
Here’s the beef: Answer Set Programming !

Torsten Schaub?

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89,
D-14482 Potsdam, torsten@cs.uni-potsdam.de

At the occasion of the Third International Conference on Principles of Knowledge
Representation and Reasoning [1] in 1992, Ray Reiter delivered an invited talk enti-
tled “Twelve Years of Nonmonotonic Reasoning Research: Where (and What) Is the
beef?”,1,2 reflecting the state and future of the research area of Nonmonotonic Reason-
ing (NMR;[2]). Ray Reiter describes it in [3] as a “flourishing subculture” making many
outside researchers “wonder what on earth this stuff is good for.” Although he seemed
to be rather optimistic about the future of NMR, he nonetheless saw its major contribu-
tion on the theoretical side, providing “important insights about, and solutions to, many
outstanding problems, not only in AI but in computer science in general.” Among them,
he lists “Logic Programming implementations of nonmonotonic reasoning”.

Although the link between Michael Gelfond and Vladimir Lifschitz’ Stable Model
Semantics for Logic Programming [4] and NMR formalisms like Ray Reiter’s Default
Logic [5] were discovered soon after the proposal of Stable Model Semantics,3 it still
took some years until the first such implementation was conceived, namely, the smodels
system [8, 9]. The emergence of such a highly efficient and robust system has boosted
the combination of Logic Programming and NMR and finally led to a novel declarative
programming paradigm, referred to as Answer Set Programming (ASP;[10–14]). Since
its inception, ASP has been regarded as the computational embodiment of Nonmono-
tonic Reasoning and a primary candidate for an effective tool for Knowledge Represen-
tation and Reasoning. After all, it seems nowadays hard to dispute that ASP brought
new life to Logic Programming and NMR research and has become a major driving
force for these two fields, helping dispel gloomy prophecies of their impending demise.

Meanwhile, the prospect of ASP has been demonstrated in numerous applica-
tion scenarios, including bio-informatics [15, 16], configuration [17], database integra-
tion [18], diagnosis [19], hardware design [20], insurance industry [21], model check-
ing [22], phylogenesis [23, 24], planing [12], security protocols [25], etc.4 A highlight
among these applications is arguably the usage of ASP for the high-level control of
the space shuttle [26, 27]. The increasing popularity of ASP is for one thing due to
the availability of efficient off-the-shelf ASP systems [28–32] and for another due
to its rich modeling language, jointly allowing for an easy yet efficient handling of

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 By then twelve years after the publication of the Special Issue of the Artificial Intelligence

Journal on Nonmonotonic Reasoning.
2 See also http://en.wikipedia.org/wiki/Where’s_the_beef
3 Logic Programming under Stable Model Semantics turned out to be a special case of Default

Logic, with stable models corresponding to default extensions [6, 7].
4 See also http://www.kr.tuwien.ac.at/research/projects/WASP/
report.html



knowledge-intensive applications. Essentially all ASP systems that have been devel-
oped so far contain two major components. The first of them, a grounder, grounds an
input program, that is, produces its compact propositional equivalent, often by appeal
to advanced database techniques. The input language goes well beyond that of Pro-
log, offering among others, integrity constraints, classical negation, disjunction, and
various types of aggregates. The second component, a solver, accepts the ground pro-
gram and actually computes its answer sets (which amount to the stable models of the
original program). Modern ASP solvers rely on advanced Boolean constraint solving
techniques, stemming from the area of Satisfiability Checking and allowing for tackling
application problems encompassing millions of variables. All in all, ASP has become an
efficient and expressive declarative problem solving paradigm, particularly well-suited
for knowledge-intensive applications.

