
Metabolic Network Expansion with Answer Set
Programming

Torsten Schaub and Sven Thiele

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. We propose a qualitative approach to elaborating the biosynthetic ca-
pacities of metabolic networks. In fact, large-scale metabolic networks as well
as measured datasets suffer from substantial incompleteness. Moreover, tradi-
tional formal approaches to biosynthesis require kinetic information, which is
rarely available. Our approach builds upon a formal method for analyzing large-
scale metabolic networks. Mapping its principles into Answer Set Programming
(ASP) allows us to address various biologically relevant problems. In particular,
our approach benefits from the intrinsic incompleteness-tolerating capacities of
ASP. Our approach is indorsed by recent complexity results, showing that the
reconstruction of metabolic networks and related problems are NP-hard.

1 Introduction

The availability of high-throughput methods in biology has resulted in a rapid growth of
biological knowledge, gathered in web databases such as KEGG1 or MetaCyc2. Of par-
ticular interest are biosynthetic capacities of metabolic networks in view of the design
of bioprocesses. However, large-scale metabolic networks as well as measured datasets
suffer from substantial incompleteness. Many networks are only partially defined and
only few metabolites can be identified without ambiguity. Moreover, traditional for-
mal approaches to biosynthesis (cf. [1–5]) require kinetic information, which is rarely
available.

We address this problem and propose a qualitative approach based on Answer
Set Programming (ASP;[6]). This approach benefits from the intrinsic incompleteness-
tolerating capacities of ASP and allows us to take advantage of its rich modelling lan-
guage and highly efficient implementations. Our approach is indorsed by recent com-
plexity results, showing that the reconstruction of metabolic networks and related prob-
lems are NP-hard [7, 8].

Our approach builds upon a formal method for analyzing large-scale metabolic net-
works developed in [9, 10]. The basic idea is that a reaction operates only if its reactants
are either available as nutrients or can be provided by other metabolic reactions. Starting
from some nutrients, referred to as seeds, this allows for expanding a metabolic network
by successively adding operable reactions and their products. The set of metabolites in
the resulting network is called the scope of the seeds and represents all metabolites that
can principally be synthesized from the seeds by the analyzed metabolic network.

1 http://www.genome.jp/kegg
2 http://metacyc.org

Mapping the principles of this approach into ASP allows us to address various bio-
logically relevant problems. A primary problem deals with the completion of genome-
scale metabolic networks. When building a metabolic network, as for the recently se-
quenced green alga Chlamydomonas reinhardtii3, the initial core draft is done by appeal
to genomic information. Then, experimental data, in particular, measured metabolites,
are taken to define the functionality of the overall network. The above methodology
can then be used to check whether a drafted network provides the synthesis routes to
comply with the required functionality. If this fails, the draft network can be completed
by importing reactions from metabolic reference network stemming from other organ-
isms until the obtained network provides the measured functionality (cf. [11]). Another
important problem concerns the determination of seed compounds needed for the syn-
thesis of certain other compounds. As demonstrated in [12], solving this problem is
important for indicating (minimal) nutritional requirements for sustaining maintenance
or growth of an organism.

Both problems have a combinatorial nature and thus give rise to a multitude of
solutions. We address this problem by taking advantage of the various reasoning modes
provided by ASP. On the one hand, we use ASP’s optimization techniques for finding
cardinality or subset minimal solutions, respectively. On the other hand, we exploit
consequence aggregation for finding metabolites common to all (optimal) solutions or
at least one of them, respectively. Moreover, the aforementioned problems are often
subject to additional constraint, aiming at the avoidance of side products or producing
target products by staying clear from certain seeds, respectively. Finally, the elaboration
tolerance of ASP greatly supports the process of drafting metabolic networks involving
continuous validation and increasing functionalities stemming from measured data.

2 Background

Biological problem definition. Following [8], a metabolic network is commonly rep-
resented as a directed bipartite graph G = (R ∪ M,E), where R and M are sets
of nodes standing for reactions and metabolites, respectively. Given a such metabolic
network G, we sometimes refer to its components by R(G), M(G), and E(G). When-
ever (m, r) ∈ E for m ∈ M and r ∈ R, the metabolite m is called a reactant of
reaction r; for (r,m) ∈ E, metabolite m is called a product of r. More formally,
for (R ∪ M,E) and r ∈ R define reac(r) = {m ∈ M | (m, r) ∈ E} and
prod(r) = {m ∈M | (r,m) ∈ E}.

The aforementioned biological concept of a scope can be expressed in terms of
reachability. Given a metabolic network (R∪M,E) and a setM ′ ⊆M of seed metabo-
lites, a reaction r ∈ R is reachable fromM ′, if reac(r) ⊆M ′, that is, if all its reactants
are reachable. Moreover, a metabolite m ∈M is reachable from M ′, either if m ∈M ′
or ifm ∈ prod(r) for some reaction r ∈ R being reachable fromM ′. Finally, the scope
of M ′, written Σ(R∪M,E)(M ′) or simply Σ(M ′), is the closure of M ′ under reachabil-
ity from M ′. Note that the scope of a set of metabolites can be computed in polynomial
time.

