibitions). Vertices G and Le are consid-
ered to be inputs of the system, that is, their signs are not constrained via their incoming edges.

the sign, again either + or –, of the variation of a species i between the initial and the
final condition. One can easily enhance this setting by also considering null (or more
precisely, non-significant) variations, by exploiting the concept of sign algebra [13].

Given an influence graph (as a representation of cellular interactions) and a label-
ing of its vertices with signs (as a representation of experimental profiles), we now
describe the constraints that relate both. Informally, for every non-input vertex i, the
observed variation µ(i) should be explained by the influence of at least one predeces-
sor j of i in the influence graph. Thereby, the influence of j on i is given by the sign
µ(j)σ(j, i) ∈ {+, –}, where the multiplication of signs is derived from that of numbers.
Sign consistency constraints can then be formalized as follows.

Definition 1 (Sign Consistency Constraints). Let (V,E, σ) be an influence graph,
where V is the set of vertices, E the set of edges, and σ : E → {+, –} a labeling of the
edges. Furthermore, let µ : V → {+, –} be a vertex labeling.

Then, for every non-input vertex i ∈ V , the sign µ(i) of i is consistent, if there is
some edge j→ i in E such that µ(i) = µ(j)σ(j, i).

The notion of (sign) consistency is extended to whole influence graphs in the natural
way, requiring the sign of each non-input vertex to be consistent. In practice, influence
graphs and experimental profiles are likely to be partial. Thus, we say that a partial
labeling of the vertices is consistent with a partially labeled influence graph, if there is
some consistent extension of vertex and edge labelings to all vertices and edges.

Table 1 shows four different vertex labelings for the influence graph given in Fig-
ure 1. Total labeling µ1 is consistent with the influence graph: the variation of each



Species Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – – – – + – +
µ2 + + – + – + – –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? +

Table 1. Some vertex labelings (reflecting measurements of two steady states) for the influence
graph depicted in Figure 1; unobserved values are indicated by a question mark ‘?’.

vertex (except for input vertex Le) can be explained by the effect of one of its regula-
tors. For instance, in µ1, LacY receives a positive influences from cAMP-CRP as well
as a negative influence from LacI, the latter accounting for the decrease of LacY. The
second labeling, µ2, is not consistent: this time LacY receives only negative influences
from cAMP-CRP and LacI, and its increase cannot be explained. Furthermore, partial
vertex labeling µ3 is consistent with the influence graph in Figure 1, as setting the signs
of Li, LacY, LacZ, A, and cAMP-CRP to +, –, –, –, and +, respectively, extends µ3 to a
consistent total labeling. In contrast, µ4 cannot be extended consistently.

3 Answer Set Programming

This section provides a brief introduction to ASP (see [9] for details), a declarative
paradigm for knowledge representation and reasoning, offering a rich modeling lan-
guage [14,15] along with highly efficient inference engines based on Boolean constraint
solving technology [16,17,18,19]. The basic idea of ASP is to encode a problem as a
logic program such that its answer sets represent solutions to the original problem.

In view of our application, we take advantage of the elevated expressiveness of dis-
junctive programs, being able to capture problems at the second level of the polynomial
hierarchy [20,21]. A disjunctive logic program over an alphabetA is a finite set of rules
of the form

a1; . . . ; al ← bl+1, . . . , bm,not cm+1, . . . ,not cn , (1)

where ai, bj , ck are atoms for 0 < i ≤ l < j ≤ m < k ≤ n. A literal is an atom a
or its (default) negation not a. A rule r as in (1) is called a fact, if l = n = 1, and
an integrity constraint, if l = 0. Let head(r) = {a1, . . . , al} be the head of r and
body(r) = {bl+1, . . . , bm,not cm+1, . . . ,not cn} be the body of r. Given a set L of
literals, let L+ = {a ∈ A | a ∈ L} and L− = {a ∈ A | not a ∈ L}.

