
The SystemBioC for Reasoning about Biological Models in Action LanguageC∗

Steve Dworschak Torsten Grote Arne König Torsten Schaub Philippe Veber
Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract

We elaborate upon the usage of action languageC for
representing and reasoning about biological models. First,
we provide a simple extension ofC allowing for variables
and show its usefulness in modeling biochemical reactions
according to the well-known model of BIOCHAM. Second,
we show how the biological action description language
CTAID can be mapped ontoC. Finally, we describe a tool-
box for using action languages, including among them, a
compiler mappingC and CTAID to logic programs under
answer sets semantics along with a web-service integrat-
ing different front- and back-ends for addressing dynamical
systems by means of action description languages via an-
swer set programming. This is accompanied by an empir-
ical evaluation with existing systems for processing action
description languages.

1 Introduction

We elaborate uponaction languages[13] for qualitative
modeling of biological networks. Action languages are for-
mal models used for reasoning about the effects of actions,
while being close to natural language. Central to this ap-
proach to formalizing actions is the concept of a transition
system, which constitutes its semantic underpinning. The
first action language for representing and reasoning about
biological networks was introduced in [19, 2, 18] and fur-
ther extended in [6] leading to action languageCTAID .

In what follows, we extend the overall approach in sev-
eral ways while centering it on the classical action lan-
guageC [15]. To begin with, we provide a simple exten-
sion of C allowing for variables and show its usefulness
in modeling biochemical reactions according to the well-
known model of BIOCHAM. Similar to the approach taken
in thedlvk system based on action languageK [7], we del-
egate the treatment of variables to Answer Set Program-
ming (ASP; [1]) in order to be able to use ASP grounders
for variable instantiation. Second, we provide a translation
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mapping the biologically motivated action description lan-
guageCTAID onto C and give a result fixing the formal
correspondence. This allows us to further developCTAID

within a broader and well-established framework, avoiding
further dedicated implementations. Moreover, it provides
CTAID with access to further implementations ofC, like
CCalc [14] or CPlan [4] (even though they cannot har-
ness existing ASP grounders for variable treatment). Fi-
nally, we describe a toolbox for using action languages, in-
cluding among them, a compiler mappingC andCTAID to
logic programs under answer sets semantics along with a
web-service integrating different front- and back-ends for
addressing dynamical systems by means of action descrip-
tion languages via answer set programming. Our tools are
designed for an easy and flexible integration with existing
open source tools via pipes, in particular, ASP grounders
and solvers, as well as further front- and back-ends. This is
accompanied by an empirical evaluation with existing sys-
tems for processing action description languages.

2 Background

Answer Set Programming. Our language is built from a
setF of functionsymbols (including the natural numbers),
a setV of variablesymbols, and a setP of predicatesym-
bols. The setT of termsis the smallest set containingV and
all expressions of the formf(t1, . . . , tn), wheref ∈ F and
ti ∈ T for 1 ≤ i ≤ n. The setA of atomscontains expres-
sions of the formp(t1, . . . , tn), wherep ∈ P andti ∈ T
for 1 ≤ i ≤ n. A literal is an atoma or its negation¬a;
both can be preceded by default negation, denoted asnot a

andnot ¬a, respectively. Fora ∈ A, we leta = ¬a and
¬a = a. A logic programoverA is a set ofrulesas

a← b1, . . . , bm,not cm+1, . . . ,not cn (1)

wherea, bi, cj are literals overA for 0 < i ≤ m < j ≤ n.
For a ruler as in (1), lethead(r) = a, body(r)+ =
{b1, . . . , bm}, andbody(r)− = {cm+1, . . . , cn}. Given an
expressione ∈ T ∪ A, let var (e) denote the set of all vari-
ables occurring ine; analogously,var (r) gives all variables
in rule r. Theground instantiationof a programP is de-
fined asgrd(P ) = {rθ | r ∈ P, θ : var(r) → U}, where
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U = {t ∈ T | var (t) = ∅}; analogously,grd(A) =
{a ∈ A | var(a) = ∅} is the set of all ground atoms. A
setX ⊆ grd(A) ∪ grd(A) is a (consistent)answer setof a
programP overA, if X is the⊆-smallest model of

{head(r)← body(r)+ | r ∈ grd(P ), body(r)−∩X = ∅} .

