
On Acyclic and Head-Cycle Free
Nested Logic Programs?

Thomas Linke1, Hans Tompits2, and Stefan Woltran2

1 Institut für Informatik, Universität Potsdam,
Postfach 90 03 27, D–14439 Potsdam, Germany

linke@cs.uni-potsdam.de
2 Institut für Informationssysteme 184/3, Technische Universität Wien,

Favoritenstraße 9–11, A–1040 Vienna, Austria
[tompits,stefan]@kr.tuwien.ac.at

Abstract. We define the class of head-cycle free nested logic programs, and its
proper subclass of acyclic nested programs, generalising similar classes originally
defined for disjunctive logic programs. We then extend several results known for
acyclic and head-cycle free disjunctive programs under the stable-model seman-
tics to the nested case. Most notably, we provide a propositional semantics for
the program classes under consideration. This generalises different extensions
of Fages’ theorem, including a recent result by Erdem and Lifschitz for tight
logic programs. We further show that, based on a shifting method, head-cycle free
nested programs can be rewritten into normal programs in polynomial time and
space, extending a similar technique for head-cycle free disjunctive programs. All
this shows that head-cycle free nested programs constitute a subclass of nested
programs possessing a lower computational complexity than arbitrary nested pro-
grams, providing the polynomial hierarchy does not collapse.

1 Introduction

This paper deals with generalisations and refinements of several reducibility results for
nested logic programs (NLPs) under the stable-model semantics. This class of programs
is characterised by the condition that arbitrarily nested formulas, formed from atoms us-
ing negation as failure, conjunction, and disjunction, serve as bodies and heads of rules,
extending the well-known classes of normal logic programs (nLPs), disjunctive logic
programs (DLPs), and generalised disjunctive logic programs (GDLPs). Nested logic
programs under the stable-model semantics (or rather under the answer-set semantics,
by allowing also strong negation) were introduced by Lifschitz, Tang, and Turner [18],
and currently receive increasing interest in the literature, both from a logical as well as
from a computational point of view.

In complexity theory, a frontier is identified having DLPs, GDLPs and NLPs on
the one side, and nLPs and so-called nested normal programs (NnLPs), for which only

? This work was partially supported by the Austrian Science Fund (FWF) under projects Z29-
N04 and P15068-INF, by the German Science Foundation (DFG) under grants FOR 375/1 and
SCHA 550/6, TP C, as well as by the European Commission under projects FET-2001-37004
WASP and IST-2001-33570 INFOMIX.

positive literals are allowed as heads of rules (cf. Table 1 below), on the other side.
For the former program classes, the main reasoning tasks lie at the second level of the
polynomial hierarchy [9, 26], while for the latter classes, the main reasoning tasks have
NP complexity [24, 2].1 There are various translatability results between the different
syntactic subclasses of programs. Among them, there are translations between nested
programs and GDLPs [18], and between DLPs and nLPs [8], both requiring exponential
space in the worst case. Additionally, there exist linear-time constructible translations
between NLPs and DLPs [25], and between GDLPs and DLPs [14, 15]. Note that, un-
less the polynomial hierarchy collapses, the above mentioned complexity gap does not
allow for polynomial translations between, e.g., nested logic programs and normal logic
programs. However, one can seek for subclasses of NLPs where such a translation is
possible.

In this paper, we identify non-trivial subclasses of nested programs for which we
establish two forms of reductions:

1. reductions to classical propositional logic; and
2. reductions to normal logic programs.

More specifically, we introduce the classes of head-cycle free (HCF) nested programs
and its proper subclass of acyclic nested programs. Both program classes are defined
as generalisations of similar kinds of programs originally introduced as syntactic sub-
classes of disjunctive logic programs a decade ago by Ben-Eliyahu and Dechter [1].
Moreover, the reductions we provide here are, on the one hand, extensions of previous
results, established for more restricted kinds of programs, and, on the other hand, with
respect to head-cycle free and acyclic nested programs, optimisations of general trans-
latability results developed in [26, 25]. We detail the main aspects of our results in the
following.

Concerning the reduction to classical propositional logic, we construct mappings,
T [·] and T ∗[·], assigning to each program a propositional theory such that

1. given an acyclic nested programΠ , the stable models ofΠ are given by the models
of the classical theory T [Π]; and

2. given a head-cycle free nested programΠ , the stable models ofΠ are given by sets
of form I ∩V , where I is a model of the classical theory T ∗[Π] and V is the set of
atoms occurring in Π .

In both cases, the size of the assigned classical theory is polynomial in the size of
the input program. Moreover, the translation T ∗[·] is defined using newly introduced
auxiliary variables, whereas for T [·], no new variables are required.

These results are generalisations of similar characterisations given by Ben-Eliyahu
and Dechter [1] for acyclic and head-cycle free DLPs. Moreover, our results generalise
results relating the stable-model semantics to Clark’s completion [5]. Recall that Clark’s
completion was one of the first semantics proposed for programs containing default
negation, in which a normal logic program Π is associated with a propositional theory,
COMP[Π], called the completion of Π . Although every stable model of Π is also a

1 The NP-completeness for NnLPs can be derived from a translation from NnLPs to nLPs due
to You, Yuan, and Zhang [29].

model of the completion of Π , the converse does not always hold. In fact, Fages [12]
showed that the converse holds providing Π satisfies certain syntactic restrictions. Our
results generalise Fages’ characterisation in the sense that, if Π is a normal program,
then both T [Π] and T ∗[Π] coincide with COMP[Π].

