
Modelling Biological Networks by Action Languages
Via Answer Set Programming

Susanne Grell1, Torsten Schaub1,�, and Joachim Selbig1,2

1 Institut für Informatik, Universität Potsdam, Postfach 900327, D-14439 Potsdam, Germany
2 Institut für Biologie, Universität Potsdam, Postfach 900327, D-14439 Potsdam, Germany

Abstract. We describe an approach to modelling biological networks by action
languages via answer set programming. To this end, we propose an action lan-
guage for modelling biological networks, building on previous work by Baral et
al. We introduce its syntax and semantics along with a translation into answer
set programming. Finally, we describe one of its applications, namely, the sulfur
starvation response-pathway of the model plant Arabidopsis thaliana and sketch
the functionality of our system and its usage.

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more data than was procurable before. For turning such huge amounts of
data into knowledge, one needs appropriate and powerful knowledge representation
tools that allow for modelling complex biological systems and their behaviour. Of par-
ticular interest are qualitative tools that allow for dealing with biological and biochem-
ical networks. Since these networks are very large, a biologist can manually deal with
a small part of it at once. Among the more traditional qualitative formalisms, we find
e.g. Petri Nets [1,2], Flux Balance Analysis [3] or Boolean Networks [4]. As detailed
in [5], these approaches lack sufficiently expressive reasoning capacities.

Groundbreaking work addressing this deficiency was recently done by Chitta Baral
and colleagues who developed a first action language for representing and reasoning
about biological networks [6,5]. Action languages were introduced in the 1990s by
Gelfond and Lifschitz (cf. [7]). By now, there exists a large variety of action languages,
like the most basic language A and its extensions [8] as well as more expressive ac-
tion languages like C [9] or K [10]. Traditionally, action languages are designed for
applications in autonomous agents, planning, diagnosis, etc, in which the explicit ap-
plicability of actions plays a dominant role. This is slightly different in biological sys-
tems where reactions are a major concern. For instance, while an agent usually has the
choice to execute an action or not, a biological reaction is often simply triggered by
its application conditions. This is addressed in [5] by proposing trigger and inhibition
rules as an addition to the basic action language A; the resulting language is referred
to as A0

T . A further extension, allowing knowledge about event ordering, is introduced
in [11].
� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 285–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 S. Grell, T. Schaub, and J. Selbig

The advantages of action languages for modelling biological systems are manifold:

– We get a simplified model. It is not necessary to have any kinetic parameters. The
approach can thus already be used in a very early state to verify whether the pro-
posed model of the biological system can or cannot hold.

– Different kinds of reasoning can be used to plan and support experiments. This
helps to reduce the number of expensive experiments.

– Further reasoning modes allow for prediction of consequences and explanation of
observations.

– The usage of static causal laws allows to easily include background knowledge like
environmental conditions, which play an important role for the development of a
biological system but are usually difficult to include in the model.

– The approach is elaboration tolerant because it allows to easily extend the model
without requiring to change the rest of the model.

We start by introducing our action language CTAID by building on language A0
T [5]

and C [9]. CTAID extends C by adding biologically relevant concepts from A0
T such as

triggers and it augments A0
T by providing static causal laws for modelling background

knowledge. Moreover, fluents are no longer inertial by definition and the concurrent
execution of actions can be restricted. A feature distinguishing CTAID from its prede-
cessors is its concept of allowance, which was motivated by our biological applications.
The corresponding allowance rules let us express that an action can occur under cer-
tain conditions but does not have to occur. In fact, biological systems are characterised
by a high degree of incomplete knowledge about the dependencies among different
component and the actual reasons for their interaction. If the dependencies are well un-
derstood, they can be expressed using triggering rules. However, if the dependencies are
only partly known or not part of the model, e.g. environmental conditions, they cannot
be expressed appropriately using triggering rules. The concept of allowance permits
actions to take place or not, as long as they are allowed (and not inhibited). This in-
troduces a certain non-determinism that is used to model alternative paths, actions for
which the preconditions are not yet fully understood, and low reaction rates. Of course,
such a non-deterministic construct increases the number of solutions. However, this is
a desired feature since we pursue an exploratory approach to bioinformatics that allows
the biologist to browse through the possible models of its application.

We introduce the syntax and semantics of CTAID and give a soundness and com-
pleteness result, proved in [12]. For implementing CTAID, we compile specifications
in CTAID into logic programs under answer set semantics [13]. This has been imple-
mented in Java and was used meanwhile in ten different application scenarios at the
Max-Planck Institute for Molecular Plant Physiology for modelling metabolic as well as
signal transduction networks. Among them we present the smallest application, namely
the sulfur starvation response-pathway of the model plant Arabidopsis thaliana.

2 Action Language CTAID

The alphabet of our action language CTAID consists of two nonempty disjoint sets of
symbols: a set of actions A and a set of fluents F . Informally, fluents describe chang-

Modelling Biological Networks by Action Languages Via Answer Set Programming 287

ing properties of a world and actions can influence fluents. We deal with propositional
fluents that are either true or false. A fluent literal is a fluent f possibly preceded by ¬.