3 http://www.goforsys.de

Now, we can make precise the aforementioned biological problems. In the metabolic
network completion, we are given a metabolic network (R∪M,E) along with two sets
S, T ⊆M of (seed and target) metabolites, and a reference network (R′∪M ′, E′). The
goal is to find a set of reactions R′′ ⊆ R′ \R such that T ⊆ ΣG(S) where

G = ((R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′) ,
M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and
E′′ = {(m, r) ∈ E′ | r ∈ R′′,m ∈ reac(r)} ∪ {(r,m) ∈ E′ | r ∈ R′′,m ∈ prod(r)} .

We callR′′ the completion of (R∪M,E) from (R′∪M ′, E′) wrt (S, T). Two optimiza-
tion variants of this problem are obtained by finding a cardinality or subset minimal set
of reactions. Further refinements may also optimize on the distance between seeds and
targets or minimize forbidden side products.

Three variants of the inverse scope problem can be distinguished [8]. In the basic
one, we are given a metabolic network (R ∪ M,E) and a set T ⊆ M of (target)
metabolites. The goal is to find a set of (seed) metabolites S ⊆ M such that T ⊆
Σ(S). The two optimization variants of this problem aim at finding a cardinality or
subset minimal solution. The second problem restricts the domain of the available seed
metabolites. In addition to (R ∪M,E) and T ⊆ M , we are given a set of (forbidden)
metabolites F ⊆M . Then, the goal is to find a set of (seed) metabolites S ⊆ (M \ F)
such that T ⊆ Σ(S). Apart from optimizing the required seed metabolites, one may
also minimize undesired metabolites rather then excluding them. The third problem
adds an additional constraint on the avoidance of side products. In addition to (R ∪
M,E) and T, F ⊆ M , we are given another set of (forbidden) metabolites E ⊆ M .
Then, the goal is to find a set of (seed) metabolites S ⊆ (M \ F) such that T ⊆ Σ(S)
and Σ(S)∩E = ∅. As above, the optimization variants can also take side products into
account.

Answer Set Programming. We refer the reader to [6] for a formal introduction to
ASP and concentrate in what follows on aspects relevant to our application. A logic
program is a finite set of rules of the form

a← b1, . . . , bm,not cm+1, . . . ,not cn , (1)

where a, bi, cj are atoms for 0< i≤m< j ≤ n. A literal is an atom a or its (default)
negation not a. A rule r as in (1) is called a fact, if l=n=1, and an integrity constraint,
if l= 0. We denote predicate and constant symbols by lowercase letters and variables
by uppercase letters. A logic program with variables is regarded as the set of all its
ground-instantiated rules. Moreover, we take advantage of choice rules and conditional
literals [13]; both of which can be regarded as macros. In a choice rule, the head a in (1)
is replaced by a set {a1, . . . , al}; it allows us to derive any subset provided the rule’s
body is satisfied. A conditional literal is of form a : b where a and b are literals (con-
taining common variables); informally, it stands for the sequence of all instantiations
of a obtained by restricting the substitution of variables common to a and b to those
of b (cf. [13] for details). For instance, given m(1), m(2), and r(a), the choice rule
{p(R,M) : m(M)} ← r(R) stands for {p(a, 1), p(a, 2)} ← r(a).

The answer sets of a program P are models of P satisfying a certain stability crite-
rion (cf. [6] for details). An answer set is represented by the set of atoms that are true

in it. Apart from testing the existence of an answer set of a program or enumerating all
its answers, the following reasoning modes are supported. For this, define AS (P) as
the set of all answer sets of Program P . Then, the cautious and brave consequence of
P are defined as

⋂
X∈AS(P)X and

⋃
X∈AS(P)X . Notably, both sets are computable

through linear many computations of one answer set, rather than computing possibly
exponential number of answer sets in AS (P). Another mode of interest is solution pro-
jection [14], which computes only the projections of all answer sets on a set P of atoms,
that is, {X ∩ P | X ∈ AS (P)}, thereby greatly reducing computational efforts.

Cardinality based optimization is provided in ASP through minimize (or maximize)
statements of the form

minimize{b1 =w1, . . . , bm =wm,not cm+1 =wm+1, . . . ,not cn =wn}

enforcing that only answer sets with minimum value of
∑

bi∈X,1≤i≤m wi +∑
cj /∈X,m+1≤j≤n wj are computed, where w1, . . . , wn are integers. There can be sev-

eral minimize and/or maximize statements which order the stable models lexicograph-
ically. Subset based minimization and/or maximization is more complex and needs the
elevated expressiveness of disjunctive programs, being at the second level of the poly-
nomial hierarchy [15]. This would necessitate more expressive ASP solvers and is thus
left for future work.

