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Abstract mapping the biologically motivated action description-lan
guageCrarp onto C and give a result fixing the formal
We elaborate upon the usage of action languéger correspondence. This allows us to further develepp

representing and reasoning about biological models. First within a broader and well-established framework, avoiding
we provide a simple extension ©fallowing for variables  further dedicated implementations. Moreover, it provides
and show its usefulness in modeling biochemical reactionsCrarp with access to further implementations ©f like
according to the well-known model of BIOCHAM. Second, CCalc [14] or CPlan [4] (even though they cannot har-
we show how the biological action description language ness existing ASP grounders for variable treatment). Fi-
Crarp can be mapped oni@. Finally, we describe a tool-  nally, we describe a toolbox for using action languages, in-
box for using action languages, including among them, a cluding among them, a compiler mappi@gndCrap to
compiler mapping and Cr4p to logic programs under  logic programs under answer sets semantics along with a
answer sets semantics along with a web-service integrat-web-service integrating different front- and back-ends fo
ing different front- and back-ends for addressing dynainica addressing dynamical systems by means of action descrip-
systems by means of action description languages via andion languages via answer set programming. Our tools are
swer set programming. This is accompanied by an empir- designed for an easy and flexible integration with existing
ical evaluation with existing systems for processing actio open source tools via pipes, in particular, ASP grounders
description languages. and solvers, as well as further front- and back-ends. This is
accompanied by an empirical evaluation with existing sys-
tems for processing action description languages.

1 Introduction
2 Background

We elaborate upoaction language$l3] for qualitative Answer Set Programming. Our language is built from a

moldellné; ?f blolgilcal netvvo.rks. /;\ctlonhlangﬁuagesfare for- setF of functionsymbols (including the natural numbers),
mal models used forreasoning about the efects of actions,, g of variablesymbols, and a sé? of predicatesym-
while being close to natural language. Central to this ap- bols. The sef of termsis the smallest set containingand
proach to formalizing actions is the concept of a transition all expressions of the forfi(t, t,.), wheref € F and

. 4 . X N yeeestn),
system, which constitutes its semantic underpinning. Theti € Tfor1 < i < n. The setA of atomscontains expres-

first action language for representing and reasoning abou%ions of the formp(t t,), wherep € P andt; € T
biological networks was introduced in [19, 2, 18] and fur- ¢, '\ . = A Iitgré'liivs Zm atom or its negat;orha'

ther extended in [6] leading to action langualep. _ both can be preceded by default negation, denotedas
In what follgws, we exten_d the overall approach_ iN SeV- andnot —a, respectively. For ¢ A, we leta = —a and

eral ways while centering it on the _classwgl action lan- — _ , A logic programover A is a set ofulesas

guageC [15]. To begin with, we provide a simple exten-

sion of C allowing for variables and show its usefulness a<«—bi,..., by, not ¢pi1,...,n0t cy (1)

in modeling biochemical reactions according to the well-

known model of BIOCHAM. Similar to the approach taken Wherea, b;, c; are literals overd for 0 <i <m < j < n.

in the div* system based on action languagé7], we del-  For a ruler as in (1), lethead(r) = a, body(r)* =

egate the treatment of variables to Answer Set Program-{01, - -,bm}, @andbody(r)™ = {cnt1, ..., ca}. Givenan

ming (ASP; [1]) in order to be able to use ASP grounders expressior € 7 U A, letvar(e) denote the set of all vari-

for variable instantiation. Second, we provide a transtati ~ bles occurring ir; analogouslyyar(r) gives all variables
in rule r. Theground instantiatiorof a programpP is de-

*This work was funded within project GOFORSYS (BMBF 0313924)  fined asgrd(P) = {r0 | r € P,0 : var(r) — U}, where




U ={t € T | var(t) = 0}; analogously,grd(A) =
{a € A | var(a) = 0} is the set of all ground atoms. A
setX C grd(A) U grd(A) is a (consistentinswer sebf a
programP over A, if X is theC-smallest model of

{head(r) « body(r)* | r € grd(P), body(r)" NX =0} .

