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Abstract
RDF/S ontologies are often used in e-science to express domain knowledge regarding the respective

field of investigation (e.g., cultural informatics, bioinformatics etc). Such ontologies need to change often
to reflect the latest scientific understanding on the domain at hand, and are usually associated with con-
straints expressed using various declarative formalisms to express domain-specific requirements, such as
cardinality or acyclicity constraints. Addressing the evolution of ontologies in the presence of ontologi-
cal constraints imposes extra difficulties, because it forces us to respect the associated constraints during
evolution. While these issues were addressed in previous work, this is the first work to examine how
ASP techniques can be applied to model and implement the evolution process. ASP was chosen for its
advantages in terms of a principled, rather than ad hoc implementation, its modularity and flexibility, and
for being a state-of-the-art technique to tackle hard combinatorial problems. In particular, our approach
consists in providing a general translation of the problem into ASP, thereby reducing it to an instance of
an ASP program that can be solved by an ASP solver. Our experiments are promising, even for large
ontologies, and also show that the scalability of the approach depends on the morphology of the input.
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1 Introduction

Semantic Web [3], aims to extend the current web so as to allow information to be both understandable
by humans and processable by machines. Ontologies describe our understanding of the physical
world in a machine-processable format and form the backbone of the Semantic Web. They are usually
represented using the RDF/S [13, 4] language; in a nutshell, RDF/S permits the representation of
different types of resources like individuals, classes of individuals and properties between them, as
well as basic taxonomic facts (such as subsumption and instantiation relationships).

Several recent works [16, 14, 12, 5, 19] have acknowledged the need for introducing constraints
in ontologies. Given that RDF/S does not impose any constraints on data, any application-specific
constraints (e.g., functional properties) or semantics (e.g., acyclicity in subsumptions) can only be
captured using constraints on top of RDF/S data. In this paper, we consider DED constraints [8],
which form a subset of first-order logic and have been shown to allow capturing many useful types of
constraints; we will consider populated ontologies represented using RDF/S, and use the term RDF/S
knowledge base (KB) to denote possibly interlinked and populated RDF/S ontologies with associated
(DED) constraints.

An important task towards the realization of the Semantic Web is the introduction of techniques
that allow the efficient and intuitive evolution of KBs in the presence of constraints. Note that a valid
evolution result should satisfy the constraints; this is often called the Principle of Validity [1]. In
addition, the Principle of Success [1] should be satisfied, which states that the change requirements
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2 Evolution of Ontologies using ASP

take priority over existing information, i.e., the change must be applied in its entirety. The final
important requirement is the Principle of Minimal Change [1], which states that, during a change, the
modifications applied upon the original KB must be minimal. In other words, given many different
evolution results that satisfy the principles of success and validity, one should return the one that is
“closer” to the original KB, where “closeness” is an application-specific notion. The above non-trivial
problem was studied in [11], resulting in a general-purpose changing algorithm that satisfies the
above requirements. Unfortunately, the problem was proven to be exponential in nature, so the
presented general-purpose algorithmic solution to the problem (which involved a recursive process)
was inefficient.

ASP is a flexible and declarative approach to solve NP-hard problems. The solution that was
presented in [11] regarding the problem of ontology evolution in the presence of constraints can easily
be translated into a logic program with first-order variables; this is the standard formalism that is used
by ASP, which is then grounded into a variable free representation by a so called grounder that is then
solved by a highly efficient Boolean solver. As it is closely related to the SAT paradigm, knowledge
about different techniques for solving SAT problems are incorporated into the ASP algorithms. Using
first-order logic programs is a smart way to represent the evolution problem while remaining highly
flexible, especially with respect to the set of constraints related to the ontology.

The objective of the present work is to recast the problem of ontology evolution with constraints
in terms of ASP rules, and use an efficient grounder and ASP solver to provide a modular and flexible
solution. In our work, we use gringo for the grounding and clasp for the solving process as they are
both state-of-the-art tools to tackle ASP problems [9]. Our work is based on the approach presented
in [11], and uses similar ideas and notions. The main contribution of this work is the demonstration
that ASP can be used to solve the inherently difficult problem of ontology evolution with constraints
in a decent amount of time, even for large real-world ontologies. ASP was chosen for its advantages
in terms of a principled, rather than ad hoc implementation, its modularity and flexibility, and for
being a state-of-the-art technique to tackle hard combinatorial problems.