Action LanguageC. Action languages usefluentsto de-
scribe the states of a system andactionsinfluence the values
of fluents. InC (andCTAID ), static lawsdescribe properties
between fluents that need to be satisfied in every state of the
system.Dynamic lawsdescribe the effects of actions, that
is, how the system evolves when actions are executed.

More formally, we consideraction languageC [13] over
a Booleanaction signature〈B,F,A〉, whereB is the set
{f, t} of truth values,F is a set offluent names, andA is a
set ofaction names. In C, anaction descriptionDC over a
signature〈B,F,A〉 consists ofstaticanddynamic laws:

(caused ϕ if ψ) (2)

(caused ϕ if ψ after ω) (3)

whereϕ and ψ are propositional combinations of fluent
names andω is a propositional combination of fluent and
action names. Every action descriptionDC induces a unique
transition systemTC(DC) = 〈S, V,R〉, whereS is a set of
states, V is a function determining fluents values in state
s, andR is a relation containing all possible transitions be-
tween states. Atrajectorys0, A1, s1, . . . , sn−1, An, sn in a
transition system〈S, V,R〉 is a sequence of sets of actions
Ai ⊆ A and statessi ∈ S where(si−1, Ai, si) ∈ R for
0 ≤ i ≤ n. Intuitively, a trajectory represents one pos-
sible history (or simply path) within a transition system.
In [13], several syntactic extensions are defined. For in-
stance, the rule(ω may cause ϕ if ψ) is a shorthand for
(caused ϕ if ϕ after ψ ∧ ω). Similarly, (inertial ϕ) is
a shorthand for(caused ϕ if ϕ after ϕ). We refer to [13]
for more detailed definitions.

Besides an action description language, bothC and
CTAID define aquery language. We implementedR [13]
as the query language forC and the query mechanisms de-
scribed in [6] forCTAID . In this paper, we focus only on
the transition systems and our toolbox realizing the differ-
ent encodings, so we omit a detailed description of query
languages and the different reasoning modes, like explana-
tion, prediction, planning, etc.

3 Encoding Action LanguageC

For implementing action languageC, we build upon the
translation to ASP described in [17]. LetDC be an action
description over signature〈B,F,A〉. We requireDC to be
definite, that is, the headsϕ of laws (caused ϕ if ψ) and
(caused ϕ if ψ after ω) are fluent literals (or the constant

⊥). Furthermore,ψ is a conjunction of fluent literals and
ω is a conjunction of fluent and/or action literals. In what
follows, we denoteϕ by f , ψ by g1 ∧ . . . ∧ gm andω by
l1 ∧ . . . ∧ ln.

We define a logic programlpn(DC) whose answer sets
correspond to trajectories of lengthn in the transition sys-
tem induced byDC . lpn(DC) contains atomsa(t) andf(t)
for eacha ∈ A, f ∈ F andt = 0, . . . , n. For each static law
(caused f if g1 ∧ . . . ∧ gm) in DC , lpn(DC) contains for
eacht = 0, . . . , n a rulef(t)← not g1(t), . . . ,not gm(t).
Analogously, each dynamic law (caused f if g1 ∧ . . . ∧
gm after lm+1 ∧ . . .∧ ln) in DC , adds tolpn(DC) for each
t = 0, . . . , n− 1 a rule

f(t+1)← not g1(t+1), ...,not gm(t+1), lm+1(t), ..., ln(t) .