Action Language(C. Action languages udéuentsto de-
scribe the states of a system autionsinfluence the values
of fluents. InC (andC141p), static lawsdescribe properties
between fluents that need to be satisfied in every state of th
system.Dynamic lawsdescribe the effects of actions, that
is, how the system evolves when actions are executed.

More formally, we consideaction language [13] over
a Booleanaction signature(B, F, A), whereB is the set
{f,t} of truth values F' is a set offluent namesandA is a
set ofaction namesin C, anaction descriptionD. over a
signature( B, F, A) consists obtaticanddynamic laws

(2)
3)

where ¢ and ) are propositional combinations of fluent
names andv is a propositional combination of fluent and
action names. Every action descriptibg induces a unique
transition system¥c(D¢) = (S, V, R), whereS is a set of
states V' is a function determining fluents values in state
s, andR is a relation containing all possible transitions be-
tween states. Arajectorysg, A1, S1,...,8,-1,An, sy iNA
transition systemS, V, R) is a sequence of sets of actions
A; C A and states; € S where(s;_1,A4;,s;) € R for
0 < i < n. Intuitively, a trajectory represents one pos-
sible history (or simply path) within a transition system.
In [13], several syntactic extensions are defined. For in-
stance, the ruléw may cause ¢ if ¢) is a shorthand for
(caused ¢ if ¢ after 1) A w). Similarly, (inertial ) is
a shorthand fofcaused ¢ if ¢ after ¢). We refer to [13]
for more detailed definitions.

Besides an action description language, bétrand
Crarp define aquery language We implemented [13]
as the query language f6rand the query mechanisms de-
scribed in [6] forCrarp. In this paper, we focus only on
the transition systems and our toolbox realizing the differ

(caused ¢ if ¥)
(caused ¢ if ¢ after w)

1). Furthermorey) is a conjunction of fluent literals and
w is a conjunction of fluent and/or action literals. In what
follows, we denotep by f, v by g1 A ... A g, andw by
S ANAN

We define a logic prograrp,,(D¢) whose answer sets
correspond to trajectories of lengthin the transition sys-
tem induced byDc. Ip,,(D¢) contains atoma(t) and f(t)
foreachu € A, f € Fandt = 0, ..., n. Foreach static law
(caused f if g1 A ... A gn)in De, Ip,(De) contains for
eeaChIf =0,...,narulef(t)—not gi(t),...,not gm(t).
Analogously, each dynamic laveqused f if g1 A ... A
gm after l,,11 A ... Al,)in D¢, adds tdp, (D¢) for each
t=0,...,n—1arule

ft41) — not g1(t+1), ..., not g (E+1), L1 (t), .oy 1 () -
Furthermorep,,(D¢) contains

—a(t) —e(0)
a(t) e(0)

foreacha € A,t =0,...,nandeach € F.

Our implementation of the encoding allows to use vari-
ables when writing rules i@. This is done by delegating
the grounding of variables to the grounding process of the
underlying logic program. To this end, we start by extend-
ing the syntax ofC by a trailing keywordwhere followed
by domain predicates for binding the variables occurring in
the actual causal laws. To be precise, the causal laws in (2)
and (3) are extended as follows:

«—

not a(t),
not —a(t),

«—

not e(0),
not —e(0)

“— —

(caused ¢ if 1) where ) 4)

(5)

wheregp, 1, andw are as defined in (2) and (3), except for
containing variables, andlis a combination of non-fluent
and non-action atoms such that-(¢)Uvar(¢)Uvar(w) C
var(d). Intuitively, § captures static domain information
used for binding the variables ip, v, w. The concept of a
definite action description generalizes in the obvious way,
restrictingd to conjunctions of non-fluent and non-action
atoms. Now, given such a definite action descriptiog,
the variable-tolerating extension @p,,(Dc) is obtained
fromip, (D¢) by extending the body of each resulting logic
programming rule byly, ..., d, whenever the causal law

(caused y if 9 after w where §)

ent encodings, so we omit a detailed description of query .yntains the conditiowhere diA--Ad
o

languages and the different reasoning modes, like explana-

tion, prediction, planning, etc.