In the next section we present the problem of ontology evolution in the presence of constraints,
and the solution proposed in [11]. In Section 3, we present ASP. Section 4 is the main section, where
our formulation of the problem in terms of an ASP program is presented and explained. This approach
is refined and optimized in Section 5. We present our experiments in Section 6 and conclude in
Section 7.

2 Problem Statement

2.1 RDF/S

The RDF/S [13, 4] language uses triples of the form (subject, predicate, object) to express knowledge.
RDF/S permits the specification of various entities (called resources), which may be classes (i.e.,
collections of resources), properties (i.e., binary relations between resources), and individuals (i.e.,
atomic entities). We use the symbol type(u) to denote the type of a resource u (class, property,
individual). RDF/S supports various predefined relations between resources, like the domain and range
of properties, subsumption relationships between classes and between properties, and instantiation
relationships between individuals and classes, or between pairs of individuals and properties. RDF/S
associates such relations with semantics, e.g., subsumption is transitive.

RDF/S KBs are commonly represented as labeled graphs, whose nodes are resources and edges
are relations (see Fig. 1). In Fig. 1, a, b, and c are classes and x is an individual. Solid arrows
represent subsumption relationships between classes (e.g., b is a subclass of c), and dashed arrows
represent instantiation relationships (e.g., x is an instance of b). The bold arrow represents the change
we want to make, namely to make a a subclass of b.
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RDF/S triple Intuitive meaning Predicate

c rdf :type rdfs:Class c is a class cs(c)
x rdf :type rdfs:Resource x is an individual ci(x)
c1 rdfs:subClassOf c2 IsA between classes c_IsA(c1, c2)
x rdf :type c class instantiation c_Inst(x, c)

Table 1 Representation of RDF/S Triples Using Predicates

2.2 Ontology Evolution Principles

a

c

b

x

Figure 1 A
knowledge base
with change
(appearing as
bold arrow)

In the presence of constraints in the ontology, one should make sure that the
evolution result is valid, i.e., it does not violate any constraints. This is called the
Principle of Validity [1]. Manually enforcing this principle is an error-prone and
tedious process. The objective of this work is to assist knowledge engineers in ap-
plying their changes in an automated manner, while making sure that no invalidities
are introduced in the KB during the evolution.

In addition to the Validity Principle, two other principles are usually consid-
ered. The first is the Principle of Success [1], stating that the required changes
take priority over existing information, i.e., the change must be applied in its en-
tirety. The second is the Principle of Minimal Change [1], which requires that
the modifications applied upon the original KB to accommodate the change must
be minimal. Thus, if there are several different results that satisfy the princi-
ples of success and validity, one should return the one that is “closer” to the
original KB, i.e., causes the least important modifications. Note that the impor-
tance of modifications (i.e., “closeness”) is an application-specific notion; in this
work, we model “closeness” using a relation; details on this relation will be given
later.

2.3 Formal Setting

To address the problem of ontology evolution, we use the general approach presented in [11]. An
RDF/S KB K is modeled as a set of ground facts of the form p(~x) where p is a predicate and ~x is a
vector of constants. Constants represent resources in RDF/S parlance, and each predicate represents
one type of RDF/S relationship (e.g., domain, range, subsumption etc). For example, the triple
(a, rdfs:subClassOf , b), which denotes that a is a subclass of b, is represented by the ground fact
c_IsA(a, b). For the rest of the paper, predicates and constants will start with a lower case letter,
whereas variables will start with an upper case letter. Table 1 shows some of the predicates we use
and their intuitive meaning (see [11] for a complete list).

We assume closed world, i.e., K 0 p(~x) whenever p(~x) /∈ K. A change C is a request to
add/remove fact(s) to/from the KB, and it is modeled as a set of positive/negative ground facts.