Fages’ theorem was generalised in several directions: Erdem and Lifschitz [10, 11]
extended it for NnLPs, providing the given programs are tight. We extend the notion of
tightness to arbitrary nested programs and refine our results by showing that

if a nested programΠ is HCF and tight on an interpretation I , then I is a stable
model of Π iff I is a model of T [Π].

Other generalisations of Fages’ theorem drop the syntactic proviso but add instead ad-
ditional so-called loop formulas guaranteeing equivalence between the stable models of
the given program and the classical models of the resultant theory. This idea was pur-
sued by Lin and Zhao [19] for normal programs and subsequently extended by Lee and
Lifschitz [17] for disjunctive programs with nested formulas in rule bodies. In contrast
to Clark’s completion for normal programs, the size of the resultant theories in these ap-
proaches is in the worst case exponential in the size of the input programs. We further
note that, for the sort of programs dealt with in [17], the notion of completion defined
there coincides with our transformation T [·].

The reductions to classical propositional logic allow us also to draw immediate
complexity results for acyclic and HCF nested programs. As noted above, the main
reasoning tasks associated with arbitrary nested programs lie at the second level of the
polynomial hierarchy [26], whereas our current results imply that analogous tasks for
acyclic and HCF nested programs have NP or co-NP complexity (depending on the
specific reasoning task). Thus, providing the polynomial hierarchy does not collapse,
acyclic and HCF programs are computationally simpler than arbitrary nested programs.

Let us now turn to our results concerning the reductions to normal logic programs.
As was shown by Ben-Eliyahu and Dechter [1], HCF disjunctive programs can be
transformed into equivalent normal programs by shifting head atoms into the body
(cf. also [6, 13]). For instance, a rule of form p ∨ q ← r is replaced by this method
by the two rules p ← r,¬q and q ← r,¬p (where “¬” denotes the negation-as-failure
operator). We generalise this method for HCF nested programs, obtaining a polynomial
reduction from HCF nested programs (and thus, in particular, also from acyclic nested
programs) into nLPs. Note that applying such a shifting technique for programs which
are not HCF does in general not retain the stable models.

Previous to our work, Inoue and Sakama [14] already defined the notions of acyclic-
ity and head-cycle freeness for generalised disjunctive programs, extending the respec-
tive notions introduced in [1]. They showed that GDLPs satisfying either of these ex-
tended notions can likewise be transformed to nLPs by shifting head atoms to the bodies
of rules and thus have the same worst-case complexity as normal programs. However,
their notions of acyclicity and head-cycle freeness are more restrictive than ours, with
respect to GDLPs, and hence our results hold for a larger class of programs.

We finally note that, at first glance, one may attempt to construct a polynomial
translation from acyclic or head-cycle free NLPs into normal programs or into classical
propositional logic by first applying the polynomial translation from NLPs to DLPs
due to Pearce et al. [25], and afterwards by transforming the resultant programs into

either normal programs or into classical logic using the results of Ben-Eliyahu and
Dechter [1]. However, since the translation of [25] does neither preserve acyclicity nor
head-cycle freeness, such an approach does not work in general.

The paper is organised as follows. The next section supplies some background on
logic programs and the stable-model semantics. In Section 3, we introduce acyclic and
head-cycle free nested programs and show some invariance theorems. Section 4 dis-
cusses the reductions to classical propositional logic, and Section 5 deals with the gen-
eralised shifting technique for reducing HCF programs into nLPs. Section 6 is devoted
to tight nested programs, and Section 7 concludes the paper.

2 Preliminaries

We deal with propositional languages and use the logical symbols >, ⊥, ¬, ∨, ∧, →,
and ↔ to construct formulas over propositional variables (or atoms) in the usual way.
A formula using only ∧ , ∨ , or ¬ as its sentential connectives is called an expression.
Literals are formulas of form v or ¬v, where v is some variable, or one of >,⊥. We
refer to a literal of form v (where v is as before) as a positive literal and to a literal of
form ¬v as a negative literal. Disjunctions of form

∨

i∈I φi are assumed to stand for the
logical constant ⊥ whenever I = ∅, and, likewise, conjunctions of form

∧

i∈I φi with
I = ∅ stand for>. The set of all atoms occurring in a formula φ is denoted by Atm(φ).

By an interpretation, I , we understand a set of variables. Informally, a variable v is
true under I iff v ∈ I . Interpretations induce truth values (in the sense of classical logic)
of arbitrary formulas in the usual way. The set of models of a formula φ is denoted by
Mod(φ). Two formulas, φ and ψ, are (logically) equivalent, iff Mod(φ) = Mod(ψ).
For a set V and a family of sets S, by S|V we denote the family {I ∩ V | I ∈ S}.

The fundamental objects of our investigation are nested logic programs (NLPs),
introduced by Lifschitz, Tang, and Turner [18]. NLPs are characterised by the condition
that the bodies and heads of rules are given by arbitrary expressions as defined above.
For reasons of simplicity, we deal here only with languages containing one kind of
negation, corresponding to default negation. Therefore, ¬ refers to default negation,
whenever used in logic programs.

In more formal terms, a rule, r, is a pair of form

H(r)← B(r),

where B(r) and H(r) are expressions. B(r) is called the body of r and H(r) is the
head of r. If B(r) = >, then r is a fact, and if H(r) = ⊥, then r is a constraint. A
nested logic program, or simply a program, is a finite set of rules.

We associate to every program Π the propositional formula

c(Π) =
∧

r∈Π

(

B(r) → H(r)
)

.