Furthermore,lpn(DC) contains

¬a(t) ← not a(t), ¬e(0) ← not e(0),
a(t) ← not ¬a(t), e(0) ← not ¬e(0)

for eacha ∈ A, t = 0, . . . , n and eache ∈ F .
Our implementation of the encoding allows to use vari-

ables when writing rules inC. This is done by delegating
the grounding of variables to the grounding process of the
underlying logic program. To this end, we start by extend-
ing the syntax ofC by a trailing keywordwhere followed
by domain predicates for binding the variables occurring in
the actual causal laws. To be precise, the causal laws in (2)
and (3) are extended as follows:

(caused ϕ if ψ where δ) (4)

(caused ϕ if ψ after ω where δ) (5)

whereϕ, ψ, andω are as defined in (2) and (3), except for
containing variables, andδ is a combination of non-fluent
and non-action atoms such thatvar(ϕ)∪var (ψ)∪var (ω) ⊆
var(δ). Intuitively, δ captures static domain information
used for binding the variables inϕ, ψ, ω. The concept of a
definite action description generalizes in the obvious way,
restrictingδ to conjunctions of non-fluent and non-action
atoms. Now, given such a definite action descriptionDC ,
the variable-tolerating extension oflpn(DC) is obtained
from lpn(DC) by extending the body of each resulting logic
programming rule byd1, . . . , do whenever the causal law
contains the conditionwhere d1 ∧ · · · ∧ do.

Let us illustrate the practical impact of this pragmatic
extension by modeling the Biochemical Abstract Machine
(BIOCHAM; [9, 5]), used to build biochemical systems.
The biological background is indeed very easy. A modeled
scenario consists of different chemical reactions that spec-
ify relations between different compounds.Reactantsare
compounds that need to be present that a reaction can take
place andproductsare compounds that will be present after
a reaction took place. One can model this scenario using
C with the following rules. At first, our syntax requires to
specify a preamble where actions and fluents are defined:
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<action> occurs(R) <where> reaction(R).
<fluent> present(P) <where> compound(P).

Strings enclosed in<> are keywords, variables start with
uppercase letters and lines end with a dot. That is, for
every termt belonging to the extension of the predicate
reaction, we introduce the actionsoccurs(t). For
every termt belonging to the extension of the predicate
compound, we introduce the fluentspresent(t).

We now can define the dynamics of the system:

<caused> present(P)
<after> occurs(R)

<where> reaction(R),compound(P),product(P,R).

<caused> <false>
<after> occurs(R),-present(P)

<where> reaction(R),compound(P),reactant(P,R).

occurs(R) <may cause> -present(P)
<where> reaction(R),compound(P),reactant(P,R).

<inertial> present(P) <where> compound(P).
<inertial> -present(P) <where> compound(P).

The first rule states that a compoundP is present after a
reactionR occurred producingP. The second rule is a con-
straint enforcing all compoundsP to be present if a reaction
occurs whereP is a reactant of. Note that negation is de-
noted as- and<false> as well as<true> are keywords
for the two Boolean constants. The third rule models a
certain non-determinism: The semantics of BIOCHAM de-
fines that after a reaction occurs, it remains unclear whether
the reactants are still present or not. The reason is that
the semantics abstract from concentrations of compounds.
That is, we consider two cases: In one transition we as-
sume that the compoundP was fully consumed, modeled as
-present(P). The other transition is thatP remains to
be present. The last two rules state that compounds that are
not affected by reactions do not change their value1.

Let us briefly detail how variables are passed through the
encoding proposed in [17]. For this, consider the first rule
of the above BIOCHAM example that is translated to the
following logic rule:

present_fluent(P,T+1)
:- occurs_action(R,T), reaction(R),

compound(P), product(P,R), time(T).

Apart from the time-parameterT, we attach variableP to
the fluentpresent andR to the actionoccurs. The do-
main information given in the<where> statement is then
passed as grounding information to the logic program rule.

The last pending issue is to specify the domains, eg.

1These rules represents the frame axiom: Compounds that are not con-
sumed remain present, absent compounds that where not produced remain
absent.

compound(a). compound(b). reaction(r1).
reactant(a,r1). product(b,r1).

The database is represented as a logic program. It can
be seen as static knowledge attached to the modeled dy-
namic behavior of the system. In most cases, the database
only contains facts. In the example, we are now able to rea-
son about a scenario with two compounds and one reaction.
An encoding of a simple version of the biological textbook
example of theMitogen-activated protein kinase (MAPK)2

including 23 products and 30 reactions, yields a problem in-
stance containing 147 facts. One of the advantages of using
variables is the resulting elaboration tolerance, that is,the
biological system can be easily exchanged or extended by
modifying the database, while leaving the specification of
the dynamics untouched.