We distinguish three sublanguages of CTAID: The action description language is
used to describe the general knowledge about the system, the action observation lan-
guage is used to express knowledge about particular points of time and the action query
language is used to reason about the described system.

Action Description Language. To begin with, we fix the syntax of CTAID’s action
description language:

Definition 1. A domain description D(A, F) in CTAID consists of expressions of the
following form:

(a causes f1, . . . , fn if g1, . . . , gm) (1)

(f1, . . . , fn if g1, . . . , gm) (2)

(f1, . . . , fn triggers a) (3)

(f1, . . . , fn allows a) (4)

(f1, . . . , fn inhibits a) (5)

(noconcurrency a1, . . . , an) (6)

(default f) (7)

where a, a1, . . . , an are actions and f, f1, . . . , fn, g1, . . . , gm are fluent literals.

Note that A0
T consists of expressions of form (1), (3), and (5) only.

A dynamic causal law is a rule of form (1), stating that f1, . . . , fn hold after the
occurrence of action a if g1, . . . , gm hold when a occurs. If there are no preconditions
of the form g1, . . . , gm, the if-part can be omitted. Rule (2) is a static causal law, used
to express immediate dependencies between fluents; it guarantees that f1, . . . , fn hold
whenever g1, . . . , gm hold. Rules (3) to (6) can be used to express whether and when an
action can or cannot occur. A triggering rule (3) is used to state that action a occurs im-
mediately if the preconditions f1, . . . , fn hold, unless it is inhibited. An allowance rule
of form (4) states that action a can but need not occur if the preconditions f1, . . . , fn

hold. An action for which triggering or allowance rules are specified can only occur if
one of its triggering or allowance rules, resp., is satisfied. An inhibition rule of form
(5) can be used to express that action a cannot occur if f1, . . . , fn hold. A rule of the
form (6) is a no-concurrency constraint. Actions included in such a constraint cannot
occur at the same time. Rule (7) is a default rule, which is used to define a default value
for a fluent. This makes us distinguish two kinds of fluents: inertial and non-inertial
fluents. Inertial fluent change their value only if they are affected by dynamic or static
causal laws. Non-inertial fluents on the other hand have the value, specified by a default
rule, unless they are affected by a dynamic or static causal law. Every fluent that has
no default value is regarded to be inertial. Additionally, we distinguish three groups of
actions depending on the rules defined for them. An action can either be a triggered,
an allowed or an exogenous action. That means, for one action there can be several
triggering or several allowance rules but not both.

As usual, the semantics of a domain description D(A, F) is defined in terms of
transition systems. An interpretation I of F is a complete and consistent set of fluents.

Definition 2 (State). A state s ∈ S of the domain description D(A, F) is an interpre-
tation of F such that for every static causal law (f1, . . . , fn if g1, . . . , gn) ∈ D(A, F),
we have {f1, . . . , fn} ⊆ s whenever {g1, . . . , gn} ⊆ s.

288 S. Grell, T. Schaub, and J. Selbig

Hence, we are only interested in sets of fluents satisfying all static causal laws, i.e. cor-
rectly model the dependencies between the fluents.

Depending on the state, it is possible to decide which actions can or cannot occur.
Therefore we define the notion of active, passive and applicable rules.

Definition 3. Let D(A, F) be a domain description and s a state of D(A, F).

1. An inhibition rule (f1, . . ., fn inhibits a) is active in s, if s |= f1 ∧ . . . ∧ fn, oth-
erwise the inhibition rule is passive. The set AI(s) is the set of actions for which
there exists at least one active inhibition rule in s.

2. A triggering rule (f1, . . ., fn triggers a) is active in s, if s |= f1 ∧ . . . ∧ fn and all
inhibition rules of action a are passive in s, otherwise the triggering rule is passive
in s. The set AT (s) is the set of actions for which there exists at least one active
triggering rule in s. The set AT (s) is the set of actions for which there exists at
least one triggering rule and all triggering rules are passive in s.

3. An allowance rule (f1, . . ., fn allows a) is active in s, if s |= f1 ∧ . . . ∧ fn and all
inhibition rules of action a are passive in s, otherwise the allowance rule is passive
in s. The set AA(s) is the set of actions for which there exists at least one active
allowance rule in s. The set AA(s) is the set of actions for which there exists at
least one allowance rule and all allowance rules are passive in s.

4. A dynamic causal law (a causes f1, . . ., fn if g1, . . ., gn) is applicable in s, if s |=
g1 ∧ . . . ∧ gn.

5. A static causal law (f1, . . ., fn if g1, . . ., gn) is applicable in s, if s |= g1 ∧ . . .∧gn.

Observe that point two and three of the definition express that an action has to occur or
may occur as long as there is one active triggering or allowance rule respectively. An
action cannot occur if either an inhibition rule for the action is active or if all triggering
or allowance rules for the action are passive.