3 Encoding Action LanguageC

For implementing action language we build upon the
translation to ASP described in [17]. L& be an action
description over signatur@3, F, A). We requireD. to be
definite that is, the headsg of laws (caused ¢ if ) and
(caused g if ¥ after w) are fluent literals (or the constant

Let us illustrate the practical impact of this pragmatic
extension by modeling the Biochemical Abstract Machine
(BIOCHAM; [9, 5]), used to build biochemical systems.
The biological background is indeed very easy. A modeled
scenario consists of different chemical reactions that-spe
ify relations between different compoundReactantsare
compounds that need to be present that a reaction can take
place angroductsare compounds that will be present after
a reaction took place. One can model this scenario using
C with the following rules. At first, our syntax requires to
specify a preamble where actions and fluents are defined:



<action> occurs(R) <where> reaction(R).
<fluent > present (P) <where> conpound(P).

conpound(a) .
reactant (a,r1l).

conpound(b). reaction(rl).
product (b, r1).

Strings enclosed in> are keywords, variables start with The database is represented as a logic program. It can
uppercase letters and lines end with a dot. That is, forbe seen as static knowledge attached to the modeled dy-
every termt belonging to the extension of the predicate namic behavior of the system. In most cases, the database

reacti on, we introduce the actionsccurs(t). For
every termt belonging to the extension of the predicate
conpound, we introduce the fluentsr esent (t).

We now can define the dynamics of the system:

<caused> present (P)
<after> occurs(R)
<wher e> reacti on(R), conpound(P), product (P, R).

<caused> <fal se>
<after> occurs(R), -present (P)
<wher e> reacti on(R), conpound(P), reactant (P, R).

occurs(R) <may cause> -present (P)
<wher e> reacti on(R), conpound(P), reactant (P, R).

<inertial > present(P) <where> conpound(P).
<inertial > -present (P) <where> conpound(P).

The first rule states that a compouRds present after a
reactionR occurred producin®. The second rule is a con-
straint enforcing all compoundsto be present if a reaction
occurs wherd® is a reactant of. Note that negation is de-
noted as and<f al se>as well as<t r ue> are keywords
for the two Boolean constants. The third rule models a
certain non-determinism: The semantics of BIOCHAM de-

fines that after a reaction occurs, it remains unclear whethe

the reactants are still present or not.

the semantics abstract from concentrations of compounds
That is, we consider two cases: In one transition we as-

sume that the compourRiwas fully consumed, modeled as
- pr esent ( P) . The other transition is th& remains to

be present. The last two rules state that compounds that ar

not affected by reactions do not change their value

Let us briefly detail how variables are passed through the

encoding proposed in [17]. For this, consider the first rule
of the above BIOCHAM example that is translated to the
following logic rule:

present fluent (P, T+1)
:- occurs_action(R T), reaction(R),
conpound(P), product(P,R), tine(T).

Apart from the time-paramet@r, we attach variable to
the fluentpr esent andRto the actioroccur s. The do-
main information given in th&wher e> statement is then
passed as grounding information to the logic program rule.
The last pending issue is to specify the domains, eg.

1These rules represents the frame axiom: Compounds thabtecem-
sumed remain present, absent compounds that where noteabdemain
absent.

The reason is that

e

only contains facts. In the example, we are now able to rea-
son about a scenario with two compounds and one reaction.
An encoding of a simple version of the biological textbook
example of theMitogen-activated protein kinase (MAPK)
including 23 products and 30 reactions, yields a problem in-
stance containing 147 facts. One of the advantages of using
variables is the resulting elaboration tolerance, thathis,
biological system can be easily exchanged or extended by
modifying the database, while leaving the specification of
the dynamics untouched.