3 Logic program representations

3.1 Metabolic network completion

We start by representing a metabolic network Gn as a set of facts.

G(Gn) = {reaction(r, n) | r ∈ R(Gn)}
∪ {reactant(m, r) | r ∈ R(Gn),m ∈ reac(r)}
∪ {product(m, r) | r ∈ R(Gn),m ∈ prod(r)}

While our draft network provides an incomplete biological model, the seed and tar-
get metabolites are obtained from experimental data. The seed metabolites are provided
as nutrients in an experiment, the target metabolites are measured as its final outcome. A
metabolic draft network Gd along with two sets S ,T ⊆ M of seed and target metabo-
lites, and a reference network Gr results in the following set of facts, C(Gd, Gr, S, T).

G(Gd) ∪ G(Gr) ∪ {draft(d)} ∪ {seed(s) | s ∈ S} ∪ {target(t) | t ∈ T} (2)

The current draft network is identified by the fact draft(d).

Draft Scope. The scope of the seed metabolites in the draft network Gd can be deter-
mined by the following rules.

dscope(M)← seed(M)
dscope(M)← product(M,R), reaction(R,N), draft(N),

dscope(M ′) : reactant(M ′, R)
(3)

The first rule declares all seed metabolites M ∈ S as producible. The second rule
defines recursively that a product M of a reaction R is producible, whenever all reac-
tantsM ′ ofR are available. Together with the encoding ofGd and S in (2), the set of of
rules in (3) results in a single answer set X such that dscope(m) ∈ X iff m ∈ ΣGd

(S)
for m ∈M(Gd).

Potential Scope. While drafting a metabolic network of an organism biologists are reg-
ularly confronted with experiments that show that a certain metabolite can be measured,
although it is not producible by the current draft network. To this end, they incorporate
metabolic reactions known from metabolic networks of other organisms.

In analogy to the rules in (3), the (potential) scope of the seed metabolites in the draft
network Gd augmented by the reference network Gr can be determined as follows.

pscope(M)← seed(M)
pscope(M)← product(M,R), reaction(R,N),

pscope(M ′) : reactant(M ′, R)
(4)

Note that dropping the qualification draft(N) from (3) makes us use all available reac-
tions. As before, given the encoding in (2), the set of rules in (4) induces a single answer
setX such that pscope(m) ∈ X iffm ∈ ΣGd∪Gr

(S) form ∈M whereGd∪Gr stands
for the pairwise union of Gd and Gr.

While the scope of the draft network in (3) gives a lower limit on the metabolites
producible from the seeds by the draft network, the potential scope obtained from the
augmented network in (4) constitutes an upper limit. Note that targets outside the po-
tential scope cannot be explained.

Metabolic Network Completion. The goal of metabolic network completion is to extend
the draft network with reactions from the reference network, so that the target metabo-
lites can be synthesized by the augmented network from the seeds. The reactions of
interest belong to the reference network but not the draft network. The following choice
rule captures all candidate reactions.

{xreaction(R) : not reaction(R,N) : draft(N)} (5)

The conditional literal not reaction(R,N) : draft(N) guarantees that all chosen reac-
tions belong to R(Gr) \ R(Gd). In fact, the encoding in (2) and the choice rule in (5)
result in a set of answer sets being in a one-to-one correspondence to the subsets of
R(Gr) \R(Gd).

The (extended) scope of the seed metabolites in the draft network Gd extended by
reactions from Gr is defined as follows.

xscope(M)← seed(M)
xscope(M)← product(M,R), reaction(R,N), draft(N),

xscope(M ′) : reactant(M ′, R)
xscope(M)← product(M,R), xreaction(R),

xscope(M ′) : reactant(M ′, R)

(6)

Finally, we have to make sure that an extended scope is able to produce all target
metabolites. This is addressed by the following integrity constraint. 4

← target(M),not xscope(M) (7)

Given the above rules, each of its answer set corresponds to a completion of the draft
network and vice versa.

Proposition 1. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of logic program5 C(Gd, Gr, S, T) ∪ {(5), (6), (7)}, then
{r | xreaction(r) ∈ X} is a completion of Gd from Gr wrt (S, T) and vice versa.

Refined Metabolic Network Completion. Although the above encoding is formally ad-
equate, it suffers from too many uninteresting completions that makes it fail to scale
on large metabolic networks comprising several thousand metabolites. We address this
problem by some refinements reducing the set of candidate reactions.

At first, we restrict the choice in (5) to “interesting” reactions.

← xreaction(R),not ireaction(R) (8)

The qualification expressed by ireaction(R) requires that a reaction of interest must
lead to some target metabolites.

ireaction(R)← interesting(M),
product(M,R), reaction(R,N)

interesting(M)← target(M),not dscope(M)
interesting(M)← reactant(M,R), ireaction(R),

not dscope(M)

(9)

With the first rule we declare a reaction as interesting if it produces interesting metabo-
lites. The second rule defines all target metabolites that cannot be produced by the draft
network as interesting, and the third rule states that metabolites needed by interesting
reactions and not producible by the draft network are interesting. This concept pro-
vides a significant reduction of the set of candidate reactions in view of the given target
metabolites.