The effects of an action are determined by the applicable dynamic causal laws de-
fined for this action. Following [8], the effects of an action a in a state s of domain
description D(A, F) are defined as follows:

E(a, s) = {f1, . . . , fn | (a causes f1, . . . , fn if g1, . . . , gm) is applicable in s}

The effects of a set of actions A is defined as the union of the effects of the single
actions: E(A, s) =

⋃
a∈AE(a, s). Besides the direct effects of actions, a domain de-

scription also defines the consequences of static relationships between fluents. For a set
of static causal laws in a domain description D(A, F) and a state s, the set

L(s) = {f1, . . . , fn | (f1, . . . , fn if g1, . . . , gm) is applicable in s}

contains the heads of all static causal laws whose preconditions hold in s.
Finally, the way the world evolves according to a domain description is captured by

a transition relation; it defines to which state the execution of a set of actions leads.

Definition 4. Let D(A, F) be a domain description and S be the set of states of
D(A, F). Then, the transition relation Φ ⊆ S × 2A × S determines the resulting state
s′ ∈ S after executing all actions B ⊆ A in state s ∈ S as follows:

Modelling Biological Networks by Action Languages Via Answer Set Programming 289

(s, B, s′) ∈ Φ for s′ = {(s ∩ s′) ∪ E(B, s) ∪ L(s′) ∪ Δ(s′)}

where Δ(s′) = { f | (default f) ∈ D(A, F), ¬f /∈ E(B, s) ∪ L(s′)}
∪ {¬f | (default ¬f) ∈ D(A, F), f /∈ E(B, s) ∪ L(s′)}

Even if no actions are performed, there can nevertheless be a change of state due to the
default values defined by the domain description. Intuitively, if actions occur, the next
state is determined by taking all effects of the applicable dynamic and static causal laws
and adding the default values of fluents not affected by these actions. The values of all
fluents that are not affected by these actions or by default values remain unchanged.

The transition relation determines the resulting state when an action is executed,
but it cannot be used to decide whether the action happens at all, since it does not
consider triggering, allowance or inhibition rules. This is accomplished by the concept
of a trajectory, which is a sequence of states and actions that takes all rules in the
domain description into account.

Definition 5 (Trajectory). Let D(A, F) be a domain description.
A trajectory s0, A1, s1, . . . , An, sn of D(A, F) is a sequence of actions Ai ⊆ A and

states si satisfying the following conditions for 0 ≤ i < n:

1. (si, A, si+1) ∈ Φ
2. AT (si) ⊆ Ai+1
3. AT (si) ∩ Ai+1 = ∅

4. AA(si) ∩ Ai+1 = ∅
5. AI(si) ∩ Ai+1 = ∅
6. |Ai ∩ B| ≤ 1

for all (noconcurrency B) ∈ D(A, F).

A trajectory assures that there is a reason why an action occurs or why it does not
occur. The second and third point of the definition make sure that the actions of all
active triggering rules are included in the set of actions and that no action for which all
triggering rules are passive is included in the set of actions. Point four and five assure
that no actions for which all allowance rules are passive and no inhibited actions are
included in the set of actions. 1 The definition does not include assertions about the
active allowance rules, because they can be, but not necessarily have to be, included in
the set of actions. (As detailed above, this is motivated by our biological application.)
Point two to four imply that for an action there can either be only triggering rules or only
allowance rules defined. The last point of the definition assures that all no-concurrency
constraints are correctly applied.

Action Observation Language. The action observation language provides expressions
to describe particular states and occurrences of actions:

(f at ti) (a occurs at ti) (8)

where f is a fluent literal, a is an action and ti is a point of time. The initial point of time
is t0. For a set of actions A′ = {a1, . . . , ak} we write (A′ occurs at ti) to abbreviate
(a1 occurs at ti), . . ., (ak occurs at ti). Intuitively, an expression of form (f at ti) is

1 Allowance rules can be rewritten as inhibition rules, if the corresponding action is declared
to be exogenous. But this is inadequate in view of our biological application and results in a
significant blow-up in the number of rules obtained after compilation.

290 S. Grell, T. Schaub, and J. Selbig

used to state that a fluent f is true or present at time ti. If the fluent f is preceded by ¬
it states that f is false at ti. An observation of form (a occurs at ti) says that action a
occurs at time ti. It is possible that action a is preceded by ¬ to express that a does not
occur at time ti.

A domain description specifies how the system can evolve over time. By including
observations the possibilities of this evolution are restricted. So only when all infor-
mation, the domain description and the observations, is taken into account, we get an
appropriate picture of the world. The combination of domain description and observa-
tions is called an action theory.

Definition 6 (Action theory). Let D be a domain description and O be a set of obser-
vations. The pair (D, O) is called an action theory.