4 Mapping CTAID to C

As with C, anaction descriptionin CTAID is given rela-
tive to an action signature〈B,F,A〉. The major conceptual
difference betweenCTAID andC is that the latter implicitly
treats actions to be exogenous. That is, all actions might
occur at every time-point as long as their effects do not lead
to a contradiction. For biological purposes, this behavior
is inappropriate. Unlike this,CTAID allows for specifying
explicit conditions when actions are executed or not. For
example, usingCTAID ’s triggering rule, we can describe
properties when (re)actions must be executed immediately.
Furthermore,CTAID offers the following constructs:Inhi-
bition rulesexpress when actions must not be executed and
allowance rulesexpress that actions might occur, but are not
forced to. Adefaultexpresses that a fluent takes a certain
value unless it is known otherwise.No-concurrency con-
straintsallow to control the parallel execution of actions. In
a more formal way, an action description inCTAID contains
expressions of the following form:

(a causes ϕ if ψ), (ϕ if ψ), (ϕ triggers a),
(ϕ allows a), (ϕ inhibits a), (default f),
(noconcurrency ω),

wherea is an action andω is either an action or a conjunc-
tion of action literals,ϕ andψ are conjunctions of fluent
literals andf is a fluent literal. We refer to [6] for a more
detailed description ofCTAID .

We now describe our translation ofCTAID intoC. To this
end, we need to extend the action signature to accommo-
date some control information. To be precise, we add the
fluentsih(a), tr(a), ex(a), al(a) for each action namea.
Intuitively, these fluents signal properties reflecting thebe-
havior of inhibition, triggering, and allowance rules. With

2http://en.wikipedia.org/wiki/MAPK
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them, we can define the mapping of rules inCTAID to rules
in C as follows.

Definition 1 LetDCTAID
be an action description inCTAID

over action signature〈B,F,A〉. The corresponding action
descriptionDC in C over action signature

〈B,F ∪
⋃

a∈A{ih(a), tr(a), ex(a), al(a)}, A〉 (6)

is defined as follows:

1. For each action namea ∈ A, action descriptionDC

contains the static laws(caused ¬ih(a) if ¬ih(a)),
(caused ¬tr(a) if ¬tr(a)), (caused ¬ex(a) if ¬ex(a))
and(caused ¬al(a) if ¬al(a)).

2. For each dynamic law(a causes ϕ if ψ) in DCTAID
,

whereϕ = f1 ∧ . . . ∧ fm, DC contains the laws
(caused fi if ⊤ after ψ ∧ a) for each fi where
1 ≤ i ≤ m.

3. For each static law(ϕ if ψ) in DCTAID
,

whereϕ = f1 ∧ . . . ∧ fm, DC contains the laws
(caused fi if ψ) for eachfi where1 ≤ i ≤ m.

4. For each allowance rule (ϕ allows a) in
DCTAID

, DC contains (caused al(a) if ϕ) and
(caused ⊥ if ⊤ after ¬al(a) ∧ a).

5. For each triggering rule(ϕ triggers a) in DCTAID
,

DC contains(caused tr(a) if ϕ),
(caused ex(a) if ⊤ after a),
(caused ⊥ if ¬ex(a) after tr(a) ∧ ¬ih(a)) and
(caused ⊥ if ex(a) after ¬tr(a)).

6. For each inhibition rule (ϕ inhibits a) in
DCTAID

, DC contains (caused ih(a) if ϕ) and
(caused ⊥ if ⊤ after ih(a) ∧ a).

7. For each constraint(noconcurrency ω) in DCTAID
,

DC contains(caused ⊥ if ⊤ after ω).

8. For each default rule(default f) in DCTAID
,DC con-

tains(caused f if f).

9. For each f ∈ F , such that (default f) 6∈
DCTAID

, DC contains(caused f if f after f) and
(caused ¬f if ¬f after ¬f).