Furthermore, Atm(Π) denotes the set of all atoms occurring in program Π .
LetΠ be a program and I an interpretation. Then, the reduct,ΠI , ofΠ with respect

to I is obtained from Π by replacing every occurrence of an expression ¬ψ in Π which

Table 1. Classes of programs.

Class Heads Bodies
NLP expression expression

GDLP disjunction of literals conjunction of literals
DLP disjunction of atoms conjunction of literals
NnLP positive literal expression
nLP positive literal conjunction of literals

is not in the scope of any other negation by ⊥ if ψ is true under I , and by > otherwise.
I is an answer set (or stable model) of Π iff it is a minimal model (with respect to set
inclusion) of c(ΠI). The collection of all answer sets of Π is denoted by AS (Π). Two
logic programs, Π1 and Π2, are equivalent iff AS(Π1) = AS(Π2).

By restricting the syntactic form of bodies and heads of rules, different classes of
programs are identified. Besides NLPs, for our purposes, the following classes are of
interest: generalised disjunctive logic programs (GDLPs), disjunctive logic programs
(DLPs), nested normal logic programs (NnLPs), and normal logic programs (nLPs).
Table 1 summarises the defining attributes of these classes.

Following Lloyd and Topor [23] (cf. also [11]), we define the completion of an
NnLP Π as the propositional formula

COMP[Π] =
∧

p∈A

(

p ↔
∨

r∈Π,H(r)=p

B(r)
)

,

where A = Atm(Π) ∪ {⊥}.
Finally, we recall some graph-theoretical notations. A (directed) graph, G, is a pair

(V,E) such that V is a finite set of nodes andE ⊆ V × V is a set of edges. A path from
v to v′ in G is a sequence Pv,v′ = (v1, . . . , vn) of nodes such that v = v1, v′ = vn,
and (vi, vi+1) ∈ E, for each 1 ≤ i < n. A graph G = (V,E) is acyclic iff, for each
node v ∈ V , there is no path from v to itself. A strongly connected component (or
component, for short) of a graph G is a maximal set S of nodes such that, for any two
nodes p and q in S, there is a path from p to q in G. Strongly connected components
can be identified in linear time [28]. The size of a component is the length (i.e., number
of edges) of the longest acyclic path in it.

3 Acyclic and Head-Cycle Free Nested Programs

We start our formal elaboration by recalling the notion of a dependency graph for nested
logic programs. Based on this, we define acyclic and head-cycle free nested programs,
and show that these notions are invariant with respect to rewritings into DLPs.

We commence with the following auxiliary notions.

Definition 1. Let p be an atom and ϕ an expression. Then, the polarity of a specific
occurrence of p in ϕ is positive iff it is not in the scope of a negation, and negative

otherwise. The set of atoms having a positive occurrence in ϕ is denoted by Atm+(ϕ).
For a program Π , we define Atm+(Π) =

⋃

r∈Π(Atm+(H(r)) ∪Atm+(B(r))).

With this notation at hand, we are able to define the concept of dependency graphs
for NLPs, following Lee and Lifschitz [17].

Definition 2. The (positive) dependency graph of a program Π is given by GΠ =
(Atm(Π), EΠ), where EΠ ⊆ Atm(Π) × Atm(Π) is defined by the condition that
(p, q) ∈ EΠ iff there is some r ∈ Π such that p ∈ Atm+(B(r)) and q ∈ Atm+(H(r)).

Our first category of programs is then introduced as follows:

Definition 3. A nested logic program Π is acyclic iff its dependency graph GΠ is
acyclic.

It is a straightforward matter to check that this definition generalises acyclic DLPs
as introduced by Ben-Eliyahu and Dechter [1], i.e., a DLP Π is acyclic in the sense of
Definition 3 iff it is acyclic in the sense of [1].

Example 1. Consider the following two programs:

Π1 = {p ∨ q ←; p← q; q ← p}; Π2 = {p ∨ q ←; p← ¬¬q; q ← ¬¬p}.

Programs Π1 and Π2 have dependency graphs GΠ1
= ({p, q}, {(p, q), (q, p)}) and

GΠ2
= ({p, q}, ∅), respectively. Thus, Π1 is not acyclic, whereas Π2 is. One may

verify that both programs have the same stable models, viz. AS(Π1) = AS(Π2) =
{{p, q}}.

Next, we generalise the notion of a head-cycle free DLP to the class of NLPs. To
this end, we need the following definition.

Definition 4. Two distinct atoms, p and q, are joint-positive in an expression φ iff there
exists a subformula φ1 ∨ φ2 of φ with p ∈ Atm+(φ1) and q ∈ Atm+(φ2), or vice
versa. Moreover, p and q are called head-sharing in a program Π iff p and q are joint-
positive in H(r), for some r ∈ Π .

From this, the class of head-cycle free NLPs is characterised in the following way:

Definition 5. A nested program Π is head-cycle free (HCF) iff its dependency graph
GΠ does not contain a directed cycle going through two head-sharing atoms in Π .

Again, it can be shown that a DLP Π is HCF in the above sense iff it is HCF in the
sense of [1]. Thus, the class of HCF NLPs is a proper generalisation of the class of HCF
DLPs. Furthermore, it is easy to see that every acyclic NLP is HCF.

Example 2. Consider the programs Π1 and Π2 from Example 1. Observe that p and q
are head-sharing in both Π1 and Π2. Hence, Π1 is not HCF, since there is a cycle in
GΠ1

involving p and q. On the other hand, Π2 is HCF, and, as we already know from
the above, acyclic.