Intuitively, trajectories specify possible evolutions of the system with respect to the
given domain description. However, not all trajectories satisfy the observations given
by an action theory. Trajectories satisfying both, the domain description as well as given
observations, are called trajectory models:

Definition 7 (Trajectory model). Let (D, O) be an action theory.
A trajectory s0, A1, s1, A2, . . . , An, sn of D is a trajectory model of (D, O), if it

satisfies all observations in O in the following way:

– if (f at t) ∈ O, then f ∈ st

– if (a occurs at t) ∈ O, then a ∈ At+1.

The problem that arises here is to find biologically meaningful models. Obviously, such
trajectory models often include redundant information, but since this is a common phe-
nomena of biological systems it is not possible to simply exclude such trajectory mod-
els. Often, only the minimal trajectories are considered to be of interest, but this is not
appropriate for biological systems, since we are not only interested in the shortest path
through the transition system, but also in, possibly longer, alternative paths and just as
well in models which include the concurrent execution of actions. To decide which ac-
tions are redundant is thus a rather difficult problem and the question whether a model
is biologically meaningful can only be answered by a biologist, not by an automated
reasoner. One way to include additional information which may be derived from data
on measurement could be the use of preferences, which is subject to future work.

A question we can already answer is that abut logical consequence of observations.

Definition 8. Let (D, O) be an action theory. Then,

– (D, O) entails fluent observation (f at ti), written (D, O) |= (f at ti), if f ∈ si

for all trajectory models s0, A1, . . . , si, Ai+1, . . . , An, sn of (D, O),
– (D, O) entails action observation (a occurs at ti), written

(D, O) |= (a occurs at ti), if a ∈ Ai+1 for all trajectory models
s0, A1, . . . , si, Ai+1, . . . , An, sn of (D, O).

Action Query Language. Queries are about the evolution of the biological system,
i.e. about trajectories. In general, a query is of the form:

(f1, . . . , fn after A1 occurs at t1, . . . , Am occurs at tm) (9)

Modelling Biological Networks by Action Languages Via Answer Set Programming 291

where f1, ..., fn are fluent literals, A1, ..., Am sets of actions, and t1, ..., tm time points.
For queries the most prominent question is the notion of logical consequence. Under

which circumstances entails an action theory or a single trajectory model a query.

Definition 9. Let (D, O) be an action theory and Q be a query of form (9).2 Then,

– Q is cautiously entailed by (D, O), written (D, O) |=c Q, if every trajectory model
s0, A

′
1, s1, A

′
2, . . . , A

′
p, sp of (D, O) satisfies Ai ⊆ A′

i for 0 < i ≤ m ≤ p and
sp |= f1 ∧ . . . ∧ fn.

– Q is bravely entailed by (D, O), written (D, O) |=b Q, if some trajectory model
s0, A

′
1, s1, A

′
2, . . . , A

′
p, sp of (D, O) satisfies Ai ⊆ A′

i for 0 < i ≤ m ≤ p and
sp |= f1 ∧ . . . ∧ fn.

While cautiously entailed queries are supported by all models, bravely entailed queries
can be used for checking the possible hypotheses.

We want to use the knowledge given as an action theory to reason about the cor-
responding biological system. Reasoning includes explaining observed behaviour, but
also predicting the future development of the system or how the system may be influ-
enced in a particular way. The above notion of entailment is used to verify the different
queries introduced in the next sections.

Planning. In planning, we try to find possibilities to influence a system in a certain
way. Neither the initial state nor the goal state have to be completely specified by fluent
observations. A plan is thus a sequence of actions starting from one possible initial
state and ending at one possible goal state. There are usually several plans, taking into
account different paths but also different initial and goal states.

Definition 10 (Plan). Let (D, Oinit) be an a action theory such that Oinit contains
only fluent observations about the initial state and let Q be a query of form (9).

If (D, Oinit) |=b Q, then P = {(A1 occurs at t1), . . . , (Am occurs at tm)} is a
plan for f1, . . . , fn.

Note that a plan is always derived from the corresponding trajectory model.
Explanation. Usually, there are not only observations about the initial state but also

about other time points and we are more interested in understanding the observed
behaviour of a system than in finding a plan to cause certain behaviour of the system.

Definition 11 (Explanation). Let (D, O) be an action theory and let Q be a query of
form (9) where f1 ∧ . . . ∧ fn ≡ true.

If (D, O) |=b Q, then E = {(A1 occurs at t1), . . . , (Am occurs at tm)} is an
explanation for the set of observations O.

When explaining observed behaviour it is neither necessary to completely define the
initial state, nor the final state. The less information is provided the more possible ex-
planation there are, because an explanation is one path from one possible initial state
to one possible final state, via some possible intermediate partially defined states given
by the observations. The initial state and the explanation are induced by the underlying
trajectory model.

2 Parameters m and n are taken as defined in (9).

292 S. Grell, T. Schaub, and J. Selbig

Prediction is mainly used to determine the influence of actions on the system; it
tries to answer questions about the possible evolution of the system. A query answers
the question whether, starting at the current state and executing a given sequence of
actions, fluents will hold or not hold after a certain time.