The symbols⊤ and⊥ denote the Boolean constants fort
andf in B.

The rules in 1. state thatih(a), tr(a), ex(a), andal(a)
are set to befalseby default. As described in 4.–6., they are
only settrue when certain properties hold. There is a direct
correspondence between static and dynamic rules inCTAID

andC (cf. 2. and 3.) except the fact that conjunctions in
heads are split in order to get a definite action description.

An allowance rule is expressed using a static rule setting
al(a) and a dynamic rule that can be viewed as a constraint
eliminating transitions where actiona occurred whileal(a)
wasfalse(cf. 4.). Rules given in 5. express triggering rules:
whenever a trigger is applicable,tr(a) is set and every ex-
ecution of an actiona causesex(a) to be true. The second
dynamic rule eliminates transitions where the conditions for
a triggering rule were satisfied buta was not executed, that
is, ex(a) is false. SinceCTAID gives inhibition rules pri-
ority over triggering rules, the constraint is only applicable
if ¬ih(a) is satisfied. The third dynamic rule eliminates
transitions wherea is executed without having an applica-
ble trigger. Inhibition rules are mapped in the same way
as allowance rules (cf. 6.). No-concurrency constraints and
defaults inCTAID have a direct correspondence to rules in
C (cf. 7. and 8.). Given that fluents are implicitly inertial3 in
CTAID but not inC, for each fluent there is a dynamic rule
in DC that expresses inertial behavior (cf. 9.).

We can show the following result:

Theorem 1 LetDCTAID
be an action description inCTAID

over action signature〈B,F,A〉 and letDC be the corre-
sponding action description inC over the action signature
in (6) generated fromDCTAID

using the mapping in Def-
inition 1. Then, each trajectory in the transition system
TC(DC) (as defined in [13]), corresponds to a unique tra-
jectory in the transition system induced byDCTAID

(as de-
fined in [6]) and vice versa.

Problem descriptions inCTAID can now be dealt with
the general-purpose languageC. That is, we do not need
a rather complicated (re)definition of semantics in order to
describe transition systems having a biological background
usingCTAID . It can now be seen as another layer of inter-
face on top of the action description languageC.

In the following sections we describe how the different
encodings can be used in our toolchain and how they per-
form compared to other implementations.

5 TheBioC System

Our approach to representing and reasoning about bio-
logical models is as follows: at first, the biological model
needs to be specified in the action description language of
C or CTAID . This description is compiled into a logic pro-
gram as described above and subsequently dealt with us-
ing an ASP system, usually composed of a grounder and a
solver. Once the logic program is solved, the answers of the
solver need to be put back in correspondence to the original
problem specification. Finally, the obtained data needs to

3That is, fluents that are neither defaults nor affected directly or indi-
rectly by dynamic rules do not change their value in a transition.
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Figure 1. Overview of our system architecture

Figure 2. Graphical user interface for CTAID .

be interpreted in a biologically meaningful way by a human
expert. An overview of our system is given in Figure 1.

Interfaces To begin with, we have a closer look at the
interfaces to our system. Our system is able to handle the
discussed action descriptions inC andCTAID . For action
descriptions inC, one has to write down the rules in an edi-
tor, as shown in the BIOCHAM example. This is of course
also possible usingCTAID . SinceCTAID has a much more
biological orientation thanC, we offer another interface for
CTAID that is more intuitive for users having a purely bio-
logical background: A graphical interface that was built as
a Firefox browser extension. It allows for building rules asa
graph whose nodes (fluents and actions) and edges (causal
relationships) correspond to the underlying expressions of
CTAID . An example is shown in Figure 2. Since this pa-
per has more a technical orientation, we are not detailing a
biological example usingCTAID .

Compiler Once the description is done, it is passed to
our compileral2asp. As mentioned before, this program
is able to handle the described languages and their different
encodings that need to be given via command line options:

al2asp -l c directC to ASP encoding
al2asp -l c taid directCTAID to ASP encoding
al2asp -l c taid2c CTAID to C encoding

While the two first commands yield a logic program4, the
last one outputs rules inC.5

al2asp is implemented inC++ and freely available
at [3]. Notably,al2asp relies on scanner and parser gen-
eratorsflex andbison++, making it easily amenable to
language extensions.