Table 2. Replacements in logic programs. It is assumed that φ, ψ, and ϕ are expressions, A is a
set of atoms, p is an atom, L and Lp are new atoms, and ◦ ∈ {∧,∨}.

Name Occurrence α Replaced by β
(L1) φ ◦ ψ ψ ◦ φ
(L2) (φ ◦ ψ) ◦ ϕ φ ◦ (ψ ◦ ϕ) ◦ ∈ {∧,∨}
(L3) φ ◦ φ φ
(L4) (φ ∧ ψ) ∨ ϕ (φ ∨ ϕ) ∧ (ψ ∨ ϕ)
(L5) (φ ∨ ψ) ∧ ϕ (φ ∧ ϕ) ∨ (ψ ∧ ϕ)
(L6) ¬(φ ∨ ψ) (¬φ ∧ ¬ψ)
(L7) ¬(φ ∧ ψ) (¬φ ∨ ¬ψ)
(L8) ¬¬¬φ ¬φ
(L9) φ← ψ ∨ ϕ φ← ψ; φ← ϕ
(L10) φ ∧ ψ ← ϕ φ← ϕ; ψ ← ϕ
(L11) φ← ψ ∧ ¬¬ϕ φ ∨ ¬ϕ← ψ
(L12) ¬¬φ ∨ ψ ← ϕ ψ ← ϕ ∧ ¬φ
(J) ¬p ∨ ψ ← φ Lp ∨ ψ ← φ; ⊥ ← p ∧ Lp; Lp ← ¬p
(S)1 φ ∨ ψ ← ϕ φ← ϕ ∧ ¬ψ; ψ ← ϕ ∧ ¬φ
(T∗)2 φ← ψ {φ[(A \ {p})/>]←ψ[p/⊥]; φ[p/>]← ψ[(A \ {p})/⊥] | p ∈ A}
(D) φ ∨ ψ ← ϕ φ ∨ L← ϕ; ψ ← L
(Y1) p← ψ ∧ (φ ∨ ϕ) p← ψ ∧ L; L← φ ∨ ϕ
(Y2) p← ψ ∧ ¬¬q; p← ψ ∧ ¬L; L← ¬q
(C) φ ∧ ψ ← ϕ L← ϕ; φ← L; ψ ← L
1 applicable only if Atm

+(φ) ∩ Atm
+(ψ) = ∅.

2 applicable only for non-empty A ⊆ Atm
+(φ) ∩Atm

+(ψ).

In what follows, we review the translations introduced by Lifschitz, Tang, and
Turner [18] and Janhunen [15], which, jointly applied, allow for translating any nested
program into a DLP via the substitutions (L1)–(L12) and (J) from Table 2. Observe that
the DLPs obtained in this way may be exponential in the size of the respective input
programs. Our goal is to show that our notions of acyclicity and head-cycle freeness for
NLPs are invariant with respect to the applications of these substitutions.

Any substitution σ from Table 2 is applied as follows: We say that a program Π ′ is
obtained from Π via σ by replacing2 an occurrence of an expression, or a single rule α,
by β, which itself is an expression, a rule, or a set of rules. Moreover, θ[p/x] denotes the
replacement of all positive occurrences of an atom p in θ by expression x. Accordingly,
for a set of atoms S, θ[S/x] denotes the replacement of all positive occurrences of
p ∈ S in θ by x. Thus, θ[S/x] = θ whenever S ∩ Atm+(θ) is empty. We sometimes
use a substitution σ in the reverse way, i.e., replacing β by α. This is made explicit by
writing σ←. We note that in this section we require only a part of the translations given
in Table 2; the remaining ones are needed later on.

We start with the translation from NLPs to GDLPs due to Lifschitz, Tang, and
Turner [18]. This translation is based on substitutions (L1)–(L12) from Table 2.

2 For (L11), (L12), (J), (Y1), and (Y2), we allow the component ψ in α to be vacuous; in this
case, for β, ψ is set to > in (L11) and to ⊥ in (L12).

Proposition 1 ([18]). Let Π be a nested program.
Then, for every program Π ′ obtained from Π via any substitution from (L1)–(L12),

it holds that AS (Π) = AS (Π ′). Moreover, there is a program Π ′′ obtained from Π
via a sequence of substitutions from (L1)–(L12) such thatΠ ′′ is a GDLP and AS (Π) =
AS (Π ′′).

Next, we close the gap between GDLPs and DLPs. To this end, we require the
substitution rule (J) of Table 2, which is a generalised stepwise variant of a labeling
technique discussed in [15], introducing a globally new atom Lp, for any atom p. Ob-
serve that acyclicity and head-cycle freeness are invariant with respect to applications
of substitutions (L1)–(L12) and (J). More precisely, (L1)–(L12) preserve both the de-
pendency graph and the pairs of head-sharing atoms. An application of Substitution (J),
however, changes the dependency graph GΠ = (Atm(Π), EΠ), for a given program
Π , to G′Π = (Atm(Π) ∪ {Lp}, EΠ ∪ {(q, Lp) | q ∈ Atm+(φ)}) and yields addi-
tional pairs q and Lp of head-sharing atoms, for any q ∈ Atm+(ψ) (cf. Table 2), but no
additional cycles are introduced in G′Π . This gives us the desired result.

Theorem 1. Let Π be a nested program, and let Π ′ be obtained from Π by applying
any sequence of substitutions from (L1)–(L12) and (J).