Definition 12 (Prediction). Let (D, O) be an action theory and let Q be a query of
form (9).

– If (D, O) |=c Q, then f1, . . . , fn are cautiously predicted,
– If (D, O) |=b Q, then f1, . . . , fn are bravely predicted.

All of the above reasoning modes are implemented in our tool and used in our biological
applications. Before describing its usage, we first detail how it is implemented.

3 Compilation

We implemented our action language by means of a compiler mapping CTAID onto
logic programs under answer set semantics (cf. [14,13]). This semantics associates with
a logic program a set of distinguished models, referred to as answer sets. This model-
based approach to logic programming is different from the traditional one, like Prolog,
insofar as solutions are read off issuing answer sets rather than proofs of posed queries.
Our compiler uses efficient off-the-self answer set solvers as a back-end, whose purpose
is to compute answer sets from the result of our compilation. Since we do not elabo-
rate upon theoretical aspects of this, we refer the reader to the literature for a formal
introduction to answer set programming (cf. [14,13]).

Our translation builds upon and extends the one in [6]. We adapt the translation of
the language A0

T to include new language constructs and we extend the compilation
of A0

T in order to capture the semantics of static causal laws, allowance and default
rules, and of no-concurrency constraints. In what follows, we stick to the syntax of the
smodels system [15].

Action Description Language. The expressions defined in a domain description
D(A, F) have to be composed of symbols from A an F . When constructing the logic
program for D(A, F), we first have to define the alphabet. We declare every fluent
f ∈ F and action a ∈ A, resp., by adding a fact of the form fluent(f), and
action(a). We use continuously a variable T, representing a time point where 0 ≤
T≤ tmax. This range is encoded by the smodels construct time(0..tmax), standing
for the facts time(0), . . . ,time(tmax). Furthermore, it is necessary to add constraints
expressing that f and ¬f are contradictory.

:- holds(f,T), holds(neg(f),T), fluent(f), time(T).

Whenever clear from the context, we only give translations for positive fluent literals
f ∈ F and omit the dual rule for the negative fluent, viz. ¬f represented as neg(f).

For each inertial fluent f ∈ F , we include rules expressing that f has the same value
at ti+1 as at ti, unless it is known otherwise:

holds(f,T+1) :- holds(f,T),not holds(neg(f,T+1)),not default(f),
fluent(f),time(T),time(T+1).

Modelling Biological Networks by Action Languages Via Answer Set Programming 293

For each non-inertial fluent f ∈ F , we add the fact default(f) and include for the
default value true:

holds(f,T) :- not holds(neg(f),T), fluent(f), time(T).

For each dynamic causal law (1) in D(A, F) and each fluent fi ∈ F , we include:

holds(fi,T+1) :- holds(occurs(a),T),holds(g1,T),. . .,holds(gn,T),
fluent(g1),. . .,fluent(gn),fluent(fi),action(a),time(T;T+1).

For each static causal law (2) in D(A, F) and each fluent fi ∈ F , we include:

holds(fi,T) :- holds(g1,T),. . .,holds(gn,T),
fluent(g1), . . ., fluent(gn),fluent(fi), time(T).

Every triggering rule (3) in D(A, F) is translated as:

holds(occurs(a),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

For each allowance rule (4) in D(A, F), we include:

holds(allow(occurs(a)),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

For every exogenous action a ∈ A, the translation includes a rule, stating that this
action can always occur.

holds(allow(occurs(a)),T) :- action(a), time(T).

Every inhibition rule (5) in D(A, F) is translated as:

holds(ab(occurs(a)),T) :- holds(f1,T),. . .,holds(fn,T),
action(a),fluent(f1),. . .,fluent(fn), time(T).

For each no-concurrency constraint (6) in D(A, F), we include an integrity con-
straint assuring that at most one of the respective actions can hold at time t:

:- time(T), 2 {holds(occurs(a1),T):action(a1),. . .,
holds(occurs(an),T):action(an)}.

Action Observation Language. There are two different kinds of fluent observations.
Those about the initial state, (f at t0), and the fluent observations about all other states,
(f at ti) for i > 0. Fluent observations about the initial state are simply translated as
facts: holds(f,0). Because they are just assumed to be true and need no further
justification. All other fluent observations however need a justification. Due to this,
fluent observations about all states except the initial state are translated into integrity
constraints of the form: :- not holds(f,T),fluent(f),time(T).