Taking up Ray Reiter’s challenge after sixteen years, my obvious answer is that An-
swer Set Programming is the beef of twenty-eight years of NMR research! Although
twenty-eight years appear to be quite a while, successful neighboring areas such as De-
scription Logics (DLs) and Satisfiability Checking (SAT) look back onto similar histo-
ries, taking major references in their field, like [33] and [34, 35], respectively. Nonethe-
less both areas have prospered in recent years due to their success in industrially rele-
vant application areas. SAT is the key technology underlying Bounded Model Check-
ing [36] and DLs have become standard ontology languages for the Semantic Web [37].
Although different factors have abetted these success stories, in the end, their break-
through was marked by their establishment as salient technologies in their respective
application areas. What can ASP learn from this? First of all, we should keep building
upon strong formal foundations, just as SAT and DLs do. However, ASP should gear its
research vision towards application scenarios in order to make ASP technology more
efficient, more robust, more versatile, and in the end ready for real applications. This
orientation is such a fruitful approach, being full of interesting and often fundamental
research questions.

Second, we have to foster the dissemination of ASP in order to increase its percep-
tion. Apart from promoting ASP in our academic and industrial environment, teaching
ASP is an important means to enhance the common awareness of it. This does not nec-
essarily mean to teach full-fledged ASP courses, which is difficult in view of many
encrusted curricula, but rather to incorporate ASP in AI-related classes as a tool for il-
lustrating typical reasoning patterns in Knowledge Representation and Reasoning, like
closed-world reasoning, abduction, planning, etc. And after all, to put it in Ray Reiter’s
words, it’s the ASP community’s duty to show “what on earth this stuff is good for.”

ASP has staked its claim in being an attractive approach to declarative problem
solving in combing an expressive modelling language with efficient solving technology.
But how does it scale? In fact, this is not only a matter of performance but also of
applicability and usability. Here is my personal view.

Performance Modern ASP solvers are based on advanced Boolean constraint technol-
ogy and exhibit a similar performance as advanced SAT solvers [38]. Unlike SAT,
however, ASP offers a uniform modelling language admitting variables. In fact,
grounding non-propositional logical specifications constitutes a major bottleneck



in both ASP and SAT.5 While this problem is addressed in SAT anew for each ap-
plication, ASP centralizes this task in its grounders. The more surprising it is that
there is so little work devoted to grounding within the ASP community (cf. [39–
42]). This is a central yet neglected research topic. Apart from increasing research
efforts in grounding, another major research theme is the development of program
optimizers. That is, systems that transform highly declarative logic programs into
equivalent ones, for which the overall solving time is significantly shorter than
for the original program. In view of the vast literature on program equivalence in
ASP (cf. [43–47]) the field appears to be well farmed for this endeavor.

Usability At first, many people are impressed by the ease of modelling in ASP. How-
ever, once they attack the first more complex problem and draft their first buggy
encoding, they become often lost in the flat of declarativity. The solving process
is completely transparent. No handle is available for finding out why the wrong or
no solution is obtained. Also, when performance matters, it is still an art to come
up with an efficient encoding, and often the result trades off declarativity. What
is needed are dedicated tools, techniques, and methodologies to facilitate the de-
velopment of answer set programs. In a nutshell, we need Software Engineering
capacities that are adept enough to match ASP’s high level of declarativity. First
work on this can be found in [48–51] but much more work is needed.

Applicability Many practical applications of ASP motivate extensions or combinations
with other problem-solving paradigms. Looking at SAT’s breakthrough in planning
and model checking [52, 36], it is interesting to observe that both involved dealing
with an increasing bound on the solution size. Meanwhile dedicated SAT solvers al-
low for addressing this issue [53, 54]. Also, a whole sub-area of SAT, known as SAT
modulo theories, deals with the integration of other problem-solving paradigms. So
far, ASP is making only modest steps in similar directions. For instance, a first ap-
proach to incremental ASP solving is described in [55] and the combination of
ASP and Constraint Processing is explored in [56–58]. More cross-fertilization
with neighboring fields is needed to tackle real applications.

Last but not least, we have to foster the exchange within the ASP community as well
as to neighboring fields like Constraint Processing and SAT and moreover re-enforce
the link to ASP’s parental research areas, Logic Programming and NMR. We need to
improve the inter-operability of our systems and tools through specifying interfaces and
fixing some standards. We need common benchmark and problem repositories and en-
courage comprehensive system competitions going beyond specific declarative solving
paradigms. Otherwise, I am afraid that we will never turn our beef into a steak!

