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At the occasion of the Third International Conference on Principles of Knowledge
Representation and Reasoning [1] in 1992, Ray Reiter delivered an invited talk enti-
tled “Twelve Years of Nonmonotonic Reasoning Research: Where (and What) Is the
beef?”,1,2 reflecting the state and future of the research area of Nonmonotonic Reason-
ing (NMR;[2]). Ray Reiter describes it in [3] as a “flourishing subculture” making many
outside researchers “wonder what on earth this stuff is good for.” Although he seemed
to be rather optimistic about the future of NMR, he nonetheless saw its major contribu-
tion on the theoretical side, providing “important insights about, and solutions to, many
outstanding problems, not only in AI but in computer science in general.” Among them,
he lists “Logic Programming implementations of nonmonotonic reasoning”.

Although the link between Michael Gelfond and Vladimir Lifschitz’ Stable Model
Semantics for Logic Programming [4] and NMR formalisms like Ray Reiter’s Default
Logic [5] were discovered soon after the proposal of Stable Model Semantics,3 it still
took some years until the first such implementation was conceived, namely, the smodels
system [8, 9]. The emergence of such a highly efficient and robust system has boosted
the combination of Logic Programming and NMR and finally led to a novel declarative
programming paradigm, referred to as Answer Set Programming (ASP;[10–14]). Since
its inception, ASP has been regarded as the computational embodiment of Nonmono-
tonic Reasoning and a primary candidate for an effective tool for Knowledge Represen-
tation and Reasoning. After all, it seems nowadays hard to dispute that ASP brought
new life to Logic Programming and NMR research and has become a major driving
force for these two fields, helping dispel gloomy prophecies of their impending demise.

Meanwhile, the prospect of ASP has been demonstrated in numerous applica-
tion scenarios, including bio-informatics [15, 16], configuration [17], database integra-
tion [18], diagnosis [19], hardware design [20], insurance industry [21], model check-
ing [22], phylogenesis [23, 24], planing [12], security protocols [25], etc.4 A highlight
among these applications is arguably the usage of ASP for the high-level control of
the space shuttle [26, 27]. The increasing popularity of ASP is for one thing due to
the availability of efficient off-the-shelf ASP systems [28–32] and for another due
to its rich modeling language, jointly allowing for an easy yet efficient handling of
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knowledge-intensive applications. Essentially all ASP systems that have been devel-
oped so far contain two major components. The first of them, a grounder, grounds an
input program, that is, produces its compact propositional equivalent, often by appeal
to advanced database techniques. The input language goes well beyond that of Pro-
log, offering among others, integrity constraints, classical negation, disjunction, and
various types of aggregates. The second component, a solver, accepts the ground pro-
gram and actually computes its answer sets (which amount to the stable models of the
original program). Modern ASP solvers rely on advanced Boolean constraint solving
techniques, stemming from the area of Satisfiability Checking and allowing for tackling
application problems encompassing millions of variables. All in all, ASP has become an
efficient and expressive declarative problem solving paradigm, particularly well-suited
for knowledge-intensive applications.

Taking up Ray Reiter’s challenge after sixteen years, my obvious answer is that An-
swer Set Programming is the beef of twenty-eight years of NMR research! Although
twenty-eight years appear to be quite a while, successful neighboring areas such as De-
scription Logics (DLs) and Satisfiability Checking (SAT) look back onto similar histo-
ries, taking major references in their field, like [33] and [34, 35], respectively. Nonethe-
less both areas have prospered in recent years due to their success in industrially rele-
vant application areas. SAT is the key technology underlying Bounded Model Check-
ing [36] and DLs have become standard ontology languages for the Semantic Web [37].
Although different factors have abetted these success stories, in the end, their break-
through was marked by their establishment as salient technologies in their respective
application areas. What can ASP learn from this? First of all, we should keep building
upon strong formal foundations, just as SAT and DLs do. However, ASP should gear its
research vision towards application scenarios in order to make ASP technology more
efficient, more robust, more versatile, and in the end ready for real applications. This
orientation is such a fruitful approach, being full of interesting and often fundamental
research questions.

Second, we have to foster the dissemination of ASP in order to increase its percep-
tion. Apart from promoting ASP in our academic and industrial environment, teaching
ASP is an important means to enhance the common awareness of it. This does not nec-
essarily mean to teach full-fledged ASP courses, which is difficult in view of many
encrusted curricula, but rather to incorporate ASP in AI-related classes as a tool for il-
lustrating typical reasoning patterns in Knowledge Representation and Reasoning, like
closed-world reasoning, abduction, planning, etc. And after all, to put it in Ray Reiter’s
words, it’s the ASP community’s duty to show “what on earth this stuff is good for.”

ASP has staked its claim in being an attractive approach to declarative problem
solving in combing an expressive modelling language with efficient solving technology.
But how does it scale? In fact, this is not only a matter of performance but also of
applicability and usability. Here is my personal view.

Performance Modern ASP solvers are based on advanced Boolean constraint technol-
ogy and exhibit a similar performance as advanced SAT solvers [38]. Unlike SAT,
however, ASP offers a uniform modelling language admitting variables. In fact,
grounding non-propositional logical specifications constitutes a major bottleneck



in both ASP and SAT.5 While this problem is addressed in SAT anew for each ap-
plication, ASP centralizes this task in its grounders. The more surprising it is that
there is so little work devoted to grounding within the ASP community (cf. [39–
42]). This is a central yet neglected research topic. Apart from increasing research
efforts in grounding, another major research theme is the development of program
optimizers. That is, systems that transform highly declarative logic programs into
equivalent ones, for which the overall solving time is significantly shorter than
for the original program. In view of the vast literature on program equivalence in
ASP (cf. [43–47]) the field appears to be well farmed for this endeavor.

Usability At first, many people are impressed by the ease of modelling in ASP. How-
ever, once they attack the first more complex problem and draft their first buggy
encoding, they become often lost in the flat of declarativity. The solving process
is completely transparent. No handle is available for finding out why the wrong or
no solution is obtained. Also, when performance matters, it is still an art to come
up with an efficient encoding, and often the result trades off declarativity. What
is needed are dedicated tools, techniques, and methodologies to facilitate the de-
velopment of answer set programs. In a nutshell, we need Software Engineering
capacities that are adept enough to match ASP’s high level of declarativity. First
work on this can be found in [48–51] but much more work is needed.

Applicability Many practical applications of ASP motivate extensions or combinations
with other problem-solving paradigms. Looking at SAT’s breakthrough in planning
and model checking [52, 36], it is interesting to observe that both involved dealing
with an increasing bound on the solution size. Meanwhile dedicated SAT solvers al-
low for addressing this issue [53, 54]. Also, a whole sub-area of SAT, known as SAT
modulo theories, deals with the integration of other problem-solving paradigms. So
far, ASP is making only modest steps in similar directions. For instance, a first ap-
proach to incremental ASP solving is described in [55] and the combination of
ASP and Constraint Processing is explored in [56–58]. More cross-fertilization
with neighboring fields is needed to tackle real applications.

Last but not least, we have to foster the exchange within the ASP community as well
as to neighboring fields like Constraint Processing and SAT and moreover re-enforce
the link to ASP’s parental research areas, Logic Programming and NMR. We need to
improve the inter-operability of our systems and tools through specifying interfaces and
fixing some standards. We need common benchmark and problem repositories and en-
courage comprehensive system competitions going beyond specific declarative solving
paradigms. Otherwise, I am afraid that we will never turn our beef into a steak!
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