Ontological constraints are modeled using DED rules [8], which allow for formulating various
useful constraints, such as primary and foreign key constraints (used, e.g., in [12]), acyclicity and
transitivity constraints for properties (as in [16]), and cardinality constraints (used in [14]). Here, we
use the following simplified form of DEDs, which still includes the above constraint types:

∀~U
∨

i=1,...,head
∃~Viqi(~U, ~Vi)←e(~U) ∧ p1(~U) ∧ · · · ∧ pbody(~U),

where e(~U) is a conjunction of (in)equality atoms. We denote by p the facts p1(~U), . . . , pbody(~U)
and by q the facts q1(~U, ~V1), . . . , qhead(~U, ~Vhead). Table 2 shows some of the constraints used in this
work; for a full list, refer to [11]. We say that a KB K satisfies a constraint r (or a set of constraints
R), iff K ` r (K ` R). Given a set of constraintsR, K is valid iff K ` R.
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ID, Constraint Intuitive Meaning

R5: ∀U, V

c_IsA(U, V )→ cs(U) ∧ cs(V )
Class subsumption

R12: ∀U, V, W

c_IsA(U, V ) ∧ c_IsA(V, W )→
c_IsA(U, W )

Class IsA transitivity

R13: ∀U, V

c_IsA(U, V ) ∧ c_IsA(V, U)→ ⊥
Class IsA irreflexivity

Table 2 Ontological Constraints

K0

ci(x)
cs(a) cs(b) cs(c)

c_IsA(b, c) c_IsA(b, a) c_IsA(c, a)
c_Inst(x, b) c_Inst(x, c) c_Inst(x, a)

C c_IsA(a, b)

Table 3 Facts from example in Fig. 1

Now consider the KB K0 and the change of Fig. 1, which can be formally expressed using the
ground facts of Table 3. To satisfy the principle of success, we should add c_IsA(a, b) to K0, getting
K1 = K0 ∪ {c_IsA(a, b)}. The result (K1) is called the raw application of C upon K0, and denoted
by K1 = K0 + C. C is called a valid change w.r.t. K0 iff K0 + C is valid. In our example, this is
not the case, because K1 violates R13; thus, it does not constitute an acceptable evolution result.
The form of the violated rule implies that the only possible solution to this problem is to remove
c_IsA(b, a) from K1 (removing c_IsA(a, b) is not an option, because its addition is dictated by the
change – cf. the Principle of Success). This is an extra modification, that is not part of the original
change, but is, in a sense, enforced by it; such extra modifications are called side-effects.

We note that the result, K2 = K0 ∪ {c_IsA(a, b)} \ {c_IsA(b, a)} is no good either, because
R12 is violated, so, we need to repeat the above process recursively for K2. Note that R12 can
be resolved in more than one ways, each of which should be evaluated independently; this fact
leads to a recursive tree of resolutions (and side-effects). Eventually, after possibly several recursive
steps, we will reach one or more valid KBs (leaves in the resolution tree); these are possible
results for the evolution, as they satisfy the principles of success and validity. In our example,
these are: K4.1 = K0 ∪ {c_IsA(a, b), c_IsA(c, b)} \ {c_IsA(b, a), c_IsA(b, c)} and K4.2 = K0 ∪
{c_IsA(a, b), c_IsA(a, c)} \ {c_IsA(b, a), c_IsA(c, a)}.

It remains to determine the “preferable” KB, i.e., the one that is “closest” to K0. To do so, we first
determine the “distance” between KBs using difference sets, called deltas, which contain the posi-
tive/negative ground facts that need to be added/removed from one KB to get to the other (denoted by
∆(K,K′)). In our example, ∆(K0,K4.1) = {c_IsA(a, b), c_IsA(c, b),¬c_IsA(b, a),¬c_IsA(b, c)},
∆(K0,K4.2) = {c_IsA(a, b), c_IsA(a, c),¬c_IsA(b, a),¬c_IsA(c, a)}. Then, we can determine
“closeness” using an ordering that ranks ∆(K0,K4.1), ∆(K0,K4.2); both deltas have the same size
(and this occurs often), so ranking cannot be based on cardinality, but should also consider more
subtle differences, like the severity of changes.