An interpretation is represented by the set of atoms that are true in it. A model of
a program P is an interpretation in which all rules in P are true according to the stan-
dard definition of truth in propositional logic (while treating rules and default negation
as implications and classical negation, respectively). Note that the (empty) head of an
integrity constraint is false wrt every interpretation, while the empty body is true wrt
every interpretation. Answer sets of P are particular models of P satisfying an addi-
tional stability criterion. Roughly, a set X of atoms is an answer set, if for every rule
of form (1), X contains a minimum of atoms among a1, . . . , al whenever bl+1, . . . , bm
belong to X and no cm+1, . . . , cn belongs to X . However, note that the disjunction in



heads of rules, in general, is not exclusive. Formally, an answer set X of a program P
is a ⊆-minimal model of

{head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅} .

For example, program {a; b←. c; d← a,not b. ← b.} has answer sets {a, c} and {a, d}.
Although answer sets are usually defined on ground (i.e., variable-free) programs,

the rich modeling language of ASP allows for non-ground problem encodings, where
schematic rules stand for their ground instantiations. Grounders, like gringo [22] and
lparse [15], are capable of combining a problem encoding and an instance (typically a
set of ground facts) into an equivalent ground program, processed by some ASP solver.
We follow this methodology and provide encodings for the problems considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper, namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can be
accomplished simply by checking whether each non-input vertex receives at least one
influence matching its variation. However, as soon as the experimental profile has miss-
ing values (which is very likely in practice), the problem becomes NP-hard [23]. In fact,
a Boolean satisfiability problem over clauses {C1, . . . , Cm} and variables {x1, . . . , xn}
can be reduced as follows: introduce unlabeled input vertices x1, . . . , xn, non-input
vertices C1, . . . , Cm labeled +, and edges xj→Ci labeled + (–) if xj occurs positively
(negatively) in Ci. It is not hard to check that the labeling of C1, . . . , Cm by + is con-
sistent with the obtained influence graph iff {C1, . . . , Cm} is satisfiable.

We next provide a logic program such that each of its answer sets matches a con-
sistent extension of vertex and edge labelings. Our encodings as well as instances are
available at [24]. For clarity, we here present them in a simplified manner and omit
some convenient but unessential encoding optimizations. Our program is composed of
three parts, described in the following subsections.

4.1 Problem Instance

An influence graph as well as an experimental profile are given by ground facts. For
each species i, we introduce a fact vertex(i), and for each edge j→ i, a fact edge(j, i).
If s ∈ {+, –} is known to be the variation of a species i or the sign of an edge j→ i,
it is expressed by a fact observedV(i, s) or observedE(j, i, s), respectively. Finally, a
vertex i is declared to be input via a fact input(i).

For example, negative regulation LacI→LacY in the influence graph shown in Fig-
ure 1 and observation + for LacI (as with µ3 in Table 1) give rise to the following facts:

vertex(LacI).
vertex(LacY).
edge(LacI,LacY).
observedV(LacI,+).
observedE(LacI,LacY, –).

(2)



Note that the absence of a fact of form observedV(LacY, s) means that the variation of
LacY is unobserved (as with µ3). In (2), we use LacI and LacY as names for constants
associated with the species in Figure 1, but not as first-order variables. Similarly, for
uniformity of notations, + and – are written in (2) for constants identifying signs.

4.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an experimental profile is consistent
with an influence graph. If so, it is witnessed by total labelings of the vertices and edges,
which are generated via the following rules:

labelV(V,+); labelV(V, –)← vertex(V ).
labelE(U, V,+); labelE(U, V, –)← edge(U, V ). (3)

Moreover, the following rules ensure that known labels are respected by total labelings:

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S). (4)

Note that the stability criterion for answer sets demands that a known label derived via
rules in (4) is also derived via rules in (3), thus, excluding the opposite label. In fact,
the disjunctive rules used in this section could actually be replaced with non-disjunctive
rules via “shifting” [25], given that our first encoding results in a so-called head-cycle-
free (HCF) [26] ground program. However, the disjunctive rules in (3) will be reused
in Section 5 where they cannot be compiled away. Also note that HCF programs, for
which deciding answer set existence stays in NP, are recognized as such by disjunctive
ASP solvers [19,27,28]. Hence, the purely syntactic use of disjunction is not harmful.

