
The BioASP Library:
ASP Solutions for Systems Biology

Martin Gebser, Arne König, Torsten Schaub, Sven Thiele
University of Potsdam, Germany

Philippe Veber
Institut Cochin, France

Abstract—Today’s molecular biology is confronted with enor-
mous amounts of data, generated by new high-throughput tech-
nologies, along with an increasing number of biological models
available over web repositories. This poses new challenges for
bioinformatics to invent methods coping with incompleteness,
heterogeneity, and mutual inconsistency of data and models. To
this end, we built the library BioASP, providing a framework
for analyzing biological data and models with Answer Set
Programming (ASP). Due to the expressive modeling language,
the inherent tolerance of incomplete knowledge, and efficient
solving engines, ASP has proven to be an excellent tool for solving
a variety of biological questions. The BioASP library implements
methods for analyzing metabolic and gene regulatory networks,
consistency checking, diagnosing, and repairing biological data
and models. In particular, it allows for computing predictions and
generating hypotheses about required expansions of biological
models. To accomplish this, expert knowledge of both the biolog-
ical application and the ASP paradigm needs to be combined. In
fact, the functionalities provided by the BioASP library exploit
technical know-how of modeling (biological) problems in ASP
and gearing ASP solvers’ parameters to them. Often, such best-
practice technology is the result of an exhaustive series of tests.
The BioASP library integrates our practical experience and offers
them via easy-to-use Python functions, thus enabling ASP non-
experts to solve biological questions with ASP.

I. INTRODUCTION

The recent development of new high-throughput technolo-
gies in molecular biology has led to an enormous increase
of measurable data. Furthermore, an increasing number of
genetic and metabolic models for a variety of organisms are
published in databases on the web, such as KEGG, Biomodels,
Reactome, MetaCyc, and others. Despite of the huge amount
of available information, biological data and models suffer
from incompleteness and inconsistency. This makes it a non-
trivial task to use available biological knowledge for drawing
biologically meaningful conclusions in an automated way.

Due to its built-in tolerance of incompleteness, Answer Set
Programming (ASP) [1], [2] has proven to be an excellent
tool for solving a variety of questions on biological data and
models. We utilize ASP for detecting and explaining inconsis-
tencies [3], proposing repairs and computing predictions [4],
as well as generating hypotheses about required expansions of
biological models [5]. The obtained results can be used, e.g.,
for targeted literature research and experiment planning.

Solving biological questions often requires combining sev-
eral computational steps and thus integrating ASP with tra-
ditional programming paradigms. For instance, we may have

to parse and preprocess raw input data, then determine the
optimum for an optimization problem, and eventually compute
the intersection of all optimal solutions. Sometimes, we also
need to combine different ASP solvers in a chain of com-
putations. For example, we may first check the consistency
of a biological model using the solver clasp [6] and then
compute minimal diagnoses with the solver claspD [7]. Here,
the different computational complexities of involved tasks (NP
versus NPNP) lead to distinct adequate solving approaches.
Moreover, a solution to one subproblem may need to be fed
back as input part of another subproblem. Last but not least,
obtained results must be visualized in a user-friendly way.

To accommodate such complex solving scenarios, we cre-
ated the library BioASP, written in Python. It provides func-
tionalities for parsing biological inputs in several formats and
transforming them into ASP facts, and it encapsulates the
grounder gringo [8], [9] as well as the solvers clasp and
claspD. In particular, encapsulating objects can be fed with
logic programs describing different tasks, be launched with
dedicated parameter settings, and pass on results for further
processing. Thus, the BioASP library provides a framework
to conveniently use ASP, embedded into the imperative pro-
gramming paradigm of Python.

The outline of the paper is as follows. The next section
provides a brief introduction to ASP. Section III outlines the
architecture of the BioASP library. In Section IV, we describe
the biological applications motivating the functionalities pro-
vided by BioASP and how such applications are solved using
BioASP. Section V presents an available web service based on
BioASP. In Section VI, we discuss related work and position
our work. Finally, we conclude in Section VII.

II. ANSWER SET PROGRAMMING

ASP is a declarative problem solving paradigm in which
a problem is encoded by a collection of rules such that its
intended models, called answer sets, represent solutions to the
problem. ASP offers a rich yet easy modeling language [10],
[8], [9] along with highly efficient inference engines based
on state-of-the-art Boolean constraint solving technology [11],
[6], [7]. We here only briefly summarize the essential of ASP;
for detailed introductions, we refer the reader to [1], [2].