Here, we consider the ordering defined in [11], which is denoted by <K0 , where K0 the original
KB. To define <K0 , we first order the available predicates in terms of severity (<pred); for example,
the addition of a class (predicate cs) is more important than the addition of a subsumption (predicate
c_IsA), i.e., c_IsA <pred cs. Then, ∆1 is preferable than ∆2 (denoted by ∆1 <K0 ∆2) iff the
most important predicate (per <pred) appears less times in ∆1. In case of a tie, the next most
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important predicate is considered, and so on. If the deltas contain an equal number of ground facts
per predicate, the ordering considers the constants involved: a constant is considered more important
if it occupies a higher position in its corresponding subsumption hierarchy in the original KB. In this
respect, ∆(K0,K4.1) causes less important changes upon K0 than ∆(K0,K4.2), because the former
affects b, c (c_IsA(c, b),¬c_IsA(b, c)) whereas the latter affects c, a (c_IsA(a, c),¬c_IsA(c, a));
this means thatK4.1 is a preferred result (overK4.2), as ∆(K0,K4.1) <K0 ∆(K0,K4.2). The ordering
between ground facts that allows this kind of comparison is denoted by <G. For a more formal and
detailed presentation of the ordering, we refer the reader to [11].

We denote the evolution operation by •. In our example, we get K0 • C = K4.1. Note that K0 • C
results from applying the change, C, and its most preferable side-effects upon K0.

3 Answer Set Programming (ASP)

In what follows, we rely on the input language of the ASP grounder gringo [9] (extending the
language of lparse [18]) and introduce only informally the basics of ASP. A comprehensive, formal
introduction to ASP can be found in [2].

We consider extended logic programs as introduced in [17]. A rule r is of the following form:

h← b1, . . . , bm,∼bm+1, . . . ,∼bn.

By head(r) = h and body(r) = {b1, . . . , bm,∼bm+1, . . . ,∼bn}, we denote the head and the body
of r, respectively, where “∼” stands for default negation. The head H is an atom a belonging to
some alphabet A, the falsum ⊥, or a cardinality constraint L {`1, . . . , `k}U . In the latter, `i = ai

or `i = ∼ai is a literal for ai ∈ A and 1 ≤ i ≤ k; L and U are integers providing a lower and an
upper bound. Such a constraint is true if the number of its satisfied literals is between L and M .
Either or both of L and U can be omitted, in which case they are identified with the (trivial) bounds 0
and∞, respectively. A rule r such that head(r) = ⊥ is an integrity constraint; one with a cardinality
constraint as head is called a choice rule. Each body component Bi is either an atom or a cardinality
constraint for 1 ≤ i ≤ n. If body(r) = ∅, r is called a fact, and we skip “←” when writing facts
below. In addition to rules, a logic program can contain #minimize statements of the form

#minimize[`1 = w1@L1, . . . , `k = wk@Lk].

Besides literals `j and integer weights wj for 1 ≤ j ≤ k, a #minimize statement includes integers
Lj providing priority levels. A #minimize statement distinguishes optimal answer sets of a program
as the ones yielding the smallest weighted sum for the true literals among `1, . . . , `k sharing the same
(highest) level of priority L, while for L′ > L the sum equals that of other answer sets. For a formal
introduction, we refer the interested reader to [17], where the definition of answer sets for logic
programs containing extended constructs (cardinality constraints and minimize statements) under
“choice semantics” is defined.