Second, we further restrict the choice in (5) to “operable” reactions.

← xreaction(R),not oreaction(R)
oreaction(R)← xscope(M) : reactant(M ′, R),

reaction(R,N),not draft(N)
(10)

The integrity constraint enforces that each extending reaction is operable, that is, satis-
fies oreaction(R). The following rule defines a (candidate) reaction as operable, if all
its reactants are producible by the current network extension.

The next result shows that the above refinements preserve soundness.
4 In practice, this integrity constraint is extended by pscope(M) to ignore non-producible tar-

gets.
5 Recall that a rule with variables stands for the set of all its ground instantiations.

Proposition 2. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of C(Gd, Gr, S, T) ∪ {(5), (6), (7), (8), (9), (10)}, then
{r | xreaction(r) ∈ X} is a completion of Gd from Gr wrt (S, T).

Optimal Completions. A further natural way to reduce the number of solutions is to
concentrate on network completions containing the fewest number of reactions. In ASP,
this can be accomplished by the following minimize statement.

minimize {xreaction(R) : ireaction(R) : not reaction(R,N)} (11)

Interestingly, our refinements are satisfied by such minimal completions, so that we get
a soundness and completeness result under optimization.

Proposition 3. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of C(Gd, Gr, S, T) ∪ {(5), (6), (7), (8), (9), (10)} ∪ {(11)},
then {r | xreaction(r) ∈ X} is a minimum completion of Gd from Gr wrt (S, T) and
vice versa.

Sometimes reactions can be associated with confidence levels, for instance, obtained
from the proximity of their host organism to the organism addressed by the draft net-
work. This allows us to prefer among the minimum completions those composed of
reactions with higher confidence levels; this is accomplished by adding the following
statement.

maximize {xreaction(R) = L : ireaction(R) : not reaction(R,N) : confidence(R,L)}

Reasoning Modes. Given the above ensemble of rules, the reasoning modes of ASP
solvers allow us to answer a variety of additional biologically relevant questions. What
target metabolites are producible by the draft network? What new metabolites can be
produced by adding reactions from other pathways? What is the minimal number of
reactions that must be added to explain a target metabolite? What are the minimum or
minimal extended scopes? Which reactions belong to all extended scopes, or even all
minimum extended scopes? The latter are accomplished by a combination of optimiza-
tion and cautious reasoning. We return to these question in Section 4 and show how
they are realized. The next section also shows how certain seeds or side-products can
either be avoided or minimized.

3.2 Inverse Scope Problem

Given a metabolic network and a set of target metabolites, we are interested in sets of
seed metabolites that allow for producing the target metabolites from the network.

Basic Setting. Reactions, targets, and seeds are represented as in Section 3. That is,
given a network Gn and sets S, T of metabolites, the inverse scope problem is based on
the following set of facts.

I(Gn,S ,T) = G(Gn) ∪ {seed(s) | s ∈ S} ∪ {target(t) | t ∈ T} (12)

By appeal to the encoding of the basic scope in (3), we can then express our task similar
to the completion problem by exchanging the roles of reactions and seed metabolites.

{seed(M) : not target(M)} (13)
← target(M),not dscope(M) (14)

Similar to (5), the choice construct in (13) captures the seed candidates, while the in-
tegrity constraint in (14) makes sure that all target metabolites can by synthesized from
the seeds chosen in (13).

The next proposition shows that our encoding is sound and complete.

Proposition 4. Let Gn be a metabolic network and let S and T be sets of metabolites.
IfX is an answer set of logic program I(Gn, S, T)∪{(3), (13), (14)}∪{draft(n)},

then T ⊆ Σ({m | seed(m) ∈ X}) and vice versa.

The fact draft(n) is merely added for compatibility with (3).

Refined Setting. As above, some refinements lend themselves for reducing the putative
seed metabolites.

← seed(M),not imetabolite(M) (15)

A metabolite of interest, viz imetabolite(M), must lead to at least one target metabolite.

imetabolite(M)← target(M)
imetabolite(M)← reactant(M,R), ireaction(R)

ireaction(R)← imetabolite(M), product(M,R), reaction(R,N)
(16)

The first rule defines target metabolites as interesting. The second one extends this to
metabolites being reactants of interesting reactions. Similar to (9), the last rule states
that interesting reactions are those that produce interesting metabolites.

Although the last refinement eliminates (uninteresting) solutions, it preserves min-
imum ones. Hence, cardinality minimum solutions to the inverse seed problem are ob-
tained by simply adding the following optimization statement.

minimize{seed(M) : not target(M)}

Avoiding Side or Seed Metabolites. The elaboration biosynthetic capacities of often
subject to further restrictions, for instance, avoiding seed metabolites or certain side
products. This has led to the definition of the two variants of the inverse scope problem
defined in Section 2.