4 Mapping Cra;p to C

As with C, anaction descriptionin Cr4;p is given rela-
tive to an action signatur@3, F, A). The major conceptual
difference betwee@r4;p andC is that the latter implicitly
treats actions to be exogenous. That is, all actions might
occur at every time-point as long as their effects do not lead
to a contradiction. For biological purposes, this behavior
is inappropriate. Unlike thisC 747p allows for specifying
explicit conditions when actions are executed or not. For
example, usin@r4;p’s triggering rule, we can describe
properties when (re)actions must be executed immediately.
Furthermore(C 4 p offers the following constructsinhi-
bition rulesexpress when actions must not be executed and
allowance rulegxpress that actions might occur, but are not
forced to. Adefaultexpresses that a fluent takes a certain
value unless it is known otherwiséNo-concurrency con-
straintsallow to control the parallel execution of actions. In
a more formal way, an action descriptiordma ;p contains
expressions of the following form:

(a causes ¢ if ¢), (pif ),
(p allows a), (¢ inhibits a),
(noconcurrency w),

(p triggers a),
(default f),

wherea is an action and is either an action or a conjunc-
tion of action literals,p and are conjunctions of fluent
literals andf is a fluent literal. We refer to [6] for a more
detailed description af 74 1p.

We now describe our translation®%4rp into C. To this
end, we need to extend the action signature to accommo-
date some control information. To be precise, we add the
fluentsih(a), tr(a), ex(a), al(a) for each action name.
Intuitively, these fluents signal properties reflecting liee
havior of inhibition, triggering, and allowance rules. Wit

2http://en.w ki pedi a. or g/ wi ki / MAPK



them, we can define the mapping of rule€if ;p to rules
in C as follows.

Definition 1 LetD¢,,,, be an action description i@r4p
over action signaturéB, F, A). The corresponding action
descriptionD¢ in C over action signature

(B, FUU,calih(a),tr(a), ex(a),al(a)}, A)

is defined as follows:

(6)

1. For each action name € A, action descriptionD¢
contains the static law&aused —ih(a) if —ih(a)),
(caused —tr(a) if —tr(a)), (caused —ex(a) if —ex(a))
and(caused —al(a) if —al(a)).

2. For each dynamic lawa causes ¢ if ) in D¢y,
wherep = fi A ... A fm, D¢ contains the laws
(caused f; if T after ¢ A a) for each f; where
1<i<m.

3. For each static law if ) in D¢y, s
wherepy = fi A ... A f, D¢ contains the laws
(caused f; if ¢) for eachf; wherel < i < m.

4. For each allowance rule (¢ allows a) in
De¢yins De contains (caused al(a) if ) and
(caused L if T after —al(a) A a).

5. For each triggering rule(y triggers a) in D¢y, .y,
D¢ contains(caused tr(a) if ¢),
(caused ex(a) if T after a),
(caused L if —ex(a) after tr(a) A —ih(a)) and
(caused L if ex(a) after —tr(a)).

6. For each inhibition rule (¢ inhibits a) in
De¢yyins De contains (caused ih(a) if ) and
(caused L if T after ih(a) A a).

7. For each constrainfnoconcurrency w) in D¢,
D¢ contains(caused L if T after w).

8. For each default rulédefault f)in D¢,,,,, Dc con-
tains(caused f if f).

9. For each f € F, such that(default f) ¢
D¢y De contains(caused f if f after f) and
(caused —f if —f after —f).

The symbols and L denote the Boolean constants for
andf in B.

The rules in 1. state thab(a), tr(a), ex(a), andal(a)
are set to béalseby default. As described in 4.—6., they are
only settrue when certain properties hold. There is a direct
correspondence between static and dynamic rulés-inp
andC (cf. 2. and 3.) except the fact that conjunctions in

An allowance rule is expressed using a static rule setting
al(a) and a dynamic rule that can be viewed as a constraint
eliminating transitions where actienoccurred whilezl(a)
wasfalse(cf. 4.). Rules given in 5. express triggering rules:
whenever a trigger is applicable;(a) is set and every ex-
ecution of an actiom cause®z(a) to be true. The second
dynamic rule eliminates transitions where the conditiams f
a triggering rule were satisfied butwas not executed, that
is, ex(a) is false SinceCrarp gives inhibition rules pri-
ority over triggering rules, the constraint is only apphita
if —ih(a) is satisfied. The third dynamic rule eliminates
transitions where: is executed without having an applica-
ble trigger. Inhibition rules are mapped in the same way
as allowance rules (cf. 6.). No-concurrency constraints an
defaults inCr4;p have a direct correspondence to rules in
C (cf. 7. and 8.). Given that fluents are implicitly inerfiah
Crap but notinC, for each fluent there is a dynamic rule
in D¢ that expresses inertial behavior (cf. 9.).