The following ground rules are obtained by combining the schematic rules in (3)
and (4) with the facts in (2):

labelV(LacI,+); labelV(LacI, –)← vertex(LacI).
labelV(LacY,+); labelV(LacY, –)← vertex(LacY).

labelE(LacI,LacY,+); labelE(LacI,LacY, –)← edge(LacI,LacY).
labelV(LacI,+)← observedV(LacI,+).

labelE(LacI,LacY, –)← observedE(LacI,LacY, –).

(5)

One can check that the program consisting of the facts in (2) and the rules in (5) admits
two answer sets, the first one including labelV(LacY,+) and the second one including
labelV(LacY, –). On the remaining atoms, both answer sets coincide by containing the
atoms in (2) along with labelV(LacI,+) and labelE(LacI,LacY, –).

4.3 Testing Solution Candidates

We now check whether generated total labelings satisfy the sign consistency constraints
stated in Definition 1, requiring an influence of sign s for each non-input vertex i with
variation s. We thus define receive(i, s) to indicate that i receives an influence of sign s:

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

(6)



Inconsistent labelings, where a non-input vertex does not receive any influence match-
ing its variation, are then ruled out by integrity constraints of the following form:

← labelV(V, S),not receive(V, S),not input(V ). (7)

Note that the schematic rules in (6) and (7) are given in the input language of grounder
gringo [22], available at [29]. This allows us to omit an explicit listing of some (domain)
predicates in the bodies of rules, which would be necessary when using lparse [15].
At [24], we provide encodings both for gringo and also more verbose ones for lparse.

Starting from the answer sets described in the previous subsection, the included
atoms labelE(LacI,LacY, –) and labelV(LacI,+) allow us to derive receive(LacY, –)
via a ground instance of the second rule in (6), while receive(LacY,+) is underivable.
After adding receive(LacY, –), the solution candidate containing labelV(LacY, –) satis-
fies the ground instances of the integrity constraint in (7) obtained by substituting LacY
for V . Assuming LacI to be an input, as it can be declared via fact input(LacI), we
thus obtain an answer set containing labelV(LacY, –), expressing a decrease of LacY.
In contrast, since receive(LacY,+) is underivable, the solution candidate containing
labelV(LacY,+) violates the following ground instance of (7):

← labelV(LacY,+),not receive(LacY,+),not input(LacY).

That is, the solution candidate with labelV(LacY,+) does not pass the consistency test.

5 Identifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial to provide concise explanations,
whenever an experimental profile is inconsistent with an influence graph (i.e., if the
logic program given in the previous section has no answer set). To this end, we adopt a
strategy that was successfully applied on real biological data [30]. The basic idea is to
isolate minimal subgraphs of an influence graph such that the vertices and edges cannot
be labeled consistently. This task is closely related to extracting Minimal Unsatisfiable
Cores (MUCs) [31] in the context of Boolean satisfiability (SAT) [16]. In allusion, we
call a minimal subgraph of an influence graph whose vertices and edges cannot be
labeled consistently a Minimal Inconsistent Core (MIC). Note that identifying a MUC
is DP-complete [31,32], which is why we use disjunctive programs to encode MICs.

For illustration, consider the influence graph and the MIC shown in Figure 2. One
can check that the observed simultaneous increase of B and D is not consistent with the
influence graph, but the reason for this might not be apparent at first glance. However,
once the depicted MIC is extracted, we immediately see that the increase of B implies
an increase of A, so that the observed increase of D cannot be explained.

We next provide an encoding for identifying MICs, where a problem instance, that
is, an influence graph along with an experimental profile, is represented by facts as
specified in Section 4.1. The encoding then consists of three parts: the first generating
MIC candidates, the second asserting inconsistency, and the third verifying minimality.
The generating part comprises the rules in (3) and (4), and in addition, it includes:

active(V ); inactive(V )← vertex(V ),not input(V ). (8)
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Fig. 2. A partially labeled influence graph and a contained MIC.

This additional rule permits guessing non-input vertices to be marked as active. The
subgraph of the influence graph consisting of the active vertices, their regulators, and
the connecting edges forms a MIC candidate, tested via the two encoding parts below.

5.1 Testing for Inconsistency

By adapting a methodology used in [21], the following subprogram makes sure that
the active vertices belong to a subgraph that cannot be labeled consistently, while all
possible labelings of the residual vertices and edges are (implicitly) taken into account:3

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).
← not bottom.

labelV(V,+)← bottom, vertex(V ).
labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).
labelE(U, V, –)← bottom, edge(U, V ).