Both problems are easily addressed in ASP, once a metabolite, m, is declared as
being forbidden, viz. forbidden(m):

← seed(M), forbidden(M)
← dscope(M), forbidden(M)

While the first constraint eliminates forbidden metabolites from the seeds, the second
rules out unwanted side products.

The complete exclusion of certain metabolites is sometimes to restrictive. To this
end, one may replace one or both of the previous integrity constraint by appropriate
minimization statements:

minimize{seed(M) : forbidden(M)}
minimize{dscope(M) : forbidden(M)}

Recall that the order of the two statements deteremines their precedence among each
other.

Reasoning Modes. The inverse scope problem usually leads to numerous solutions.
Cautious reasoning allows us to compute the ultimately essential seeds belonging to all
solutions. Also, brave reasoning is of interest because often solutions are similar, so that
the union of all seeds in a solution form a pool of potentially relevant nutrients. Finally,
in view of the numerous, often unrelated combinatorial sources, an important role is
played by projective solution enumeration for eliminating redundant solutions.

4 Experiments

For validating our approach, we investigate the metabolic network of Escherichia coli
(E.coli). This choice is motivated by the fact that E.coli is a well studied organism,
whose metabolic network is of moderate size, consisting of 3645 reactions and 1556
metabolites. Our experiments consider furthermore 94 seed metabolites and 28 target
metabolites. The targets and seeds were chosen by our biological partners in view of
the fact that E.coli is able to grow when glucose is the only carbon source. Hence, its
metabolic network must be able to synthesize all necessary precursors for high-level
processes, from glucose and inorganic material [16]. That is why the targets contain
all 20 amino acids, the nucleotide phosphates ATP, CTP, GTP and UTP as well as
the deoxy forms dATP, dGTP, dUTP and dTTP; and the seeds are only glucose and
inorganic metabolites. In fact, all considered targets could be produced by the original
E.coli network. This setup allows us to control and vary our experiments by producing
draft networks through eliminating reactions from E.coli’s original network.

All experiments were run with ASP grounder gringo (2.0.2) and ASP solver clasp
(1.2.0) on a Linux PC with a Core2DuoE6400 processor and 2GB memory. The com-
putation time was limited to 600 seconds, timeouts are shown throughout as “-”.

4.1 Metabolic network completion

For our experiments on network completion, biologist provided us with draft networks.
The draft networks have been created with biological background knowledge, by re-
moving 50, 100 and 200 reactions from the original E.coli network. Also, derived reac-
tions have been removed by the biologists. This means, for example, that for reversible
reactions also the inverse reactions were removed, and for reactions that are generaliza-
tions, all subsumed special cases were removed as well. The resulting networks failed

to produce 7, 10, and 20 targets, respectively. As reference network, we have chosen
the entire MetaCyc database6 containing 13882 reactions. This set of reactions spans
the search space specified in (5) for metabolic network completion.

In the first set of experiments, we proceed in two steps. First, we compute for each
draft network and each target, the minimum number of reactions that need to be added
to complete the network. Then, we compute all solutions satisfying this optimality cri-
terion. In fact, in view of the large set of candidate reactions in the reference network,
this approach turned out to be superior to a single step approach, enumerating all opti-
mal solution through clasp’s branch and bound algorithm. Rather, we invoke clasp with
the option --restart-on-model that restarts after each minimum solution. This
makes clasp converge much faster to an optimum solution. Once this is found, clasp is
invoked again for enumerating all solutions satisfying the optimality criterion.

Table 1 summarizes our first set of experiments. The columns headed by E.coli-50,
E.coli-100, and E.coli-200, respectively, provide results obtained on the aforementioned
draft networks obtained by removing 50, 100 and 200, respectively, reactions from the
original E.coli network. The first column identifies the chosen target metabolite. Then,
for each draft network, the columns labeled topt show the time in seconds for computing
the minimum number of reactions that need to be added to produce the target. The
columns labeled opt provide the minimum number of reactions. The columns tall show
the time in seconds for computing all optimal solutions and the column #opt gives the
number of optimal solutions.