Then, the following properties hold:

1. AS (Π) = AS(Π ′)|Atm(Π);
2. Π is acyclic iff Π ′ is acyclic; and
3. Π is HCF iff Π ′ is HCF.

This theorem states that the properties of being acyclic and of being HCF are in-
variant with respect to any sequence of substitutions from (L1)–(L12) and (J). The next
theorem demonstrates that substitutions (L1)–(L12) and (J) are sufficient to transform
a given NLP into a corresponding DLP.

Theorem 2. For any nested program Π , there is a program Π ′ obtained from Π via
a sequence of substitutions from (L1)–(L12) and (J) obeying the conditions from Theo-
rem 1 and such that Π ′ is a DLP.

Example 3. For Π2 from Example 1, we derive the following DLP by applying substi-
tutions (L11) and (J) to both of the last two rules of Π2:

Π ′ = {p ∨ q ←; p ∨ Lq ←; q ∨ Lp ←} ∪ {⊥ ← v ∧ Lv; v ← ¬Lv | v ∈ {p, q}}.

The dependency graph of this program is ({p, q, Lp, Lq}, ∅), and thus it is still HCF and
acyclic. As well, the only stable model of Π ′ is {p, q}.

4 Reductions to Classical Propositional Logic

We now proceed with assigning a propositional semantics to acyclic and head-cycle
free nested programs, in the sense that a program Π is transformed into a propositional
formula φ such that the answer sets of Π are given by the models of φ. Observing that

these encodings yield propositional formulas whose sizes are polynomial in the sizes of
the input programs, we also draw some immediate complexity results.

We have the following building blocks. Let Π be a nested program. For any p ∈
Atm+(Π) occurring in a strongly connected component of size l > 1 in GΠ , we
introduce globally new variables p1, . . . , pk, where k = dlog2(l − 1)e. For two atoms
p, q occurring in the same component of size l > 1 of the dependency graph, we define

precΠ [q, p] =

k
∧

i=1

(qi →
k

∨

j=i

pj) ∧ ¬
k

∧

i=1

(pi → qi).

Informally, precΠ [·, ·] assigns a strict partial order to the atoms in Π , based on a binary
encoding technique.

Now we are ready to define our two main transformations, T [·] and T∗[·], from
nested logic programs into formulas of propositional logic.

Definition 6. Let Π be a nested program, and let Πp be the program resulting from
Π by taking those rules r ∈ Π where p ∈ Atm+(H(r)) and replacing each positive
occurrence of p in a head by ⊥. Furthermore, let Π∗p be the program resulting from
Πp by replacing each positive occurrence of an atom q 6= p in a body by the formula
q ∧ precΠ [q, p], providing q is in the same component as p in GΠ .

Then, define

T [Π] = c(Π) ∧
∧

p∈Atm(Π)

(

p → ¬c(Πp)
)

and

T ∗[Π] = c(Π) ∧
∧

p∈Atm(Π)

(

p → ¬c(Π∗p)
)

.

Note that both the size of T [Π] as well as the size of T ∗[Π] is polynomial in the
size of Π . Furthermore, if Π is an NnLP, then T [Π] is equivalent to the completion
COMP[Π], and ifΠ is an acyclic NLP, then T ∗[Π] = T [Π]. Moreover, it can be shown
that, for any DLP Π , the theories T [Π] and T ∗[Π] are equivalent to the encodings
given by Ben-Eliyahu and Dechter [1] for acyclic and HCF DLPs, respectively. The
main characterisations of [1] can thus be paraphrased as follows:

Proposition 2 ([1]). For any DLP Π ,

1. if Π is acyclic, then I ∈ AS(Π) iff I ∈ Mod(T [Π]), for all I ⊆ Atm(Π); and
2. if Π is HCF, then AS(Π) = Mod(T ∗[Π])|Atm(Π).

The restriction in the second result is used to “hide” the newly introduced variables
in formulas precΠ [·, ·] in T ∗[Π].

With the next results, we generalise Proposition 2 to HCF and acyclic nested pro-
grams. To begin with, we have the following theorem.

Theorem 3. Let Π be a HCF nested logic program.
Then, AS(Π) = Mod(T ∗[Π])|Atm(Π).

This theorem is proved by showing that models of T ∗[·] are invariant (modulo the
introduction of new atoms) under substitution rules (L1)–(L12) and (J).

As an immediate consequence, we obtain the following corollary for acyclic nested
programs.

Corollary 1. Let Π be an acyclic nested logic program, and let I ⊆ Atm(Π).
Then, I ∈ AS(Π) iff I ∈ Mod(T [Π]).

Let us briefly mention that our encodings easily extend to typical reasoning tasks as-
sociated to logic programs. Following [1], we define the following inference operators.
Let Π be a logic program and S a finite set of atoms.

1. Brave consequence: Π `b S iff S is contained in some answer set of Π .
2. Skeptical consequence: Π `s S iff S is contained in all answer sets of Π .
3. Disjunctive entailment:Π `d S iff, for each answer set I ofΠ , there is some p ∈ S

such that p ∈ I .

We then obtain the following straightforward encodings:

Theorem 4. Let S be a finite set of atoms.

1. For any acyclic NLP Π , we have that
(a) Π `b S iff T [Π] ∧

∧

p∈S p is satisfiable;
(b) Π `s S iff T [Π] →

∧

p∈S p is valid; and
(c) Π `d S iff T [Π] →

∨

p∈S p is valid.
2. For any HCF NLP Π , we have that

(a) Π `b S iff T ∗[Π] ∧
∧

p∈S p is satisfiable;
(b) Π `s S iff T ∗[Π] →

∧

p∈S p is valid; and
(c) Π `d S iff T ∗[Π] →

∨

p∈S p is valid.