The initial state can be partially specified by fluent observations. In fact, only the
translation of the (initial) fluent observations must be given. All possible completions
of the initial state are then generated by adding for every fluent f ∈ F the rules:

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

(10)

294 S. Grell, T. Schaub, and J. Selbig

When translating action observations of form (8) the different kinds of actions have
to be considered. Exogenous actions can always occur and need no further justification.
Such an exogenous action observation is translated as a fact: holds(occurs(a),T).
Unlike this, observations about triggered or allowed actions must have a reason, e.g. an
active triggering or allowance rule, to occur. To assure this justification, the action ob-
servation is translated using constraints of the form:

:- holds(neg(occurs(a)),T),action(a),time(T).

assuring that every answer set must satisfy the observation (a occurs at ti).
Apart from planning (see below), we also have to generate possible combinations of

occurrences of actions, for all states. To this effect, the translation includes two rules
for every exogenous and allowed action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),
not holds(ab(occurs(a)),T), not

holds(neg(occurs(a)),T),
action(a), time(T), T<tmax.

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T), T<tmax.

(11)

Basic correctness and completeness result. The following result provides a basic cor-
rectness and completeness result; corresponding results for the specific reasoning
modes are either obtained as corollaries or adaptions of its proof.

Theorem 1. Let (D, Oinit) be an action theory such that Oinit contains only fluent
observations about the initial state. Let Q be a query as in (9) and let

AQ = {(a occurs at ti) | a ∈ Ai, 1 ≤ i ≤ m} .

Let T denote the translation of CTAID into logic programs, described above.
Then, we have the following results.

1. If s0, A1, s1, A2, . . . , Am, sm is a trajectory model of (D, Oinit ∪ AQ),
then there is an answer set X of logic program T (D, Oinit ∪ AQ) such that we
have for all f ∈ F and 0 ≤ k ≤ m
(a) holds(f,k)∈ X , if sk |= f and
(b) holds(neg(f),k)∈ X , if sk |= ¬f .

2. If X is an answer set of logic program T (D, Oinit ∪ AQ) and for 0 ≤ k ≤ m

sk = {f | holds(f,k) ∈ X} ∪ {¬f | holds(neg(f),k) ∈ X}

then there is a trajectory model s0, A1, s1, A2, . . . , Am, sm of (D, Oinit ∪ AQ).

Action Query Language. In the following tmax is the upper time bound, which has to
be provided when the answer sets are computed.

Planning. Recall that the initial state can be partially specified; it is then completed by
the rules in (10) for taking into account all possible initial states. A plan for f1, . . . , fn

(cf. Definition 10) is translated using the predicate “achieved”. It ensures that the goal
holds in the final state of every answer set for the query.

Modelling Biological Networks by Action Languages Via Answer Set Programming 295

:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1),not achieved(T),time(T),time(T+1).
achieved(T) :- holds(f1,T),. . .,holds(fn,T),

achieved(T+1),fluent(f1),. . .,fluent(fn),time(T),time(T+1).
achieved(n) :- holds(f1,T),. . .,holds(fn,T),

fluent(f1),. . .,fluent(fn),T = tmax.

Constant tmax is the maximum number of steps in which the goals f1, . . . , fn should be
achieved. The proposition achieved(T) represents the earliest point of time T at which
the plan is successfully achieved. Once the query is satisfied only triggered actions can
occur, all other actions should not occur since that might invalidate the plan. That is
why achieved(T) occurs in the translation of every allowed and exogenous action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),not achieved(T),
not holds(ab(occurs(a)),T), not holds(neg(occurs(a)),T),
action(a),time(T).

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a),time(T).

These rules are used to generate all possible combinations of occurrences of non-
triggered actions. Such actions can only occur as long as the goal is not yet achieved
and if they are not inhibited. If there is an answer set X for the planning prob-
lem, then we have for a plan P (cf. Definition 10) that (a occurs at ti) ∈ P if
holds(occurs(a),i)∈ X .

Explanation. The translation of an explanation contains the translation of all action and
fluent observations in O, as described above. Since the observations about the initial
state are often incomplete the translation contains the rules in (10) to generate all initial
states which do not contradict the observations. Also, we have to generate possible com-
binations of occurrences of actions for all states. To this effect, the translation includes
for every exogenous and allowed action the rules in (11). If there exists an answer set
X for the explanation problem, then for an explanation E as in Definition 11 we have
(a occurs at ti) ∈ E if holds(occurs(a),i)∈ X .

Prediction. The translation includes all fluent and action observations in O, as described
above. As in explanation, we have to fill in missing information, which is necessary to
justify the observed behaviour. That means we have to include for every fluent f two
rules of form (10) to generate possible initial states. Moreover the translation includes
for every non-triggered action two rules similar to those of an explanation of form (11).
The actual prediction for f1, . . . , fn (cf. Definition 12) is translated as:

predicted :- holds(f1,T), . . ., holds(fn,T),
fluent(f1),. . .,fluent(fn),time(T),T >= i.

where i is the time of the latest observation. If the atom predicted is included in all
(some) answer sets, it is a cautious (brave) prediction.