We can show the following result:

Theorem 1 Let D¢,,,, be an action description if74p
over action signaturd B, F, A) and let D¢ be the corre-
sponding action description ié over the action signature
in (6) generated fromD¢,,,, using the mapping in Def-
inition 1. Then, each trajectory in the transition system
Tc(De) (as defined in [13]), corresponds to a unique tra-
jectory in the transition system induced by:,,,,, (as de-
fined in [6]) and vice versa.

Problem descriptions i@ r4;p can now be dealt with
the general-purpose language That is, we do not need
a rather complicated (re)definition of semantics in order to
describe transition systems having a biological backgaoun
usingCrarp. It can now be seen as another layer of inter-
face on top of the action description language

In the following sections we describe how the different
encodings can be used in our toolchain and how they per-
form compared to other implementations.

5 TheBi oCSystem

Our approach to representing and reasoning about bio-
logical models is as follows: at first, the biological model
needs to be specified in the action description language of
C or Crarp. This description is compiled into a logic pro-
gram as described above and subsequently dealt with us-
ing an ASP system, usually composed of a grounder and a
solver. Once the logic program is solved, the answers of the
solver need to be put back in correspondence to the original
problem specification. Finally, the obtained data needs to

3That is, fluents that are neither defaults nor affected tyrex indi-

heads are split in order to get a definite action description.rectly by dynamic rules do not change their value in a tréorsit
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Figure 1. Overview of our system architecture

2 i = YR

. al 2asp -I ¢ directC to ASP encoding
- al 2asp -1 ctaid directCrarp to ASP encoding
al 2asp -1 c_taid2c CrpaptoC encoding

While the two first commands yield a logic progrénthe
last one outputs rules iB.°

al 2asp is implemented inC++ and freely available
at [3]. Notably,al 2asp relies on scanner and parser gen-
eratorsf | ex andbi son++, making it easily amenable to
language extensions.

An al 2asp generated logic program containing vari-
ables appears incomplete. The additional logic program
providing the binding information must be concatenated to
the output okl 2asp in order to get the resulting logic pro-
gram that can be grounded. This ground program expresses
Figure 2. Graphical user interface for Craip. the transition system described by the original descriptio

inC.

ASP Tools Reconsidering Figure 1, the resulting logic
program is dealt with by an ASP system, consisting of a
grounder and a solver component. As discussed, the log-
ical representation of an action description may contain

eobject variables that are passed on to the grounder. Our
groundergr i ngo [12]°, systematically replaces all vari-
ables by ground terms, while aiming at producing a com-
pact propositional program. The resulting program is then
passed to the ASP solver) asp [11, 10, which com-

be interpreted in a biologically meaningful way by a human
expert. An overview of our system is given in Figure 1.
Interfaces To begin with, we have a closer look at the
interfaces to our system. Our system is able to handle th
discussed action descriptions@andCrap. For action
descriptions irC, one has to write down the rules in an edi-
tor, as shown in the BIOCHAM example. This is of course
also possible usingrarp. SinceCrap has a much more

biological orientation thagd, we offer another interface for putes the stable models (see [1] for details) of the program.