Observing that the above encodings are clearly constructible in polynomial time,
we derive the following immediate complexity results:

Theorem 5. Checking whether Π `b S holds, for a given acyclic or HCF NLP Π and
a given finite set S of atoms, is NP-complete. Furthermore, checking whether Π `s S
or whether Π `d S holds, given Π and S as before, is co-NP-complete.

Note that the upper complexity bounds follow from the complexity of classical
propositional logic, and the lower complexity bounds are inherited from the complexity
of normal logic programs.

5 A Generalised Shifting Approach

The result that HCF nested programs have NP or co-NP complexity motivates to seek
a polynomial translation from HCF programs to NnLPs and furthermore to nLPs. We
do this by introducing a generalised variant of the well-known shifting technique [1, 6].
Recall that shifting for DLPs is defined as follows: Let r ∈ Π be a disjunctive rule in a

HCF DLP Π . Then, following [1], Π is equivalent to the program resulting from Π by
replacing r by the following set of rules:3

{p← B(r) ∧ ¬(Atm(H(r)) \ {p}) | p ∈ Atm(H(r))}. (1)

For generalising this shifting technique to nested programs, we introduce the substitu-
tion rule (S), depicted in Table 2, which allows the replacement of φ ∨ ψ ← ϕ by the
two rules φ ← ϕ ∧ ¬ψ and ψ ← ϕ ∧ ¬φ, where φ and ψ are arbitrary expressions,
providing Atm+(φ) ∩Atm+(ψ) = ∅. Observe that (S) preserves head-cycle freeness.

In view of its proviso, (S) is not always applicable, even if a given program is HCF.
But this problem is already apparent in the case of disjunctive programs. Indeed, in (1),
we used the set Atm(H(r)) rather than the disjunction H(r) explicitly, otherwise we
would have run into problems: For instance, the DLP {p ∨ p←} is clearly not equiva-
lent to {p← ¬p}.

We can establish the following property:

Lemma 1. Let Π be a HCF nested program, and let Π ′ be obtained from Π via (S).
Then, AS (Π) = AS (Π ′).

This lemma follows from the property that models of T ∗[·] are preserved under
application of (S), together with Theorem 3.

Theorem 6. Let Π be a nested program.
Then, there is a program Sexp [Π] obtained from Π via a finite sequence of substi-

tutions from (L1)–(L4), (L6)–(L8), (L10), (L11)←, (L12), and (S), such that (i) Sexp [Π]
is an NnLP, and (ii) if Π is HCF, then AS (Π) = AS (Sexp [Π]).

The “strategy” to obtain Sexp [Π] from Π is as follows: First, we translate Π into
a program where all heads are disjunctions of atoms. Then, via (L1), (L2), and (L3),
we can easily eliminate repeated occurrences of an atom p in a head. Finally, we then
apply (S) to replace each (proper) disjunctive rule into a set of nested normal rules.

Observe that the subscript “exp” in Sexp [·] indicates that the size of Sexp [Π] may
be exponential in the size of Π in the worst case. The reason is the use of substitution
rule (L4). We can circumvent the application of (L4), and thus the exponential blow-up,
if we could use (S) more directly. To this end, we introduce the two substitution rules
(D) and (T∗), as given in Table 2. Observe that (T∗) is a generalisation of an optimisation
rule called (TAUT) due to Brass and Dix [3]. In fact, we want to apply (D) instead of
(S), but (D) may introduce new head cycles according to its definition. In particular, this
situation occurs whenever an atom occurs positively in both the body and the head of
the considered rule. Hence, the strategy is then as follows: If (S) is not applicable, we
first use (T∗) to eliminate all atoms which occur positively in both the body and the head
of the considered rule. After applying (D), we are clearly allowed to apply (S) to the
resulting rules of form φ ∨ L← ϕ, since L is a new atom not occurring in φ. In order
to apply (S) after (D) and (T∗), it is required that acyclicity and head-cycle freeness are
invariant under application of (D) and (T∗), which is indeed the case. Given that both
substitutions can be shown to be answer-set preserving for HCF programs as well, we
obtain the following theorem.

3 For a finite set S of atoms, ¬S denotes
∧

s∈S
¬s.

Theorem 7. Let Π be a nested program.
Then, there is a program Spoly [Π] obtained from Π via a polynomial sequence

of substitutions from (L1)–(L3), (L6)–(L8), (L10), (L11)←, (L12), (S), (T∗), and
(D) such that (i) Spoly [Π] is an NnLP, and (ii) if Π is HCF, then AS (Π) =
AS (Spoly [Π])|Atm(Π).

Note that Spoly [Π] is polynomial in the size of Π , since the distributivity rule (L4)
is not included. Indeed, new atoms are only introduced by (D).

So far, we showed how to translate HCF nested programs into NnLPs in polynomial
time. In order to obtain a reduction to nLPs, we consider two additional rules, (Y1) and
(Y2), depicted in Table 2. The following result holds:

Proposition 3 ([29]). Let Π be an NnLP, and let Π ′ be obtained from Π via (Y1)
or (Y2).

Then, AS (Π) = AS (Π ′)|Atm(Π).

Putting the previous results together, the following property can be shown:

Theorem 8. Let Π be a nested program.
Then, there is a program S[Π] obtained from Π via a polynomial sequence of

substitutions from (L1)–(L3), (L6)–(L9), (L10), (L11)←, (L12), (S), (T∗), (D), (Y1),
and (Y2), such that (i) S[Π] is normal, and (ii) if Π is HCF, then AS (Π) =
AS (S[Π])|Atm(Π).