Likewise, first-order representations, commonly used to encode problems in ASP, are only
informally introduced. In fact, gringo requires programs to be safe, that is, each variable must occur
in a positive body literal. Formally, we only rely on the function ground to denote the set of all
ground instances, ground(Π), of a program Π containing first-order variables. Further language
constructs of interest, include conditional literals, like “a :b”, the range and pooling operator “..” and
“;” as well as standard arithmetic operations. The “:” connective expands to the list of all instances
of its left-hand side such that corresponding instances of literals on the right-hand side hold [18, 9].
While “..” allows for specifying integer intervals, “;” allows for pooling alternative terms to be used
as arguments within an atom. For instance, p(1..3) as well as p(1; 2; 3) stand for the three facts p(1),
p(2), and p(3). Given this, q(X) :p(X) results in q(1), q(2), q(3). See [9] for detailed descriptions
of the input language of the grounder gringo.
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4 Evolution using ASP

4.1 Potential Side-Effects

In order to determine the result of updating a KB, we need to determine the side-effects that would
resolve any possible validity problems caused by the change. The general idea is simple: since
the original KB is valid, a change causes a violation if it adds/removes a fact that renders some
constraint invalid. Let us denote by ∇ the set of potential side effects of a change C. Given a set
of facts C, we will write C+/C− to denote the positive/negative facts of C respectively. First of all,
we note that∇ will contain all facts in C, except those already implied by K, i.e., if p(~x) ∈ C+ and
p(~x) /∈ K, then p(~x) ∈ ∇+, and if ¬p(~x) ∈ C− and p(~x) ∈ K then ¬p(~x) ∈ ∇− (Condition I).
The facts in the set ∇+ ∪ K are called available. This initial set of effects may cause a constraint
violation. Note that a constraint r is violated during a change iff the right-hand-side (rhs) of r becomes
true and the left-hand-side (lhs) is made false. Thus, if a potential addition ∇+ makes the rhs of r

true, and lhs is false, then we have to add some fact from the lhs of the implication to the potential
positive side-effects (to make lhs true) (Condition II), or remove some fact from rhs (to make it false)
(Condition III). If a removal in∇− makes the lhs of r false, and all other facts in rhs are available (so
rhs is true), we have to remove some fact from rhs (to make it false) (Condition IV). To do that, we
first define a select function si(X) = X \ {Xi} on a set X of atoms, to remove exactly one element
of a set. So we can then refer to the element Xi and the rest of the set si(X) separately. Abusing
notation, we write pred(p, ~U) for pred(p1, ~U), . . . , pred(pn, ~U), for any predicate name pred where
p is the set of atoms p1(~U), . . . , pbody(~U).

Formally, a set ∇ is a set of potential side-effects for a KB K and a change C, if the following
conditions are all true:

I x ∈ ∇ if x ∈ C+ and x /∈ K or x ∈ C− and ¬x ∈ K,

II ∀~Vh qh(~U, ~Vh) ∈ ∇+ if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and qh(~U, ~Vh) /∈ K
III ¬pj(~U) ∈ ∇− if sj(sl(p(~U))) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and pj(~U) ∈ K and for all ~Vh

either ¬qh(~U, ~Vh) ∈ ∇− or qh(~U, ~Vh) /∈ K
IV ¬pl(~U) ∈ ∇− if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ K and ∀~Vh ¬qh(~U, ~Vh) ∈ ∇−,

for each constraint r defined in Section 2.3 and for all variable substitutions for ~U wrt E(~U) and for
all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head.

Our goal is to find a ⊂-minimal set of potential side-effects ∇. We do this using the grounder
gringo, which ground-instantiates a logic program with variables. We create a logic program where
the single solution is the subset minimal set of potential side-effects∇.

To build a logic program, we first have to define the inputs to the problem, called instance. An
instance I(K,C) of a KB K and a change C is defined as a set of facts

I(K, C) = {kb(p, ~x) | p(~x) ∈ K}
∪ {changeAdd(p, ~x) | p(~x) ∈ C+}
∪ {changeDel(p, ~x) | p(~x) ∈ C−}.

In the above instance, predicate kb contains the facts in the KB, whereas predicates changeAdd ,
changeDel contain the facts that the change dictates to add/delete respectively. Note that this
representation forms a twist from the standard representation, since a ground fact p(~x) ∈ K is
represented as kb(p, ~x) (same for the change). The representation of the KB K in Fig. 1 and its
demanded change C can be found in Table 4.