For targets that could not be produced by the draft network, the results are either
shown in boldface or are timeouts. For target metabolites whose production pathways
are not disturbed, the computation time is insignificant. We observe six timeouts, while
searching for an optimal completion on the E.coli-50 network. These six target metabo-
lites could not be produced by the draft network in general. Interestingly, those metabo-
lites cannot be produced by all three draft networks, giving us the hint that the pathways
for this metabolites are very fragile. Comparing the results for E.coli-50 and E.coli-100,
we see that for two targets, the experiments on E.coli-50 timeout, while they could be
solved in time on E.coli-100. For E.coli-200, we see 10 experiments timeout, 10 com-
puting the optimal value in time, and for 9 experiments clasp finishes computing all op-
timal solutions in time. This suggests that pathways, which can be disturbed by remov-
ing few reactions, are very fragile and hard to reconstruct, while more robust pathways,
which are only disturbed when removing lots of reactions, are more easily repaired. For
target metabolites whose production pathways are not disturbed, the computation time
is insignificant

In our second experiment, we investigate the scalability of our approach in view of
the size of the reference network, taking into account the entire set of target metabo-
lites. We created subsets of the MetaCyc network, choosing 10 random samples of
5000, 6000, 7000, 8000, and 9000 reactions. We fixed the draft network by removing
200 reactions from the E.coli network and tried to complete its completion relative to
the differently large reference networks. Note that the joint explanation of all 28 targets
is much more difficult than just explaining a single target. This is because the restric-
tions to interesting reactions introduced in Section 3 become less effective when aiming

6 http://metacyc.org

E.coli-50 E.coli-100 E.coli-200
T topt opt tall #opt topt opt tall #opt topt opt tall #opt
1 0.14 0 0.17 1 0.19 0 0.16 1 368.72 1 2.17 7
2 0.18 0 0.17 1 0.18 0 0.16 1 368.52 1 2.22 7
3 0.16 0 0.16 1 0.17 0 0.18 1 195.34 7 304.35 135
4 0.20 0 0.17 1 0.21 0 0.18 1 42.89 3 20.40 35
5 0.18 0 0.16 1 0.18 0 0.14 1 0.15 0 0.15 1
6 0.16 0 0.16 1 159.07 2 2.53 6 226.41 7 - -
7 0.16 0 0.18 1 0.21 0 0.16 1 - - - -
8 0.15 0 0.14 1 0.17 0 0.15 1 46.39 3 29.59 35
9 0.16 0 0.19 1 0.14 0 0.15 1 0.15 0 0.14 1
10 0.18 0 0.17 1 0.14 0 0.16 1 0.14 0 0.17 1
11 0.18 0 0.18 1 0.15 0 0.15 1 26.58 1 2.18 7
12 0.14 0 0.16 1 0.15 0 0.16 1 - - - -
13 - - - - 105.15 4 12.35 1 - - - -
14 0.17 0 0.18 1 0.15 0 0.17 1 0.16 0 0.14 1
15 0.13 0 0.19 1 0.16 0 0.17 1 0.18 0 0.16 1
16 0.15 0 0.16 1 0.16 0 0.18 1 367.10 1 2.20 7
17 0.20 0 0.16 1 - - - - - - - -
18 - - - - - - - - - - - -
19 - - - - 80.63 2 5.18 3 - - - -
20 - - - - - - - - - - - -
21 0.18 0 0.17 1 0.15 0 0.15 1 0.16 0 0.15 1
22 0.16 0 0.17 1 0.19 0 0.16 1 0.14 0 0.15 1
23 0.17 0 0.14 1 0.16 0 0.15 1 353.70 1 2.17 1
24 37.87 3 21.28 4 3.92 6 29.78 5 - - - -
25 - - - - - - - - - - - -
26 - - - - - - - - - - - -
27 0.15 0 0.17 1 0.14 0 0.18 1 46.07 3 37.08 35
28 0.16 0 0.19 1 - - - - 0.16 0 0.13 1

Table 1. computing optimal completions for E. coli networks

at multiple targets. On the other hand, the identification of a minimum completion pro-
ducing a maximum set of target is a highly significant question in synthetic biology.

As above, our experiments use a multi-step process. In a first step, we use clasp
to compute for each reference network the minimum number of reactions needed to
complete the network. Once we have computed the optimal value, we continue by com-
puting the reactions essential to all 28 targets, that is, the reactions contained in every
answer set satisfying the optimality criterion. This is accomplished by computing the
cautious consequences using the option --cautious of clasp. These reactions are es-
sential for the joint production of all target metabolites. Finally, we use clasp as before
to enumerate all optimal solutions.

The first line gives the size of the investigated reference network. The columns
labeled with i identify the instance of the reference network. The column topt gives
the computation time for computing the minimum number of reactions needed for a
completion. Column tc shows the time needed to compute the essential reactions, that

5000
i topt opt tc tall #opt
1 0.25 5 0.19 0.21 72
2 0.23 8 0.16 0.19 36
3 0.20 5 0.16 0.20 3
4 0.14 11 0.20 0.17 12
5 0.18 3 0.16 0.14 24
6 0.39 11 0.26 0.26 24
7 0.18 4 0.18 0.15 2
8 0.18 9 0.22 0.23 60
9 0.27 15 0.19 0.20 16

10 0.15 3 0.16 0.14 6

6000
i topt opt tc tall #opt
1 0.24 4 0.20 0.20 6
2 0.28 4 0.23 0.19 3
3 3.46 16 0.46 0.43 50
4 0.17 7 0.21 0.22 6
5 0.19 2 0.21 0.23 4
6 0.54 17 0.26 0.28 28
7 0.23 5 0.21 0.21 8
8 0.29 19 0.18 0.26 55
9 0.43 9 0.23 0.27 24