Example 4. Observe that program Π2 from Example 1 can be translated into the nLP

S[Π] = {p← ¬q; q ← ¬p; p← ¬L1; L1 ← ¬q; q ← ¬L2; L2 ← ¬p}.

6 Tight Nested Logic Programs

It is well known that every stable model of an NnLP Π is a model of COMP[Π]
(cf., e.g., [11]). However, the converse holds only providing certain syntactic restric-
tions are enforced. Such conditions were first given by Fages [12] for nLPs, and subse-
quently extended by Erdem and Lifschitz [11] for NnLPs. In the latter work, the notion
of tight nested normal logic programs is introduced. In this section, we extend tightness
to general nested logic programs and show that HCF NLPs which satisfy tightness can
be reduced to theories of classical propositional logic by means of translation T [·]. That
is, the resultant theories are equivalent to COMP[Π] in case of an NnLP Π .

Following [11], we define the positive conjunctive components of an expression φ,
denoted cc(φ), as follows: First, every expression φ can be written in the form φ1 ∧
· · · ∧ φn (n ≥ 1), where each φi is not a conjunction. The formulas φ1, . . . , φn are
called the conjunctive components of φ. Then, cc(φ) is the conjunction of all those
conjunctive components of φ such that at least one atom occurs positively in it. Note
that, e.g., cc(¬p) = >, where p is some atom.

Definition 7. A nested program Π is tight on an interpretation I iff there exists a func-
tion λ from Atm(Π) to ordinals such that, for each rule r ∈ Π , if I ∈ Mod(H(r) ∧
B(r)), then λ(p) < λ(q), for each p ∈ Atm(cc(B(r))) and each q ∈ Atm+(H(r)).

Obviously, this definition generalises the one in [11]. Using our translation T [·], we
can reformulate the main theorem in [11] as follows:

Proposition 4 ([11]). Let Π be an NnLP, and let I ⊆ Atm(Π) be an interpretation
such that Π is tight on I .

Then, I ∈ AS(Π) iff I ∈ Mod(T [Π]).

We generalise this proposition by showing that T [Π] is applicable to tight HCF
nested programs as well. To this end, we make partly use of the results discussed in the
previous section showing how nested programs can be reduced to NnLPs. Note that,
whenever such a translation simultaneously retains tightness and models of T [·], we
directly get the desired generalisation, according to Proposition 4.

Lemma 2. Let Π be a nested program, let I be an interpretation, and let Π ′ be ob-
tained from Π via any substitution from (L1)–(L8), (L12), (L11)←, or (S).

Then, Π ′ is tight on I whenever Π is tight on I .

Lemma 3. Let Π be a nested program, and let Π ′ be obtained from Π via any substi-
tution from (L1)–(L12), (L11)←, or (S).

Then, Mod(T [Π]) = Mod(T [Π ′]).

Observe that not all substitution rules from Table 2 used in Theorem 6 to obtain
NnLPs are included in Lemma 2. In fact, there is some problem with (L10). Consider
the program Π = {a ← b; b ∧ c ← a}, which is tight on interpretation I = {a, b},
since only for the first rule r = a ← b the condition I ∈ Mod(H(r) ∧ B(r)) from
Definition 7 holds. Applying (L10), we obtain Π′ = {a ← b; b ← a; c ← a} which
is not tight on {a, b} anymore, because now, both I ∈ Mod(H(r) ∧ B(r)) and I ∈
Mod(H(r′) ∧ B(r′)) holds, for r = a ← b and r′ = b ← a. We therefore replace
(L10) by the new rule (C) from Table 2, which can be shown to retain tightness, models
of T [·] (modulo newly introduced atoms), and head-cycle freeness.

By these invariance results, we get the main result of this section.

Theorem 9. Let Π be a HCF nested program, and let I ⊆ Atm(Π) be an interpreta-
tion such that Π is tight on I .

Then, I ∈ AS(Π) iff I ∈ Mod(T [Π]).

7 Conclusion

In this paper, we introduced the classes of acyclic and head-cycle free nested pro-
grams as generalisations of similar classes originally introduced for disjunctive logic
programs. We furthermore extended several results related to Clark’s completion to
our classes of programs, by introducing the polynomial reductions T [·] and T ∗[·] to
classical propositional logic. Moreover, we extended the notion of tightness to nested
programs, and we constructed a polynomial translation of HCF nested programs into
normal programs by applying a generalised shifting technique. We also derived imme-
diate complexity results, showing that acyclic and HCF nested programs have a lower
complexity than arbitrary NLPs, providing the polynomial hierarchy does not collapse.

Transformations T [·] and T ∗[·] can also be viewed as optimisations of a translation
studied in [26], in which (arbitrary) nested programs are efficiently mapped to quanti-
fied Boolean formulas such that the stable models of the former are given by the models
of the latter. Hence, the present results show that, in case of acyclic and HCF programs,
a reduction to classical formulas suffices instead of a reduction to the more expressive
class of quantified Boolean formulas.

The translation of acyclic and HCF nested programs to nLPs optimises a polyno-
mial translation presented in [25] from arbitrary nested programs into disjunctive logic
programs, in the sense that our current method (i) introduces in general fewer addi-
tional variables, and (ii) translates a subclass of NLPs into a (presumably) less complex
subclass of DLPs, viz. normal programs.