Acknowledgements I would like to thank Gerd Brewka, Martin Gebser, Mirosław
Truszczyński, and Stefan Woltran for fruitful comments on an earlier draft.

References

1. Nebel, B., Rich, C., Swartout, W., eds.: Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning (KR’92). Morgan Kaufman (1992)

5 Interestingly, in SAT, recourse to first-order theorem proving seems not an option because of
the high performance of Boolean constraint technology.



2. Ginsberg, M., ed.: Readings in Nonmonotonic Reasoning. Morgan Kaufman (1987)
3. Reiter, R.: Twelve years of nonmonotonic reasoning research: Where (and what) is the beef?

[1] 789
4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,

R., Bowen, K., eds.: Proceedings of the Fifth International Conference and Symposium of
Logic Programming (ICLP’88). The MIT Press (1988) 1070–1080

5. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
6. Marek, V., Truszczyński, M.: Stable semantics for logic programs and default theories.

In Lusk, E., Overbeek, R., eds.: Proceedings of the North American Conference on Logic
Programing. The MIT Press (1989) 243–256

7. Bidoit, N., Froidevaux, C.: General logical databases and programs: Default logic semantics
and stratification. Information and Computation 91(1) (1991) 15–54

8. Niemelä, I., Simons, P.: Evaluating an algorithm for default reasoning. In: Working Notes of
the IJCAI’95 Workshop on Applications and Implementations of Nonmonotonic Reasoning
Systems. (1995) 66–72

9. http://www.tcs.hut.fi/Software/smodels
10. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273
11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In Apt, K., Marek, W., Truszczyński, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999) 375–398

12. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2)
(2002) 39–54

13. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-Prolog
perspective. Artificial Intelligence 138(1-2) (2002) 3–38

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

15. Tran, N., Baral, C.: Reasoning about triggered actions in AnsProlog and its application to
molecular interactions in cells. In Dubois, D., Welty, C., Williams, M., eds.: Proceedings of
the Ninth International Conference on Principles of Knowledge Representation and Reason-
ing (KR’04). AAAI Press (2004) 554–564

16. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks
by action languages via answer set programming. Constraints 13(1-2) (2008) 21–65

17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In Gupta, G., ed.: Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages (PADL’99). Springer (1999) 305–319

18. Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W., Fink, M., Gottlob,
G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka, E., Nowicki, B., Staniszkis,
W.: The INFOMIX system for advanced integration of incomplete and inconsistent data. In
Özcan, F., ed.: Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’05). ACM Press (2005) 915–917

19. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI
Communications 12(1-2) (1999) 99–111

20. Erdem, E., Wong, M.: Rectilinear Steiner tree construction using answer set programming.
[59] 386–399

21. Beierle, C., Dusso, O., Kern-Isberner, G.: Using answer set programming for a decision
support system. In Baral, C., Greco, G., Leone, N., Terracina, G., eds.: Proceedings of
the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’05). Springer (2005) 374–378

22. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4-5) (2003) 519–550



23. Kavanagh, J., Mitchell, D., Ternovska, E., Manuch, J., Zhao, X., Gupta, A.: Constructing
Camin-Sokal phylogenies via answer set programming. In Hermann, M., Voronkov, A., eds.:
Proceedings of the Thirteenth International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’06). Springer (2006) 452–466

24. Brooks, D., Erdem, E., Erdogan, S., Minett, J., Ringe, D.: Inferring phylogenetic trees using
answer set programming. Journal of Automated Reasoning 39(4) (2007) 471–511

25. Aiello, L., Massacci, F.: Verifying security protocols as planning in logic programming.
ACM Transactions on Computational Logic 2(4) (2001) 542–580

26. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision
support system for the space shuttle. In Ramakrishnan, I., ed.: Proceedings of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01). Springer
(2001) 169–183

27. Balduccini, M., Gelfond, M.: Model-based reasoning for complex flight systems. In: Pro-
ceedings of the Fifth AIAA Conference on Aviation, Technology, Integration, and Operations
(ATIO’05). (2005).

28. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

30. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2) (2004) 115–137

31. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4) (2006) 345–377

32. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07). AAAI Press/The MIT Press (2007) 386–392

33. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation system.
Cognitive Science 9(2) (1985) 189–192

34. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7 (1960) 201–215

35. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5 (1962) 394–397

36. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods in System Design 19(1) (2001) 7–34

37. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the seman-
tic web. In Hutter, D., Stephan, W., eds.: Mechanizing Mathematical Reasoning. Springer
(2005) 228–248

38. Gomes, C., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In Lifschitz, V., van
Hermelen, F., Porter, B., eds.: Handbook of Knowledge Representation. Elsevier (2008)

39. Syrjänen, T.: Omega-restricted logic programs. In Eiter, T., Faber, W., Truszczyński, M.,
eds.: Proceedings of the Sixth International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’01). Springer (2001) 267–279

40. Syrjänen, T.: Cardinality constraint programs. In Alferes, J., Leite, J., eds.: Proceedings of
the Nineth European Conference of Logics in Artificial Intelligence (JELIA’04). Springer
(187-199)

41. Leone, N., Perri, S., Scarcello, F.: Backjumping techniques for rules instantiation in the DLV
system. In Delgrande, J., Schaub, T., eds.: Proceedings of the Tenth International Workshop
on Nonmonotonic Reasoning (NMR’04). (2004) 258–266

42. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.
[60] 266–271



43. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4) (2001) 526–541

44. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming 3(4-5) (2003) 609–622

45. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics.
In Palamidessi, C., ed.: Proceedings of the Nineteenth International Conference on Logic
Programming (ICLP’03). Springer (2003) 224–238

46. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform
and strong equivalence. In Lifschitz, V., Niemelä, I., eds.: Proceedings of the Seventh Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04).
Springer (2004) 87–99

47. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In Brewka,
G., Coradeschi, S., Perini, A., Traverso, P., eds.: Proceedings of the Seventeenth European
Conference on Artificial Intelligence (ECAI’06). IOS Press (2006) 412–416

48. Brain, M., de Vos, M.: Debugging logic programs under the answer set semantics. In de
Vos, M., Provetti, A., eds.: Proceedings of the Third International Workshop on Answer Set
Programming (ASP’05). CEUR Workshop Proceedings (CEUR-WS.org) (2005) 141–152

49. Syrjänen, T.: Debugging inconsistent answer set programs. In Dix, J., Hunter, A., eds.: Pro-
ceedings of the Eleventh International Workshop on Nonmonotonic Reasoning (NMR’06).
Clausthal University of Technology, Institute for Informatics (2006) 77–83

50. Pontelli, E., Son, T.: Justifications for logic programs under answer set semantics. In Etalle,
S., Truszczyński, M., eds.: Proceedings of the Twenty-second International Conference on
Logic Programming (ICLP’06). Springer (2006)

51. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. [60] 31–43

52. Kautz, H., Selman, B.: Planning as satisfiability. In Neumann, B., ed.: Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI’92), Wiley (1992) 359–363

53. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4) (2003)

54. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding.
In Baumgartner, P., Fermüller, C., eds.: Proceedings of the Workshop on Model Computation
— Principles, Algorithms, Applications. (2003)

55. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In Dovier, A., Garcia de la Banda, M., Pontelli, E., eds.: Pro-
ceedings of the Twenty-fourth International Conference on Logic Programming (ICLP’08).
(2008) To appear.

56. Elkabani, I., Pontelli, E., Son, T.: Smodels with CLP and its applications: A simple and
effective approach to aggregates in ASP. [59] 73–89

57. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and constraint
solving. In Gabbrielli, M., Gupta, G., eds.: Proceedings of the Twenty-first International
Conference on Logic Programming (ICLP’05). Springer (2005) 52–66

58. Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving tech-
niques. In Garrigue, J., Hermenegildo, M., eds.: Proceedings of the Ninth International Sym-
posium of Functional and Logic Programming. Springer (2008) 15–31

59. Demoen, B., Lifschitz, V., eds.: Proceedings of the Twentieth International Conference on
Logic Programming (ICLP’04). Springer (2004)

60. Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the Ninth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’07). Springer (2007)