10 0.18 3 0.16 0.18 30

7000
i topt opt tc tall #opt
1 105.16 27 3.24 3.33 160
2 -
3 10.82 19 2.15 1.86 48
4 0.38 5 0.36 0.38 168
5 0.83 14 0.46 0.44 27
6 0.58 7 0.42 1.15 10
7 0.30 2 0.27 0.23 3
8 16.12 14 0.38 0.54 88
9 58.00 17 1.39 0.89 300
10 11.20 18 9.40 8.28 80

8000
i topt opt tc tall #opt
1 265.14 15 274.56 251.34 672
2 1.07 7 0.25 0.30 5
3 5.16 13 1.23 1.13 4
4 1.50 8 0.36 0.35 10
5 0.68 13 0.87 0.98 12
6 78.49 20 48.91 49.67 288
7 195.66 8 1.77 1.58 40
8 5.98 15 3.44 3.63 24
9 9.08 11 0.53 0.59 8
10 0.89 11 0.48 0.42 12

9000
i topt opt tc tall #opt
1 12.34 17 7.45 8.95 18
2 -
3 28.05 12 11.32 13.99 88
4 -
5 -
6 410.76 30 3.88 3.79 14
7 271.02 16 11.13 28.61 2976
8 -
9 -
10 -

Table 2. Completion with 5000,. . . ,9000 reactions.

is, all reactions that are in all minimum completion. The columns labeled with tall show
the time needed to compute all optimal solutions. The columns labeled with #opt show
how many optimal solution have been found. All times are given in seconds.

We observe that the problem is easily handled up to a size of 6000 reactions; all such
problems can be solved under a second. Starting with 7000 reactions, we start to obtain
computational more demanding problems, and finally a lot of timeouts at size 9000.
Notably, our experiments are restricted by a timeout of 10 minutes; existing approaches
to network completion usually run simulations over the period of a day. Of course, we
have to extend the timeout in a production mode as well. Interestingly, the successful
runs show that finding the optimal number of solutions takes most of the computation
time; an issue we want to address in the future by biological domain-specific heuristics.

4.2 Inverse scope problem

Last but not least, let us evaluate our approach to the inverse scope problem. As above,
we consider the complete E.coli network and try to compute for every target the min-
imum number of seeds needed to produce it. Once accomplished, we enumerate all
minimum sets of seeds.

T topt opt tall #opt
1 2.40 1 14.82 6
2 0.45 1 35.76 12
3 0.38 1 16.02 6
4 28.21 1 25.42 4
5 19.41 2 - -
6 4.30 2 187.06 50
7 1.29 2 166.73 63
8 15.79 1 17.24 4
9 13.45 1 13.98 4
10 0.89 1 17.00 5
11 0.53 1 25.92 9
12 7.28 1 14.78 4
13 4.78 1 9.88 4
14 13.23 1 7.67 4

T topt opt tall #opt
15 0.32 1 29.58 11
16 0.32 1 31.16 11
17 14.05 1 24.46 1
18 0.28 1 19.66 3
19 10.44 2 - -
20 23.33 1 27.58 5
21 14.23 1 6.90 4
22 0.37 1 49.79 11
23 - - - -
24 - - - -
25 17.19 1 21.36 4
26 0.55 1 33.24 5
27 19.85 1 15.22 4
28 - - - -

Table 3. Computing minimal seeds for E.coli targets.

Again, we first solve the optimality problem and use clasp to compute the mini-
mum number of seeds needed to produce the target metabolite; and in a second step we
relaunch clasp to compute all optimal solutions.

The first column denotes the target metabolite for whose production the seeds are
computed. The second column shows the time in seconds for computing the minimum
number of seeds. The third one gives the minimum number of seeds. The fourth column
shows the time in seconds for computing all optimal solutions, and the fifth one shows
the number of optimal solutions.

The results show that most of the targets can be produced by providing one or two
seeds only. Interestingly, we found that only groups of three seeds are needed to produce
all 28 targets. We also checked with the cautious reasoning mode for essential seeds,
belonging to all minimum solution but none were found. We further used clasp with
option --brave to compute the union of all reactions occurring in optimal solutions
and found a set of 136 different metabolites, from which all minimum sets of seeds are
taken. Since we are only discriminating the targets among the seeds in (13), we were
surprised to find many seeds among the reactants of the reactions producing the targets.
However, for more meaningful results, we need more biological knowledge, to exclude
more metabolites as seeds.