Crazp that is more intuitive for users having a purely bio- - ga¢p sych model represents a valid trajectory in the transi-
logical background: A graphical interface that was built as ;- system induced by the original action description.

aFwt;foxhbrowse;exteﬂnﬂo?. It a(ljlowi for bmlddlngdrulesaas I Backends The action description for the BIOCHAM
graph whose nodes (fluents and actions) and edges (Causgystem combined with the underlying domain induces the

relationships) correspond to th_e ur_1der|y|ng e_xpress_mbns © transition system given in Figure 3. Identifiers a and b are

Crarp. An example is shown in Figure 2. Since this pa-

p_er ha_s more a teChn!Cal orientation, we are not detalllng a 41he directC4;p to ASP encoding implements a slightly modified

biological example usingra;p. encoding according to the one given in [6] that is not disedsis this
Compiler Once the description is done, it is passed to Paper. _ he 100l ete th - |

our compileral 2asp. As mentioned before, this program t;g‘zzaig?ﬁtéegzzéf ltooalt‘;;‘s’pmp_?te; e encodalgasp -

is able to handle the described languages and their differen ep¢ ¢ p: // ww. cs. uni - pot sdam de/ gr i ngo

encodings that need to be given via command line options:  7htt p: // wwv. cs. uni - pot sdam de/ cl asp
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Figure 3. BIOCHAM Transition system. -

£

shorthands for fluentpr esent (a) andpresent (b), H
r 1 is a shorthand for actiooccur s(r 1) . {} denotes the
empty action, that is, no action is executed in a transiten |
beled like this. Note that the loop at nofie, b} describes L t ' ’ ' .
two transitions.

Given that fluent and action names are changed in the Figure 4. Solutions of the BIOCHAM example.
logical encoding (ie. an additional time parameter appears
as additional argument) as well as the obtained solutions ap

pear in an unsorted way, the output of an ASP system mus

be transformed in a more readable and problem—orientea&or having solutions. Althou_g_h our simple BIQCHAM ex:
format. To this end, we offer different possibilities to ample focuses on the transition system (having no queries at

present the output using the prograsi2st h: One possi-  all), the graphical representation can already be usegéto
bility is a textual representation of the trajectories tjiges ~ an idea. Reconsider the transition system given in Figure 3.
a detailed overview of actions and states involved in a given Figure 4 is the graphical representation of all 128 trajecto
solution. To illustrate this, recall our BIOCHAM example ries having a length of 6. Y-Axis denotes the percentage of
and consider the answer sets representing all 8 trajestorietrue propositions (resp. the presence of compounds), and

of length 1. Our interface displays them as follows. X-Axis denotes the timesteps. The two different bars repre-

St ANSWER 1 Attt ittt i s_ent the compoundsandb. It is easy to see that there is a
direct correspondence between the presence of com@ound

0 A + occurs(rl) . ; )

0 F + present(a) andb. While a tends to decreasb,tends to increaselt is

0 F - present(b) nearly impossible to gain such information by only looking

1 F - present(a) at the calculated trajectories.

1 F + present(b) Toolchain AccessThe whole reasoning tool is accessible

## ANSWER 2 ##H##iH# it in two ways. The first possibility is to download the tools

C described in Figure 1 from [3] and to run them on a local

## SUMVARY #ESHH T machine. We are building up a graphical tool wrapping the

nodel s: 8 underlying command-line execution of the described tools.

By now, given that the tools are available on a Linux ma-
The first column denotes the timestep, the second onechine, a user may start the different programs via pipeginin
the type of the logic literal (action or fluent), the third one by hand. For example, if we have a our BIOCHAM descrip-
the value of the literal (true or false) and the last one the tion in C given in a file namedcham al ¢, the domain
original name as used in the action description. specification given in a file namdrtham st at and want
This method becomes inapplicable when the number ofto display the chart as given in Figure 4 using gnuplot, you
solutions increases, which is the case in most of the bio-INVoke on your local system the following commands:
logical applications. To this end, another possibilityds t > al 2asp -1 ¢ bchamalc | cat - bchamstat \
generatecsv output that can be processed with external gringo -¢c n=5 | clasp 0 | as2sth --csv | \
programs like database systems, statistical tools, etc. aspl ot present(a) present(b) &% gnuplot =*.plt
A third possibility is to use our built ignupl ot inter-
face: We currently provide some statistical post-procegsi
counting fluent values and actions at each time step in all
trajectories. For example, let us assume that a flyfeay- zThiS can also be seen as a cautious reasoning mode.
pears to be true at a certain timestejn all trajectories. _ Indeed, this outcome seems to be trivial since this is ex#iot rela-
. . . tion between the two compounds that was modeled before. mBlarger
When presenting all occurrences of fluents (or actions) in @scaje examples it is possible to identify relations thateest given ex-
graphical way, one can easily see that flugng essential plicitly in the action description.