An al2asp generated logic program containing vari-
ables appears incomplete. The additional logic program
providing the binding information must be concatenated to
the output ofal2asp in order to get the resulting logic pro-
gram that can be grounded. This ground program expresses
the transition system described by the original description
in C.

ASP ToolsReconsidering Figure 1, the resulting logic
program is dealt with by an ASP system, consisting of a
grounder and a solver component. As discussed, the log-
ical representation of an action description may contain
object variables that are passed on to the grounder. Our
grounder,gringo [12]6, systematically replaces all vari-
ables by ground terms, while aiming at producing a com-
pact propositional program. The resulting program is then
passed to the ASP solver,clasp [11, 10]7, which com-
putes the stable models (see [1] for details) of the program.
Each such model represents a valid trajectory in the transi-
tion system induced by the original action description.

Backends The action description for the BIOCHAM
system combined with the underlying domain induces the
transition system given in Figure 3. Identifiers a and b are

4The directCTAID to ASP encoding implements a slightly modified
encoding according to the one given in [6] that is not discussed in this
paper.

5One can just reuse the tool to complete the encoding:al2asp -l
c taid2c <file.desc> | al2asp -l c.

6http://www.cs.uni-potsdam.de/gringo
7http://www.cs.uni-potsdam.de/clasp
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a b ¬a b

a ¬b ¬a¬b

r1,
{}

{} {}

{}

r1 r1

r1

Figure 3. BIOCHAM Transition system.

shorthands for fluentspresent(a) andpresent(b),
r1 is a shorthand for actionoccurs(r1). {} denotes the
empty action, that is, no action is executed in a transition la-
beled like this. Note that the loop at node{a,b} describes
two transitions.

Given that fluent and action names are changed in the
logical encoding (ie. an additional time parameter appears
as additional argument) as well as the obtained solutions ap-
pear in an unsorted way, the output of an ASP system must
be transformed in a more readable and problem-oriented
format. To this end, we offer different possibilities to
present the output using the programas2sth: One possi-
bility is a textual representation of the trajectories thatgives
a detailed overview of actions and states involved in a given
solution. To illustrate this, recall our BIOCHAM example
and consider the answer sets representing all 8 trajectories
of length 1. Our interface displays them as follows.

## ANSWER 1 ################
0 A + occurs(r1)
0 F + present(a)
0 F - present(b)
1 F - present(a)
1 F + present(b)
## ANSWER 2 ################
...
## SUMMARY #################
models: 8

The first column denotes the timestep, the second one
the type of the logic literal (action or fluent), the third one
the value of the literal (true or false) and the last one the
original name as used in the action description.

This method becomes inapplicable when the number of
solutions increases, which is the case in most of the bio-
logical applications. To this end, another possibility is to
generatecsv output that can be processed with external
programs like database systems, statistical tools, etc.

A third possibility is to use our built ingnuplot inter-
face: We currently provide some statistical post-processing
counting fluent values and actions at each time step in all
trajectories. For example, let us assume that a fluentf ap-
pears to be true at a certain timestept in all trajectories.
When presenting all occurrences of fluents (or actions) in a
graphical way, one can easily see that fluentf is essential

Figure 4. Solutions of the BIOCHAM example.

for having solutions.8 Although our simple BIOCHAM ex-
ample focuses on the transition system (having no queries at
all), the graphical representation can already be useful toget
an idea. Reconsider the transition system given in Figure 3.
Figure 4 is the graphical representation of all 128 trajecto-
ries having a length of 6. Y-Axis denotes the percentage of
true propositions (resp. the presence of compounds), and
X-Axis denotes the timesteps. The two different bars repre-
sent the compoundsa andb. It is easy to see that there is a
direct correspondence between the presence of compounda
andb. Whilea tends to decrease,b tends to increase.9 It is
nearly impossible to gain such information by only looking
at the calculated trajectories.