4 Application

Meanwhile, we have used CTAID in several different application scenarios at the Max-
Planck Institute for Molecular Plant Physiology for modelling metabolic as well as

296 S. Grell, T. Schaub, and J. Selbig

signal transduction networks. For illustration, we describe below the smallest such ap-
plication, namely the sulfur starvation response-pathway of the model plant Arabidopsis
thaliana. Sulfur is essential for the plant. If the amount of sulfur it can access is not suf-
ficient to allow a normal development of the plant, the plant follows a complex strategy.
First the plant forms additional lateral roots to access additional sources of sulfur and
to normalise its sulfur level. However, if this strategy is not successful the plant uses its
remaining resources to form seeds.

Normally, the amount of sulfur in a plant is sufficient, but due to external, e.g. envi-
ronmental conditions, the amount of sulfur can be reduced. A problem, when modelling
this network are such environmental conditions, which are not and cannot be part of a
model and which might or might not lead to the reduction of sulfur. Once the level
of sulfur in the plant is decreased, complex interactions of different compounds are
triggered. Genes are activated, which induce the generation of auxin, a plant hormone,
playing a key role as a signal in coordinating the development of the plant. This even-
tually leads to the formation of additional lateral roots. Since this consumes the scarce
resources, the development should be stopped, when it becomes apparent that it is not
successful (i.e. it takes too long and consumes too many of the plant’s resources). This
“emergency stop” is triggered by complex interactions that lead, via a surplus of the
auxin flux, to the expression of IAA28, a gene which is subject to current research. If
IAA28 is expressed and the sulfur level is still low, other processes result in a different
physiological endpoint, the production of seeds.

We now show how this biological network can be represented as a domain descrip-
tion D(A, F) in CTAID.

A = {sulfur depletion, sulfur repletion, enhanced lateral root formation,

iaa28 expression, rapid seed production}
F = {normal sulfur, depleted sulfur, enhanced lateral roots, expressed iaa28, seeds}

The biologist’s knowledge about the biological system, gives rise to the following dy-
namic causal laws.

(sulfur depletion causes depleted sulfur if normal sulfur)
(enhanced lateral root formation causes enhanced lateral roots)
(sulfur repletion causes normal sulfur)
(iaa28 expression causes expressed iaa28)
(rapid seed production causes seeds)

Additionally, two static causal laws specify the relationship between normal sulfur and
depleted sulfur. They assure that at most one of the fluents is true at all times.

(¬normal sulfur if depleted sulfur)
(¬depleted sulfur if normal sulfur)

For two of the actions, we know all the preconditions that have to be satisfied for the
actions to occur.

(depleted sulfur triggers enhanced lateral root formation)
(expressed iaa28 , depleted sulfur triggers rapid seed production)

Modelling Biological Networks by Action Languages Via Answer Set Programming 297

For the remaining three actions, it is more difficult to decide whether and when they
occur. Whether the action sulfur depletion occurs depends on environmental conditions
being outside the model. The same holds for the action sulfur repletion, which might or
might not be successful, depending on the environmental conditions. For the occurrence
of action iaa28 expression the question is not whether it occurs but when it occurs. The
longer it is delayed, the more resources are used to form additional lateral roots.

(normal sulfur allows sulfur depletion)
(depleted sulfur allows iaa28 expression)
(enhanced lateral roots allows sulfur repletion)

There is only one inhibition relation in this example.

(expressed iaa28 inhibits enhanced root formation)

But only if we add a default value for the fluent enhanced lateral roots, the inhibition
relation has the desired effect of stopping the formation of additional lateral roots.

(default¬enhanced lateral roots)

The knowledge that the plant either forms additional lateral roots or produces seeds can
be expressed by the following no-concurrency constraint:

(noconcurrency enhanced lateral roots formation , rapid seed production)

After defining the domain description, let us define a set of observations O. The initial
state, where we still have a normal level of sulfur can be described by the following
fluent observations:

O = {(normal sulfur at 0) , (¬ enhanced lateral roots at 0) ,
(¬ expressed iaa28 at 0) , (¬ seeds at 0)}

Now that we defined our action theory (D, O), we can start to reason about it. Let us
first find an explanation for the observed behaviour:

O1 = O ∪ {(sulfur depletion occurs at 0) , (normal sulfur at 3)}
For a time bound of tmax = 3 there are already 4 possible explanations. They all have
in common that sulfur depletion occurs at time point 0, the formation of lateral roots
is triggered at time point 1 and the action sulfur repletion occurs at time point 2. The
explanations differ in whether and when the action iaa28 expression and the action
rapid seed production occurs. One explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2, sulfur repletion occurs at 2)

A second explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2,
sulfur repletion occurs at 2, iaa28 expression occurs at 2)

Our next question is whether the given observations are sufficient to predict a certain
behaviour of the plant.

298 S. Grell, T. Schaub, and J. Selbig

(D,O)|=c (seeds after sulfur depletion occurs at 0, iaa28 expression occurs at 1)
(D,O)|=b (normal sulfur after sulfur depletion occurs at 0, iaa28 expression

occurs at 1)

Using these predictions, we can say that when sulfur is depleted and IAA28 is expressed
the plant grows seeds, but it is still possible that it also stabilises its sulfur level.