To provide a user-friendly method, we built up a web-
based interface at [3], where the described tools are fully




. . . o 13
encapsulated as a server application to use system without [ No. [ Instance[ length [[ BioC [ CCalec | diw" ]

: H H : : Ho 1 11nc 10 0.10 0.14 17.81
installing local appllcatl(_)ns. ThéTf_HD Fwefox-PIggln is > he I 090 0.15 —
able to access the web interface directly by sending the un- 3 13nc 20 212 0.26 =
derlying action description to the web server. We added 4 l4nc 25 — 039 —
several examples on our web interface, where one can see — :;g 2 L1 — s
how descriptions and queries to the system look like and 7 13c 1 26.41 — 8.09
how a user is able to access the different backends. 8 lac ! 35.43 — 10.56

[ Average Time (Sum Timeouts][ 12.90 (3) | 0.24(12) [ 8.82(9) |

| Average PenalizedTime [ 86.29 | 300.12 | 230.51 |

6 Benchmarks Table 2. Lights out experiments (one solution)

In this section, our core toolsal 2asp, gri ngo
andcl asp) will be empirically compared to the systems ) _ )
CCale [14] and div* [7] since all of them use input lan-  allowed or with concurrency disabled. The optifigilan
guages based ai UnfortunatelyCPlan [4] is no longer length in the latter case is equal to the number of light bulbs
maintained and the authors provided a windows executabld! iS €asy to see that this problem leads:;tanany optimal
only which was not usable in our benchmark setting. plans regarding bulbs that only differ in the sequence of
The benchmarks were carried out on an Intel Core2Duo SWitching off bulbs. Due to this behavior, we omit comput-
6400 with 2.13GHz and 2 GB RAM running a 32-bit ing all solutions as in the blocks world setting.
version of Ubuntu GNUJ/Linux. For our tests, we used  The results of thélocks worldbenchmarks are listed in
al 2asp v0.4,gri ngo v1.0.0 anctl asp v1.0.5with de- ~ Table 1 and thdights outresults are in Table 2. For every

fault settings. CCalc was used in version 2.0 and among Problem instance, we measured the time in seconds of three
the provided SAT solvergrasp was used. Although Separate solving processes and computed the average which
grasp does not provide the current state of the art SAT is shown in each systems column. A dash indicates that a
solving techniques, it was the only solver in our tests that System was unable to compute a solution in less than 600
produced all solutions. Regardintjv”, we used release Seconds. The column labeléghgthdenotes the length of
2007-10-11 with default settings. the shortest possible plan(s) for the problem instancetwhic
Concerning planning problems, one is often interested in IS Passed as a parameter to the different systems. The last
finding only the first solution. This issue is different in our "OW in the tables lists penalized average times. In contrast
approach, in most of the biological applications we need to {0 normal average times, the penalized ones take timeouts
consider all solutions. For example, recall Figure 4 where it account. Although the system might have taken much
we need to process all answer sets in order to do statistica|oNg€r o find a solution, the penalized average is computed
analysis. To this end, we consider both cases when compards if the system found a solution after 600 seconds.
ing the systems, finding one, and finding all solutions. Results show that compared to the other systems our sys-
Unfortunately, our current biological applications get t€m performs quite well and appears to be robust. In the
solved too fast to make systems compareable. Being notlocks worldexample, it was the only system that could
generid®, a comparison of different systems using our bio- €numerate all solujuons in reasonable time. As_ men_tloned,
logical problems is not yet feasible. We use crafted argifici  this issue is especially valuable because our biological ap
problems instead to compare performance of systems. plications often neeq all solutions to be computed. But also
The first one is the well knowblocks worldproblem. when only one solution has to be found, our system outper-