Furthermore, our translation extends and optimises also a recent result due to Eiter
et al. [8] which discusses a general method to eliminate disjunctions from a given DLP
under different notions of equivalence. To wit, under ordinary equivalence (i.e., preser-
vance of stable models), the aforementioned method allows to transform a given DLP
into an nLP by applying the usual shifting technique [1] and by adding suitable rules
in order to retain equivalence between the programs. However, in general, the size of
the resultant programs is exponential in the size of the input programs. Hence, for HCF
programs, we obtain not only a generalisation of this general result to the nested case
but also a polynomial method to achieve a transformation to nLPs.

Following the remarks in [29], our polynomial transformations from HCF nested
programs into normal programs can be used to utilise extant answers-set solvers, like
DLV [7], Smodels [27], or ASSAT [19], for computing answer sets of HCF nested
programs. Furthermore, the present results indicate how to compute answer sets of HCF
NLPs directly by generalising graph based methods as described in [4, 20, 16]. More
precisely, we may define Atm−(ϕ) as the set of atoms having negative occurrences in
ϕ, which enables us to express positive as well as negative dependencies between atoms
in expressions. Therefore, graph coloring techniques as described in [16, 21], and used
as basis of the noMoRe system [22], may be generalised to HCF NLPs. Hence, our
approach offers different ways for answer-set computation of nested programs.

Although our current results are established for programs containing only one kind
of negation, viz. default negation, they can be extended to programs allowing strong
negation as well. Furthermore, another issue is the lifting of the notions of acyclic and
head-cycle free nested programs to the first-order case, which can be done along the
lines of [14].

References

1. R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic Programs.
Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

2. N. Bidoit and C. Froidevaux. Negation by Default and Unstratifiable Logic Programs. The-
oretical Computer Science, 78:85–112, 1991.

3. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 38(3):167–213, 1999.

4. G. Brignoli, S. Costantini, O. D’Antona, and A. Provetti. Characterizing and Computing
Stable Models of Logic Programs: The Non-stratified Case. In Proc. of the 2nd International
Conference on Information Technology (CIT-99), pp. 197–201, 1999.

5. K. L. Clark. Negation as Failure. In Logic and Databases, pp. 293–322. Plenum, 1978.
6. J. Dix, G. Gottlob, and V. Marek. Reducing Disjunctive to Non-Disjunctive Semantics by

Shift-Operations. Fundamenta Informaticae, XXVIII(1/2):87–100, 1996.
7. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV

System. In Logic-Based Artificial Intelligence, pp. 79–103. Kluwer, 2000.
8. T. Eiter, M. Fink, H. Tompits, and S. Woltran. On Eliminating Disjunctions in Stable Logic

Programming. In Proc. KR-04, 2004. To appear.
9. T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming:

Propositional Case. Annals of Mathematics and Artificial Intelligence, 15(3–4):289–323,
1995.

10. E. Erdem and V. Lifschitz. Fages’ Theorem for Programs with Nested Expressions. In Proc.
ICLP-01, LNCS 2237, pp. 242–254, Springer, 2001.

11. E. Erdem and V. Lifschitz. Tight Logic Programs. Theory and Practice of Logic Program-
ming, 3(4–5):499–518, 2003.

12. F. Fages. Consistency of Clark’s Completion and Existence of Stable Models. Methods of
Logic in Computer Science, 1:51–60, 1994.

13. M. Gelfond, V. Lifschitz, H. Przymusinska, and M. Truszczyński. Disjunctive Defaults. In
Proc. KR-91, pp. 230–237. Morgan Kaufmann, 1991.

14. K. Inoue and C. Sakama. Negation as Failure in the Head. Journal of Logic Programming,
35(1):39–78, 1998.

15. T. Janhunen. On the Effect of Default Negation on the Expressiveness of Disjunctive Rules.
In Proc. LPNMR-01, LNCS 2173, pp. 93–106, Springer, 2001.

16. K. Konczak, T. Linke, and T. Schaub. Graphs and Colorings for Answer Set Programming:
Abridged Report. In Proc. LPNMR-04, LNCS 2923, pp. 127–140. Springer, 2004.

17. J. Lee and V. Lifschitz. Loop Formulas for Disjunctive Logic Programs. In Proc. ICLP-03,
LNCS 2916, pp. 451–465, Springer, 2003.

18. V. Lifschitz, L. Tang, and H. Turner. Nested Expressions in Logic Programs. Annals of
Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

19. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. AAAI-02, pp. 112–117, 2002.

20. T. Linke. Graph Theoretical Characterization and Computation of Answer Sets. In Proc.
IJCAI-01, pp. 641–645. Morgan Kaufmann, 2001.

21. T. Linke. Suitable Graphs for Answer Set Programming. In Proc. ASP-03, pp. 15–28. CEUR
Workshop Proceedings, volume 78, 2003.

22. T. Linke, C. Anger, and K. Konczak. More on noMoRe. In Proc. JELIA-02, LNCS 2424,
pp. 468–480, Springer, 2002.

23. J. Lloyd and R. Topor. Making Prolog More Expressive. Journal of Logic Programming,
3:225–240, 1984.

24. W. Marek and M. Truszczyński. Autoepistemic Logic. Journal of the ACM, 38:588–619,
1991.

25. D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran. A Polynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary
Report. In Proc. ICLP-02, LNCS 2401, pp. 405–420. Springer, 2002.

26. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs
with Nested Expressions. In Proc. EPIA-01, LNCS 2285, pp. 306–320. Springer, 2001.

27. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138:181–234, 2002.

28. R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing,
1:146–160, 1972.

29. J. You, L. Yuan, and M. Zhang. On the Equivalence Between Answer Sets and Models of
Completion for Nested Logic Programs. In Proc. IJCAI-03, pp. 859–865, 2003.