In this (part of the) encoding, opposite(U, V ) indicates that the influence of regulator U
on V is opposite to the variation of V . If all regulators of an active vertex V have
such an opposite influence, the sign consistency constraint for V is violated, in which
case atom bottom along with all labels for vertices and edges are derived. Note that the
stability criterion for an answer set X imposes that bottom and all labels belong to X
only if the active vertices cannot be labeled consistently. Finally, integrity constraint
←not bottom necessitates the inclusion of bottom in any answer set, thus, stipulating
an inevitable sign consistency constraint violation for some active vertex.

Reconsidering our example in Figure 2, the ground instances of (8) permit guessing
active(A) and active(D). When labeling A with + (or assuming labelV(A,+) to be
true), we derive opposite(A,D) and bottom, producing in turn all labels for vertices and

3 In the language of gringo (and lparse [15]), the expression opposite(U, V ) : edge(U, V ) used
below refers to the conjunction of all ground atoms opposite(j, i) for which edge(j, i) holds.



edges. Furthermore, setting the sign of A to – (or labelV(A, –) to true) makes us derive
opposite(B,A), which again gives bottom and all labels for vertices and edges. We have
thus verified that the sign consistency constraints for A and D cannot be jointly satisfied,
given the observed increases of B and D. That is, active vertices A and D are sufficient
to explain the inconsistency between the observations and the influence graph.

5.2 Testing for Minimality

It remains to be verified whether the sign consistency constraints for all active vertices
are necessary to identify an inherent inconsistency. This test is based on the idea that,
excluding any active vertex, the sign consistency constraints for the other active vertices
should be satisfied by appropriate labelings. This can be implemented as follows:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertex(V ).
labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edge(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S).
receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), S 6= T.

← labelV’(W,V, S), active(V ), V 6= W,not receive’(W,V, S).

This subprogram is similar to the consistency check encoded via the rules in (3), (4), (6),
and (7). However, sign consistency constraints are only checked for active vertices, and
they must be satisfiable for all but an arbitrary active vertex W . As W ranges over all
(non-input) vertices of an influence graph, each active vertex is taken into consideration.

For the influence graph in Figure 2, it is easy to see that the sign consistency con-
straint for A is satisfied by setting the sign of A to +, expressed by atom labelV’(D,A,+)
in the ground rules obtained from the above encoding. In turn, the sign consistency
constraint for D is satisfied by setting the sign of A to –. This is reflected by atom
labelV’(A,A, –), allowing us to derive receive’(A,D,+), so that the ground instance of
the above integrity constraint containing labelV’(A,D,+) is satisfied.

6 Empirical Evaluation and Application

For assessing the scalability of our approach, we start by conceiving a parameterizable
set of artificial yet biologically meaningful benchmarks. After that, we present a typical
application stemming from real biological data, illustrating the exertion in practice.

6.1 Checking Consistency

We first evaluate the efficiency of our approach on randomly generated instances, aim-
ing at structures similar to those found in biological applications. Instances are com-
posed of an influence graph, a complete labeling of its edges, and a partial labeling of
its vertices. Our random generator takes three parameters: (i) the number α of vertices
in the influence graph, (ii) the average degree β of the graph, and (iii) the proportion γ



claspD claspD claspD cmodels dlv gnt
α Berkmin VMTF VSIDS
500 0.14 0.11 0.11 0.16 0.46 0.71
1000 0.41 0.25 0.25 0.35 1.92 3.34
1500 0.79 0.38 0.38 0.53 4.35 7.50
2000 1.33 0.51 0.51 0.71 8.15 13.23
2500 2.10 0.66 0.66 0.89 13.51 21.88
3000 3.03 0.80 0.79 1.07 20.37 31.77
3500 3.22 0.93 0.92 1.15 21.54 34.39
4000 4.35 1.06 1.06 1.36 30.06 46.14

Table 2. Run-times for consistency checking with claspD, cmodels, dlv, and gnt.

of observed variations for vertices. To generate an instance, we compute a random graph
with α vertices (the value of α varying from 500 to 4000) under the model by Erdős-
Rényi [33]. Each pair of vertices has equal probability to be connected via an edge,
whose label is chosen independently with probability 0.5 for both signs. We fix the
average degree β to 2.5, which is considered to be a typical value for biological net-
works [34]. Finally, bγαc vertices are chosen with uniform probability and assigned a
label with probability 0.5 for both signs. For each number α of vertices, we generated
50 instances using five different values for γ, viz., 0.01, 0.02, 0.033, 0.05, and 0.1. All
instances can be found at [24].