We used thellv* encoding and problem instances from [g]. formed bothCCalc and fﬂ”k' CCalc's performance was
Due to advances in computer hardware, these old instance§eMparable to ours until the problems became too hard in
are solved too fast to get reasonable runtimes. That is whyPenchmark number 9.

we came up with five additional instances (p6 - p10, see Regarding théights outproblem,C'Calc performs sur-

Table 1) which are still demanding for the systems running Prisingly well when concurrent execution of actions iS not
on today’s hardware. allowed. It computes a solution almost instantly, while*

has difficulties even in the smallest instance. Although be-
ing quite fast with a few light bulbs, the runtime of our sys-

to thebomb in the toileproblem: All of a variable number X _ ]
of light bulbs has to be switched off. The problem comes tem rises rapidly as soon as more than twenty bulbs are in-
volved. When allowing concurrency in this exampié,*

in two flavors, either with concurrent execution of actions
is the fastest systent’Calc seems to have great problems

Our second benchmark sutights out? is very similar

10unlike most artificial problems, we do not have parametersroting
the size of problem instances. 120ptimal means that there is at least one solution at baymdit no
11ldea taken from General Gameplaying Competition 2008. solution can at bountd — 1.




[ No. [ Instance| length ]| BioC-one [ CCalc-one [ div*-one ]| BioC-all | CCalc-all | div”-all |
1 p01 05 0.31 0.51 0.06 0.32 0.51 0.06
2 p02 06 0.22 0.35 0.05 0.22 0.42 0.05
3 p03 08 1.19 1.21 1.21 1.21 8.23 4.57
4 p04 09 3.89 3.88 1.17 4.05 5.74 15.19
5 p05 11 5.04 5.39 2.92 4.92 11.24 22.98
6 p06 13 4.21 3.88 21.15 4.78 408.23 —
7 p07 14 8.76 7.08 42.04 11.81 364.22 —
8 p08 16 36.88 14.28 — 133.49 — —
9 p09 16 39.39 129.15 — 41.75 — —
10 pl0 17 66.68 — — 85.83 — —
[ Average Time (Sum Timeouts][ 17.49(0) | 19.47(3) [ 10.54(9) [ 20.61(0) [ 122.87(9) [ 9.58(15) |
[ AveragePenalized Time || 1749 | _ 7752 | 18738 | 2061 | 26601 | 304.79 |

Table 1. Blocks world experiments computing one and all solutions

with the hugé® number of light bulbs which was used in the

[3] http://ww. cs. uni - pot sdam de/ w/ bi oasp.

problem instances and is unable to find a solution in any in- [4] C. Castellini, E. Giunchiglia, and A. Tacchella. Sasbé

stance. Our system performs quite well in this benchmark,

though not as well agiv”.

7 Discussion

Although we motivate (and apply) our approach in a bio-
logical setting, many features are readily applicable B re
resenting and reasoning about dynamical systems in gen-
Centering our approach d@hhas several benefits.
First, C is a rich and well-studied formalism. Second, it
constitutes a mainstream implementation line for action la
guages. To this end, we provided a translation of the bi-
ologically motivated action languadg®ra;p to C and de-
vise several tools for dealing with action descriptions in
C (andCrasp). Among them, we implemented the com-
piler al 2asp allowing for translating action descriptions
in C (andCrarp) to logic programs under answer sets se-

eral.

mantics. This approach is similar to the one takeniby’

for processing action langua@e Both approaches exploit
the grounding and solving capacities of ASP, offering uni-
form (and thus instance independent) problem encodings
and easy variable handling. Our approach is supported by[lz]

a variety of pragmatic yet indispensable tools for address-

ing real world applications. Compared to other planning

systems, we are able to compete with, and sometimes eve

outperform current systems. Finally, our tools (as well as [14]
their source code) and the benchmark problems are freely

available at [3].
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