Toolchain AccessThe whole reasoning tool is accessible
in two ways. The first possibility is to download the tools
described in Figure 1 from [3] and to run them on a local
machine. We are building up a graphical tool wrapping the
underlying command-line execution of the described tools.
By now, given that the tools are available on a Linux ma-
chine, a user may start the different programs via pipelining
by hand. For example, if we have a our BIOCHAM descrip-
tion in C given in a file namedbcham.alc, the domain
specification given in a file namedbcham.stat and want
to display the chart as given in Figure 4 using gnuplot, you
invoke on your local system the following commands:

> al2asp -l c bcham.alc | cat - bcham.stat \
gringo -c n=5 | clasp 0 | as2sth --csv | \
asplot present(a) present(b) && gnuplot *.plt

To provide a user-friendly method, we built up a web-
based interface at [3], where the described tools are fully

8This can also be seen as a cautious reasoning mode.
9Indeed, this outcome seems to be trivial since this is exactly the rela-

tion between the two compounds that was modeled before. But on larger
scale examples it is possible to identify relations that were not given ex-
plicitly in the action description.
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encapsulated as a server application to use system without
installing local applications. TheCTAID Firefox-Plugin is
able to access the web interface directly by sending the un-
derlying action description to the web server. We added
several examples on our web interface, where one can see
how descriptions and queries to the system look like and
how a user is able to access the different backends.

6 Benchmarks

In this section, our core tools (al2asp, gringo
andclasp) will be empirically compared to the systems
CCalc [14] anddlvk [7] since all of them use input lan-
guages based onC. Unfortunately,CPlan [4] is no longer
maintained and the authors provided a windows executable
only which was not usable in our benchmark setting.

The benchmarks were carried out on an Intel Core2Duo
6400 with 2.13GHz and 2 GB RAM running a 32-bit
version of Ubuntu GNU/Linux. For our tests, we used
al2asp v0.4,gringo v1.0.0 andclasp v1.0.5 with de-
fault settings.CCalc was used in version 2.0 and among
the provided SAT solversgrasp was used. Although
grasp does not provide the current state of the art SAT
solving techniques, it was the only solver in our tests that
produced all solutions. Regardingdlvk, we used release
2007-10-11 with default settings.

Concerning planning problems, one is often interested in
finding only the first solution. This issue is different in our
approach, in most of the biological applications we need to
consider all solutions. For example, recall Figure 4 where
we need to process all answer sets in order to do statistical
analysis. To this end, we consider both cases when compar-
ing the systems, finding one, and finding all solutions.

Unfortunately, our current biological applications get
solved too fast to make systems compareable. Being not
generic10, a comparison of different systems using our bio-
logical problems is not yet feasible. We use crafted artificial
problems instead to compare performance of systems.

The first one is the well knownblocks worldproblem.
We used thedlvk encoding and problem instances from [8].
Due to advances in computer hardware, these old instances
are solved too fast to get reasonable runtimes. That is why
we came up with five additional instances (p6 - p10, see
Table 1) which are still demanding for the systems running
on today’s hardware.

Our second benchmark suitelights out11 is very similar
to thebomb in the toiletproblem: All of a variable number
of light bulbs has to be switched off. The problem comes
in two flavors, either with concurrent execution of actions

10Unlike most artificial problems, we do not have parameters controlling
the size of problem instances.

11Idea taken from General Gameplaying Competition 2008.

No. Instance length BioC CCalc dlv
k

1 l1nc 10 0.10 0.14 17.81
2 l2nc 15 0.20 0.19 —
3 l3nc 20 2.12 0.26 —
4 l4nc 25 — 0.39 —

5 l1c 1 8.63 — 2.43
6 l2c 1 17.39 — 5.24
7 l3c 1 26.41 — 8.09
8 l4c 1 35.43 — 10.56

Average Time (Sum Timeouts) 12.90 (3) 0.24 (12) 8.82 (9)
Average Penalized Time 86.29 300.12 230.51

Table 2. Lights out experiments (one solution)

allowed or with concurrency disabled. The optimal12 plan
length in the latter case is equal to the number of light bulbs.
It is easy to see that this problem leads ton! many optimal
plans regardingn bulbs that only differ in the sequence of
switching off bulbs. Due to this behavior, we omit comput-
ing all solutions as in the blocks world setting.