5 Discussion

The easy characterization of reachability is one of the key features of ASP. We have
exploited this to provide a simple yet powerful account of metabolic network synthesis,
a crucial application in the elaboration and design of bioprocesses. The distinguishing
feature of our ASP-based approach lies in the unique combination of ease of modelling
and powerful reasoning modes, supported by efficient solver technology. In fact, ex-
isting qualitative approaches to network synthesis are based on stochastic simulations

based on hidden Markov models (cf. [11]), taking several hours to obtain results from
the relative frequencies of compounds in the simulations. Unlike this, our approach is
complete and thus allows for proving rather than estimating the production of metabo-
lites. Moreover, the various reasoning modes, including the enumeration of optimal
solutions as well as cautious and brave reasoning with respect to all or optimal solu-
tions only, respectively, are indispensable in a biological application due to the large
number of possible solutions. For instance, cautious reasoning relative to optimal solu-
tions makes us discover the essential nutritions for producing a target metabolite. These
reasoning modes together with the high-level specification of metabolic networks make
our approach attractive to biologists, given that they can easily elaborate and explore
their model “in silico” by means of ASP.

From the perspective of ASP, our application fostered the development of new rea-
soning modes that were implemented within the ASP solver clasp (1.2.0).7 For one
thing, clasp allows for optimization techniques not available in any other ASP solver.
Of particular interest is the --restart-on-model option that restarts after find-
ing a solution (instead of backtracking). This led to a significant increase in converg-
ing to an optimal solution. To a turn, we then exploit the options --opt-all and
--opt-value for enumerating all optimal models. Even though the latter can also
be addressed by adding an appropriate constraint to the underlying ASP program, the
options allow us to leave the underlying program untouched. For another thing, clasp
allows for computing all brave and cautious consequences8 by means of a linear9 num-
ber of calls to a solver (internally computing one answer set) rather then enumerating
the entire set of answer sets. This is accomplished by consecutive refinements of an
internal constraint by appeal to the incremental solving techniques introduced in [17].
This feature is also unique to clasp, although a-priori given brave and cautious queries
can be decided by other ASP solvers, like dlv [18], as well.

Although, to the best of our knowledge, our application is novel in the field of
ASP in particular and declarative programming in general, there has been an increasing
interest in using ASP technology for addressing biological problems over the last years.
Among them, we find [19–22].

Future work will mainly deal with the elaboration of biological domain knowledge
for a better narrowing of the solution space and the application of our methodology in
the construction of the metabolic network of the recently sequenced green alga Chlamy-
domonas reinhardtii.10

References

1. Savageau, M.: Biochemical system analysis: a study of function and design in molecular
biology. Addison-Wesley (1976)

2. Kompala, D., Ramkrishna, D., Jansen, N., Tsao, G.: Investigation of bacterial-growth on
mixed substrates. Biotechnology and Bioengineering 28(7) (1986) 1044–1055

7 http://potassco.sourceforge.net
8 This is accomplished with options --brave and --cautious.
9 That is, linear in the number of atoms.

10 http://www.goforsys.de

3. Bonarius, H., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic net-
works: The quest for the missing constraints. Trends Biotechnology 15 (1997) 308314

4. Schilling, C., Schuster, S., Palsson, B., Heinrich, R.: Metabolic pathway analysis: Basic
concepts and scientific applications in the post-genomic era. Biotechnology progress 15
(1999) 296–303

5. Wildermuth, M.: Metabolic control analysis: biological applications and insights. Genome
Biology 1(6) (2000) 1031.1–1031.5

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

7. Nikoloski, Z., Grimbs, S., May, P., Selbig, J.: Metabolic networks are np-hard to reconstruct.
Journal of Theoretical Biology 254 (2008) 807–816

8. Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O.: Hardness and approximability of the
inverse scope problem. In: Proceedings WABI’08. Springer (2008) 99–112

9. Ebenhöh, O., Handorf, T., Heinrich, R.: Structural analysis of expanding metabolic networks.
Genome Informatics 15(1) (2004) 35–45

10. Handorf, T., Ebenhöh, O., Heinrich, R.: Expanding metabolic networks: Scopes of com-
pounds, robustness, and evolution. Journal of Molecular Evolution 61(4) (2005) 498–512

11. Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: An integrative approach towards
completing genome-scale metabolic networks (2008) Submitted for publication.

12. Handorf, T., Ebenhöh, O., Heinrich, R.: An environmental perspective on metabolism. Jour-
nal of Theoretical Biology 252(3) (2008) 498–512

13. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

14. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search
problems. In: Proceedings CPAIOR’09. Springer (2009) To appear.

15. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3-4) (1995) 289–323

16. Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: (2008) Personal communica-
tion.

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. [23] 190–205

18. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3) (2006) 499–562

19. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based
approach for representing and reasoning about signaling networks. In: Proceedings
ISMB’04/ECCB’04. (2004) 15–22

20. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks
by action languages via answer set programming. Constraints 13(1-2) (2008) 21–65

21. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. [23] 130–144

22. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. In: Pro-
ceedings AAAI’08, AAAI Press (2008) 436–441

23. Garcia de la Banda, M., Pontelli, E., eds.: Proceedings ICLP’08. Springer (2008)