Furthermore we have to collect all resources available in the KB (1) or newly introduced by the
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kb(ci, (x)).
kb(cs, (a)). kb(cs, (b)). kb(cs, (c)).

kb(c_IsA, (b, c)). kb(c_IsA, (b, a)). kb(c_IsA, (c, a)).
kb(c_Inst, (x, b)). kb(c_Inst, (x, c)). kb(c_Inst, (x, a)).

changeAdd(c_IsA, (a, b)).

Table 4 Instance from example in Fig. 1

change (2). So the predicate dom associates a resource to its type,

dom(type(Xi), Xi)← kb(T, ~X). (1)

dom(type(Xi), Xi)← changeAdd(T, ~X). (2)

for all Xi ∈ ~X . The following two rules ((3) and (4)) correspond to Condition I above, stating that
the effects of C should be in∇ (unless already in K). The predicates pAdd and pDelete are used to
represent potential side effects (additions and deletions respectively), i.e., facts in the sets∇+,∇−.

pDelete(T, ~X)← changeDel(T, ~X), kb(T, ~X). (3)

pAdd(T, ~X)← changeAdd(T, ~X),∼kb(T, ~X). (4)

To find those facts that are added due to subsequent violations, we define, for the set ∇+ ∪ K, the
predicate avail in (5) and (6). For negative potential side-effects∇− we use a predicate nAvail (7).

avail(T, ~X)← kb(T, ~X). (5)

avail(T, ~X)← pAdd(T, ~X). (6)

nAvail(T, ~X)← pDelete(T, ~X). (7)

At a next step, we need to include the ontological constraintsR into our ASP program, by creating
the corresponding ASP rules. Unlike standard ontological constraints which determine whether there
is an invalidity, the ASP rules are used to determine how to handle an invalidity. So now consider a
constraint r ∈ R as defined in Section 2.3. For r, we define a set of rules ((8)) that produce the set of
potential side-effects according to Condition II.

pAdd(qh, (~U, ~Vh))← e(~U), avail(sl(p), ~U), pAdd(pl, ~U),

∼kb(qh, (~U, ~Vh)), dom(type(~Vh), ~Vh). (8)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head. Similarly, to capture Condition III, we need two sets of
rules ((9) and (10)), since we do not want to do this only for negative side-effects nAvail on the lhs
of the rule, but also for facts that are not in the KB K,

pDelete(pj , ~u)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

nAvail(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (9)

pDelete(pj , ~U)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

∼kb(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (10)

for all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head. The last Condition IV can be expressed by the
following rule set (11)

pDelete(pl, ~U)← e(~U), avail(sl(p), ~U), kb(pl, ~U),

pDelete(qh, ~U, ~Vh) : dom(type(~Vh), ~Vh). (11)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head.
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c_IsA(a, b) c_IsA(c, c) c_IsA(c, b)
c_IsA(b, b) c_IsA(a, a) c_IsA(a, c)
¬c_IsA(b, a) ¬c_IsA(b, c) ¬c_IsA(c, a)

Table 5 Potential side-effects of example in Fig. 1

I Proposition 1. Given a KB K and a change C, and let A be the unique answer set of the stratified
logic program ground(I(K, C) ∪ {(1) . . . (11)}), then ∇ = {p(~x) | pAdd(p, ~x) ∈ A} ∪ {¬p(~x) |
pDelete(p, ~x) ∈ A} is a subset minimal set of potential side-effects of the KB K and the change C.

For our example in Fig. 1, this results in the set of potential side-effects in Table 5. Note that the
potential side-effects contain all possible side-effects, including side-effects that will eventually not
appear in any valid change.

4.2 Solving the Problem

Note that the set of potential side-effects computed above contains all options for evolving the KB.
However, some of the potential changes in pAdd , pDelete are unnecessary; in our running exam-
ple, the preferred solution was {c_IsA(a, b),¬c_IsA(b, a),¬c_IsA(b, c)} (see Section 2), whereas
Table 5 contains many more facts.

To compute the actual side-effects (which is a subset of the side-effects in pAdd , pDelete), we
use a generate and test approach. In particular, we use the predicate add(p, ~x) and delete(p′, ~x′) to
denote the set of side-effects p(~x) ∈ ∆(K,K′) (respectively ¬p′(~x′) ∈ ∆(K,K′)) and use choice
rules to guess side-effects from pAdd , pDelete to add , delete respectively (see (12), (13) below).