Finally, we want to find a plan for the action theory (D, O) that results in the pro-
duction of seeds. For time bound tmax = 3, there are 4 plans. One possible plan is:

(D,O) |=b (seeds after sulfur depletion occurs at 0,
iaa28 expression occurs at 1, enhanced lateral root formation occurs at 1,
rapid seed production occurs at 2, rapid seed production occurs at 3)

The number of plans and explanations depend on the number of allowance rules,
since the different possibilities for the occurrence of such an allowed action is reflected
by different answer sets.

5 Discussion

We proposed the action language CTAID and showed how it can be used to represent
and reason about biological networks. CTAID is based on the action language A0

T in-
troduced in [6]. The latter language provides only minimal features to define dynamic
causal laws, triggering and inhibition rules, which turn to be a fruitful basis but insuf-
ficient for modelling our biological applications. Moreover, our exploratory approach
made us propose the concept of allowance that enables the experimenter to investigate
alternative models “in silico”. As a consequence, we extended A0

T by static causal laws,
allowance rules, default rules and no-concurrency constraint which furnish a more ap-
propriate representation of our biological networks. Especially static causal laws and
default rules can be used to include background knowledge and other dependencies like
environmental conditions which influence the biological system, but are not part of the
actual model. Allowance rules are mainly used to express incomplete knowledge about
the reasons why an action occurs. This missing information is a common problem for
biologists due to the immanent complexity of biological systems.

We fixed the semantics of CTAID in the standard way by means of transition rela-
tions, trajectories and trajectory models. In contrast to A0

T , for example, default values
can enable state changes without the occurrence of an action. Also, Baral et al. guaran-
tee a unique trajectory model and a unique answer set, if the initial state is completely
defined by a set of observations. This is not the case in CTAID because of the non-
determinism introduced by allowance rules that may yield multiple answer sets.

We implemented our action language by means of a compiler mapping CTAID onto
logic programs under answer set semantics. Our translation builds upon and extends
the one given in [6]. The resulting tool is implemented in Java and freely available
at [16]. Meanwhile, it has been used in ten different application scenarios at the Max-
Planck Institute for Molecular Plant Physiology for modelling metabolic as well as signal
transduction networks. For illustration, we described the smallest such application,
namely, a part of the sulfur starvation response-pathway of model plant Arabidopsis
thaliana.

Modelling Biological Networks by Action Languages Via Answer Set Programming 299

Beyond the traditional approaches mentioned in the introductory section, further
logic-based approaches using rule-based languages have emerged recently: Closely re-
lated work has been conducted in abductive logic programming where abduction was
used in [17] as the principal mode of inference for modelling gene relations from micro-
array data. A very sophisticated and much more advanced automated reasoning tool
for systems biology can be found in the area of constraint programming, namely the
BIOCHAM [18] system. BIOCHAM relies on CTL [19] and is thus particularly strong
in modelling temporal aspects of systems biology. Unlike our abstract approach, the
constraint-based approach offers fine-grained capacities for modelling biochemical pro-
cesses, including kinetics and reactions.

References

1. Reddy, V., Mavrovouniotis, M., Liebman, M.: Petri net representations in metabolic path-
ways. Proc. First ISMB (1993) 328–336

2. Pinney, J.W., Westhead, D.R., McConkey, G.A.: Petri net representations in systems biology.
Biochem Soc Trans 31(Pt 6) (2003) 1513–1515

3. Bonarius, H.P.J., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic net-
works: The quest for the missing constraints. Trends Biotechnol 15 (1997) 308314

4. Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic boolean networks: A rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2) (2002) 261–274

5. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based ap-
proach for representing and reasoning about signaling networks. In: ISMB. (2004) 15–22

6. Tran, N., Baral, C.: Reasoning about triggered actions in ansprolog and its application to
molecular interactions in cells. In: KR. (2004) 554–564

7. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of
Logic Programming 17 (1993) 301–321

8. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2 (1998) 193–210
9. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: preliminary

report. In: AAAI/IAAI, AAAI Press (1998) 623–630
10. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under incomplete knowl-

edge. In: CL, Springer (2000) 807–821
11. Tran, N., Baral, C., Shankland, C.: Issues in reasoning about interaction networks in cells:

Necessity of event ordering knowledge. In: AAAI, AAAI Press (2005) 676–681
12. Grell, S.: Investigation and analysis of new approaches for representing and reasoning about

biological networks using action languages. Diploma thesis, University of Potsdam and Max
Planck Institute of Molecular Plant Physiology (2006)

13. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

16. (http://bioinformatics.mpimp-golm.mpg.de/bionetreasoning/)
17. Papatheodorou, I., Kakas, A.C., Sergot, M.J.: Inference of gene relations from microarray

data by abduction. In: LPNMR, Springer (2005) 389–393
18. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine biocham. In:

CMSB, Springer (2004) 172–191
19. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)

	Introduction
	Action Language \cal{C}_{TAID}
	Compilation
	Application
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