The results of theblocks worldbenchmarks are listed in
Table 1 and thelights outresults are in Table 2. For every
problem instance, we measured the time in seconds of three
separate solving processes and computed the average which
is shown in each systems column. A dash indicates that a
system was unable to compute a solution in less than 600
seconds. The column labeledlengthdenotes the length of
the shortest possible plan(s) for the problem instance which
is passed as a parameter to the different systems. The last
row in the tables lists penalized average times. In contrast
to normal average times, the penalized ones take timeouts
into account. Although the system might have taken much
longer to find a solution, the penalized average is computed
as if the system found a solution after 600 seconds.

Results show that compared to the other systems our sys-
tem performs quite well and appears to be robust. In the
blocks worldexample, it was the only system that could
enumerate all solutions in reasonable time. As mentioned,
this issue is especially valuable because our biological ap-
plications often need all solutions to be computed. But also
when only one solution has to be found, our system outper-
formed bothCCalc anddlvk. CCalc’s performance was
comparable to ours until the problems became too hard in
benchmark number 9.

Regarding thelights outproblem,CCalc performs sur-
prisingly well when concurrent execution of actions is not
allowed. It computes a solution almost instantly, whiledlvk

has difficulties even in the smallest instance. Although be-
ing quite fast with a few light bulbs, the runtime of our sys-
tem rises rapidly as soon as more than twenty bulbs are in-
volved. When allowing concurrency in this example,dlvk

is the fastest system.CCalc seems to have great problems

12Optimal means that there is at least one solution at boundt, but no
solution can at boundt − 1.
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No. Instance length BioC - one CCalc - one dlv
k - one BioC - all CCalc - all dlv

k - all

1 p01 05 0.31 0.51 0.06 0.32 0.51 0.06
2 p02 06 0.22 0.35 0.05 0.22 0.42 0.05
3 p03 08 1.19 1.21 1.21 1.21 8.23 4.57
4 p04 09 3.89 3.88 1.17 4.05 5.74 15.19
5 p05 11 5.04 5.39 2.92 4.92 11.24 22.98
6 p06 13 4.21 3.88 21.15 4.78 408.23 —
7 p07 14 8.76 7.08 42.04 11.81 364.22 —
8 p08 16 36.88 14.28 — 133.49 — —
9 p09 16 39.39 129.15 — 41.75 — —
10 p10 17 66.68 — — 85.83 — —

Average Time (Sum Timeouts) 17.49 (0) 19.47 (3) 10.54 (9) 20.61 (0) 122.87 (9) 9.58 (15)
Average Penalized Time 17.49 77.52 187.38 20.61 266.01 304.79

Table 1. Blocks world experiments computing one and all solutions

with the huge13 number of light bulbs which was used in the
problem instances and is unable to find a solution in any in-
stance. Our system performs quite well in this benchmark,
though not as well asdlvk.

7 Discussion

Although we motivate (and apply) our approach in a bio-
logical setting, many features are readily applicable to rep-
resenting and reasoning about dynamical systems in gen-
eral. Centering our approach onC has several benefits.
First, C is a rich and well-studied formalism. Second, it
constitutes a mainstream implementation line for action lan-
guages. To this end, we provided a translation of the bi-
ologically motivated action languageCTAID to C and de-
vise several tools for dealing with action descriptions in
C (andCTAID ). Among them, we implemented the com-
piler al2asp allowing for translating action descriptions
in C (andCTAID ) to logic programs under answer sets se-
mantics. This approach is similar to the one taken bydlv k

for processing action languageK. Both approaches exploit
the grounding and solving capacities of ASP, offering uni-
form (and thus instance independent) problem encodings
and easy variable handling. Our approach is supported by
a variety of pragmatic yet indispensable tools for address-
ing real world applications. Compared to other planning
systems, we are able to compete with, and sometimes even
outperform current systems. Finally, our tools (as well as
their source code) and the benchmark problems are freely
available at [3].
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