We used gringo [22,29] (version 2.0.0) for combining the generated instances and
the encoding given in Section 4 into equivalent ground logic programs. For deciding
consistency by computing an answer set (if it exists), we ran disjunctive ASP solvers
claspD [19] (version 1.1) with “Berkmin”, “VMTF”, and “VSIDS” heuristics, cmod-
els [17,27] (version 3.75) using zchaff [35], dlv [28] (build BEN/Oct 11), and gnt [36]
(version 2.1). All runs were performed on a Linux machine equipped with an AMD
Opteron 2 GHz processor and a memory limit set to 2GB RAM.

Table 2 shows the average run-times over 50 instances per number α of vertices
in seconds, including grounding times of gringo and solving times. We checked that
grounding times of gringo increase linearly with the number α of vertices, and they
do not vary significantly over γ. For all solvers, run-times also increase linearly in α.4

In fact, for fixed α values, we found two clusters of instances: consistent ones where
total labelings were easy to compute and inconsistent ones where inconsistency was
detected from preassigned labels only. This tells us that the influence graphs generated
as described above are usually (too) easy to label consistently, and inconsistency only
happens if it is explicitly introduced via fixed labels. However, such constellations are
not unlikely in practice (cf. Section 6.3), and isolating MICs from them, as done in the
next subsection, turned out to be hard for most solvers. Finally, greater values for γ led
to an increased proportion of inconsistent instances, without making them much harder.

4 Longer run-times of claspD with “Berkmin” in comparison to the other heuristics are due
to a more expensive computation of heuristic values in the absence of conflict information.
Furthermore, the time needed for performing “Lookahead” slows down dlv as well as gnt.



gringo claspD claspD claspD
α Berkmin VMTF VSIDS
50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55 39.11 (1) 1.65 (0) 3.99 (0)
100 0.87 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37 15.47 (0) 47.56 (1) 10.73 (0)
150 2.02 54.13 (0) 48.05 (0) 15.89 (0)
175 2.77 30.98 (0) 116.37 (2) 23.07 (0)
200 3.82 42.81 (0) 52.28 (1) 24.03 (0)
225 4.94 99.64 (1) 30.71 (0) 41.17 (0)
250 5.98 194.29 (3) 228.42 (5) 110.90 (1)
275 7.62 178.28 (2) 193.03 (4) 51.11 (0)
300 9.45 241.81 (2) 307.15 (7) 124.31 (0)

Table 3. Run-times for grounding with gringo and solving with claspD.

6.2 Identifying Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the same setting as in the
previous subsection. Because of the elevated size of ground instantiations and problem
difficulty, we varied the number α of vertices from 50 to 300, thus, using considerably
smaller influence graphs than before. We again use gringo for grounding, now taking
the encoding given in Section 5. As regards solving, we restrict our attention to claspD
because all three of the other solvers showed drastic performance declines.

Table 3 shows average run-times over 50 instances per number α of vertices in sec-
onds for grounding with gringo and solving with claspD using “Berkmin”,“VMTF”,
and “VSIDS” heuristics. Timeouts, indicated in parentheses, are taken as maximum
time of 1800 seconds. We observe a quadratic increase in grounding times of gringo,
which is in line with the fact that ground instantiations for our MIC encoding grow
quadratically with the size of influence graphs. In fact, the schematic rules in Sec-
tion 5.2 give rise to α copies of an influence graph. Considering solving times spent by
claspD for finding one MIC (if it exists), we observe that they are relatively stable, in
the sense that they are tightly correlated to grounding times. This regularity again con-
firms that, though it is random, the applied generation pattern tends to produce rather
uniform influence graphs. Finally, we observed that unsatisfiable instances, i.e., consis-
tent instances without any MIC, were easier to solve than the ones admitting answer
sets. We conjecture that this is because consistent total labelings provide a disproof of
inconsistency as encoded in Section 5.1.