{add(T, ~X) : pAdd(T, ~X)}. (12)

{delete(T, ~X) : pDelete(T, ~X)}. (13)

Our changed KB is expressed using predicate kb′ and is created in (14) and (15) consisting of every
entry from the original KB that was not deleted and every entry that was added.

kb′(T, ~X)← kb(T, ~X),∼delete(T, ~X). (14)

kb′(T, ~X)← add(T, ~X). (15)

Moreover, we have to ensure that required positive (negative) changes C are (not) in the new KB
respectively (Principle of Success) ((16) and (17)).

← changeAdd(T, ~X),∼kb′(T, ~X). (16)

← changeDel(T, ~X), kb′(T, ~X). (17)

To ensure the Principle of Validity we construct all constraints from the DEDs R, using the
following transformation for each r ∈ R:

← kb′(p, ~U),∼1{kb′(qi, (~U, ~Vi) : dom(type(~Vi), ~Vi))}, e(~U). (18)

for all 1 ≤ i ≤ head. Rule (18) ensures that if the rhs of a constraint is true wrt to the new KB and
the lhs if false, then the selected set of side-effects is no valid solution.

I Proposition 2. Given a KB K, a change C and a set of potential side-effects ∇, we define a set of
facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇} ∪ {pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let A be the answer set of
the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), then ∆(K,K′) = {p(~x) | add(p, ~x) ∈
A} ∪ {¬p(~x) | delete(p, ~x) ∈ A} is a valid change of KB K.



M. Ostrowski, G. Flouris, T. Schaub and G. Antoniou 9

4.3 Finding the Optimal Solution

The solutions contained in add , delete are all valid solutions, per the above proposition, but only one
of them is optimal, per the Principle of Minimal Change. So, the solutions must be checked wrt to
the ordering <K. We generate minimize statements for the criteria <pred and <G (see Section 3).
Several minimize constraints can be combined and the order of the minimize statements is respected.
As gringo allows hierarchical optimization statements, we can easily express the whole ordering <K
in a set of optimize statements O.

I Proposition 3. Given a KB K, a change C and a set of potential side-effects ∇, we define a set
of facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇} ∪ {pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let A be the answer set
of the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), which is minimal wrt the optimize
statements O then ∆(K,K′) = {p(~x) | add(p, ~x) ∈ A} ∪ {¬p(~x) | delete(p, ~x) ∈ A} is the unique
valid minimal change of KB K.

5 Refinements

In this section, we refine the above direct translation, in order to increase the efficiency of our logic
program. Our first optimization attempts to reduce the size of the potential side-effects∇, whereas the
second takes advantage of deterministic consequences of certain side-effects to speed-up the process.

5.1 Incrementally Computing Side-Effects

As the set of potential side-effects directly corresponds to the search space for the problem (see (12),
(13) in Section 4), we could improve performance if a partial set of potential side-effects that contains
the minimal solution was found, instead of the full set. According to the ordering of the solutions
<pred, a set of side-effects that does not contain any fact with a level greater than k is “better” than a
solution that does. Thus, we split the computation of the possible side-effects into different parts, one
for each level of <pred optimization. We start the computation of possible side-effects with k = 1,
only adding facts of level 1 to repair our KB. If with this subset of possible side-effects no solution to
the problem can be found, we increase k by one and continue the computation, reusing the already
computed part of the potential side-effects. For grounding, this means we only want to have the
possibility to find potential side-effects p(~x) of a level less than or equal to k. The corresponding
ASP rules can be found in the extended version of this paper [15] and are denoted by I .

We define the operator T (K, C, k), as T (K, C, 0) = ground(I(K, C)) and T (K, C, k) where
k > 0 is the set of facts of the unique answer set of the logic program ground(T (K, C, k− 1)∪{I}).
T (K, C, n) produces a subset of the potential side-effects only using repairs up to level n. Given our
example in Fig. 1, T (K, C, 7) gives us the first two rows of Table 5.

5.2 Exploiting Deterministic Side-Effects

A second way to improve performance is to consider deterministic side-effects of the original changes.
As an example of a deterministic side-effect, suppose that the original change includes the deletion
of a class a (corresponding to the side-effect ¬cs(a)). Then, per rule R5 (cf. Table 2), all class
subsumptions that involve a must be deleted as well (corresponding to the side-effect ¬c_IsA).
Therefore, the latter side-effect(s) are a necessary (deterministic) consequence of the former, so
they can be added to the set of side-effects right from the beginning (at level 1). For the detailed
logic program we refer to [15]. In this way we extend our change by deterministic consequences,
to possibly reduce the number of incremental steps. For our example in Fig. 1 this results in the
additionally required changeDel(c_IsA, (b, a)).
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n times level timeouts n times level timeouts
1 123.3 2.37 0 1 2.2 10.70 0
2 243.7 4.72 0 2 3.3 16.28 20
3 454.6 8.50 0 3 3.4 16.15 30
4 619.0 11.94 0 4 7.0 16.96 51
5 711.1 13.44 2 5 3.5 16.19 66
6 756.1 14.27 6 6 7.3 18.00 76

Table 6 (a) GO benchmark (b) CIDOC benchmark

6 Experiments

We experimented with two real-world ontologies of different size and structure, namely GO [7] and
CIDOC [6] (∼458.000/∼1.500 facts). GO’s emphasis is on classes, whereas CIDOC contains many
properties. To generate the changes, we took each ontology K, randomly selected 6 facts I ⊆ K,
and deleted I from K, resulting in a valid KB K′. We then created our “pool of changes”, IC , which
contains 6 randomly selected facts from K′ (deletions) and the 6 facts from I (additions). The change
C was a random selection of n facts from IC (1 ≤ n ≤ 6). Our experiment measured the time
required to apply C upon K′. The above process was repeated 100 times for each n (1 ≤ n ≤ 6). The
benchmark was run on a machine with 4× 4 CPUs, 3.4Ghz each and was restricted to 4 GB of RAM.
Our implementation uses gringo3.0.4 and clasp2.0.0RC1. A timeout of 3600 seconds was imposed on
each run. Table 6 contains the results of our experiments in GO and CIDOC respectively. Each row in
the table contains the experiments for one value of n (size of C) and shows the average CPU time (in
seconds) of all runs that did not reach the timeout (column “times”), the average level of incremental
grounding where the solution was found (“level”) and the number of timeouts (“timeouts”).

The results of our experiments are encouraging. GO, despite its large size and the intractable
nature of the evolution problem, can evolve in a decent amount of time, and has very few timeouts.
On the other hand, CIDOC has lots of timeouts, but very fast execution when no timeout occurs. This
indicates that the deviation of execution times, even for KBs/changes of the same size, is very large
for CIDOC, i.e., the performance is largely affected by the morphology of the input. This behaviour is
much less apparent in GO, and is caused by the existence of many properties in CIDOC. Any violated
property-related constraint greatly increases the number of potential side-effects. Thus, for updates
causing many property-related violations, the execution time increases, often causing timeouts. Given
that GO contains no properties, the execution times are more smooth. Another observation is that
there is a strong correlation between the level, the average time reported and the size of the change.

7 Summary and Outlook

We studied the problem of ontology evolution in the presence of ontological constraints. Based on the
setting and solution proposed in [11], we recast the problem and reduced it to an ASP program that
can be solved by an optimized ASP reasoner. Given that the problem is inherently exponential in
nature [11], the reported times (Table 6) for the evolution of two real-world ontologies (GO/CIDOC)
are decent. To the best of our knowledge, there is no comparable approach, because the approach
presented in [11] did not report any experiments, and other similar approaches either do not consider
the full set of options (therefore returning a suboptimal evolution result), or require user feedback.
An interesting side-product of our approach is that we can repair ontologies by simply applying
the empty change upon them; we plan to explore this idea as a future work. We will also consider
additional optimizations using incremental ASP solvers such as iclingo [10].
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