As our experimental results demonstrate, computing a MIC is computationally harder
than just checking consistency. This is not surprising because the related problem of
identifying a MUC is DP-complete [31,32]. With our declarative technique, we spot the
quadratic space blow-up incurred by the MIC encoding in Section 5 as a bottleneck. It
is an interesting open question whether more economical encodings can be found.
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Fig. 3. Some exemplary MICs obtained by comparing the regulatory network in [37] with a ge-
netic profile from [38].

6.3 Biological Case Study

In the following, we present the results of applying our approach to real-world data of
genetic regulations in yeast. We tested the gene-regulatory network of yeast provided
in [37] against genetic profile data of SNF2 knock-outs [38] from the Saccharomyces
Genome Database. The regulatory network of yeast contains 909 genetic or biochemical
regulations, all of which have been established experimentally, among 491 genes.

Comparing the yeast regulatory network with the genetic profile of SNF2, we found
the data to be inconsistent with the network, which was easily detected using the ap-
proach from Section 4. Applying our diagnosis technique from Section 5, we obtained
a total of 19 MICs. While computing the first MIC took only about 2.5 seconds us-
ing gringo and claspD, the computation of all MICs was considerably harder, taking 3
minutes and 38 seconds with claspD using “VMTF” embedded into a wrapper script
that excludes already computed MICs via integrity constraints. In fact, the minimality
encoding in Section 5.2 admits multiple answer sets corresponding to the same MIC
because the variations of vertices not connected to the MIC can be chosen freely, thus
producing copies of the same solution. Even though the encodings available at [24] al-
ready address this redundancy, they do not yet establish a one-to-one correspondence
between MICs and answer sets since the determined consistent labelings of the sub-
graphs of a MIC are not necessarily unique. For achieving one-to-one correspondence,
this redundancy must also be eliminated, which is a subject to future work.

Six of the computed MICs are exemplarily shown in Figure 3. While the first three
of them are pretty obvious, we also identified more complex topologies. However, our
example demonstrates that the MICs obtained in practice are still small enough to be un-
derstood easily. For finding suitable corrections to the inconsistencies, it is often even
more helpful to display the connections between several overlapping MICs. Observe
that all six MICs in Figure 3 are related to gene YDR207C, and in Figure 4, we show
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Fig. 4. Subgraph obtained by connecting the six MICs given in Figure 3.

the subgraph of the yeast regulatory network obtained by connecting them. In this rep-
resentation, one can see that the observed increase of YDR207C is not compatible with
the variation of any of its four targets, but the variation of YDR207C itself can be ex-
plained by its direct and indirect regulators. This suggests to first check the correctness
of the observation that YDR207C has increased, and depending on the result, to con-
sider additional regulations that might be missing in the yeast regulatory network. In
fact, potential uses of our diagnosis technique applied to real-world data include identi-
fying unreliable data and missing reactions in a systematic and more targeted way.

7 Discussion

We have provided an approach based on ASP to investigate the consistency between
experimental profiles and influence graphs. In case of inconsistency, the concept of a
MIC can be exploited for identifying concise explanations, pointing to unreliable data
or missing reactions. The problem of finding MICs is closely related to the extraction of
MUCs in the context of SAT. From a knowledge representation point of view, however,
we argue for our ASP-based technique, as it allows for an elegant declarative way to
describe problems in terms of a uniform encoding and specific instances.

By now, a variety of efficient ASP tools are available, both for grounding and for
solving logic programs. Our empirical assessment of them (on random as well as real
data) has in principle demonstrated the scalability of the approach. As elegance and
flexibility in problem modeling are major advantages of ASP, our investigation might
make it attractive also for related biological questions, beyond the ones addressed in
this paper. For instance, natural extensions of the presented techniques allow for ac-
complishing prediction and repair. In the future, it will also be interesting to explore
how far the performance of ASP tools can be tuned by varying and optimizing the
given encodings, e.g., in order to compute all MICs more effectively. In turn, challeng-
ing applications like the one presented here might contribute to the further improvement
of ASP tools, as they might be geared towards efficiency in such application domains.
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