A logic program is a finite set of rules of the form

a1; . . . ; al ← al+1, . . . , am,not am+1, . . . ,not an , (1)



2

where ai is an atom for 1≤ i≤n. A rule r as in (1) is called
a fact if l=m=n=1, and an integrity constraint if l=0. Let
head(r) = {a1, . . . , al}, body(r)+ = {al+1, . . . , am}, and
body(r)− = {am+1, . . . , an} denote the head as well as the
positive and negative body of r, respectively.

An interpretation is represented by the set of atoms that are
true in it. A model of a logic program P is an interpretation
in which all rules of P are true according to the standard
definition of truth in propositional logic. Apart from letting ‘;’
and ‘,’ stand for disjunction and conjunction, respectively, this
implies treating rules and default negation ‘not’ as implica-
tions and classical negation, respectively. Note that the (empty)
head of an integrity constraint is false in every interpretation,
while the empty body is true in every interpretation. Answer
sets of P are particular models of P satisfying an additional
stability criterion. Roughly, a set X of atoms is an answer
set if, for every rule of form (1), X contains a minimum of
atoms among a1, . . . , al whenever al+1, . . . , am belong to X
and no am+1, . . . , an belongs to X . However, the disjunction
in heads of rules is, in general, not exclusive. Formally, an
answer set X of a program P is a ⊆-minimal model of

{head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅} .

As mentioned above, the idea of ASP is to encode a problem
by a logic program such that its answer sets correspond to
solutions to the problem. As common in logic programming, a
program may contain first-order variables (over the implicitly
given Herbrand universe). Thus, a rule containing variables
is seen as the representative of all its variable-free instances.
In practice, a program is first subject to instantiation, accom-
plished by a grounder like gringo. Depending on whether the
obtained propositional program contains (proper) disjunctive
rules, one then uses an appropriate solver to compute answer
sets. We use for non-disjunctive programs the solver clasp,
while claspD is needed to deal with the more complex class of
disjunctive programs. All these systems are available at [12].

III. SYSTEM ARCHITECTURE

The BioASP library originates from our research in systems
biology, where ASP has proven to be an effective tool for
modeling and solving a variety of questions. However, to
produce solutions based on ASP, it is often necessary to
integrate it with existing environments and traditional pro-
gramming paradigms. Python is a flexible and extensible
scientific programming language used in various applications.
For example, the BioPython project [13] provides solutions
for transforming biological inputs into Python-utilizable data
structures and offers interfaces to common bioinformatics
programs. It implements tools to work with sequence data,
performs standard machine learning tasks, and integrates with
BioSQL, a sequence database schema also supported by the
BioPerl [14] and BioJava [15] projects. In order to make
the power of ASP accessible within an existing, rich system
environment, BioASP provides classes encapsulating ASP
tools: the grounder gringo as well as the solvers clasp and
claspD. For the library to work, it is required that binaries of
these systems are installed. In our biological applications, we

BioASP

Solver + 
Parameters

LP LPLP

SBML TXT

Input Formats

TermSetTermSet

gringo

clasp

claspD

asp data

query

Logic Programs / Problem Encodings

Facts

ASP tools encapsulated

Parse and transform input

into ASP facts

in Python objects

Fig. 1. Architecture of the BioASP library

are confronted with data in different formats, such as SBML,
the Systems Biology Markup Language, and the BioQuali [16]
format. The BioASP library provides functionalities to parse
and transform these formats into ASP facts. For their imple-
mentation, BioASP utilizes the library libSBML [17] as well
as the tool ply. As illustrated in Figure 1, the BioASP library
consists of three main modules: the data, the asp, and the
query module.

A. The data module

The data module implements functions to read and write
different biological formats, such as SBML and the BioQuali
format. These functions mainly parse input files and create a
Python data structure TermSet containing the ASP facts repre-
senting a problem instance at hand. A TermSet can be joined
with other TermSets and finally be written to a file, suitable
as input for the grounder gringo. The parsing functions are
application-specific, as the facts they produce must match the
atoms used in logic programs encoding questions on the input.
If new formats or questions are to be addressed, new functions
may need to be added for generating appropriate facts.

B. The asp module

The asp module constitutes the main component of the
BioASP library. It provides the classes GringoClasp, Gringo-
ClaspD, and GringoClaspOpt that encapsulate the grounder
gringo as well as the solvers clasp and claspD. These classes
can be instantiated with dedicated parameter settings, and their
objects can be run to solve logic programs in the input format
of gringo. When such a solving process is finished, its result
is returned as a TermSet or a list of TermSets.

In more detail, an object of the class GringoClasp can
be initialized with gringo options, such as constant defini-
tions like --const depth=10, and clasp options, such as



3

--heu=vsids for setting the search heuristic. A solving
process is then launched via the function run(programs,
nmodels), whose arguments are a list of input logic pro-
grams and an integer determining the maximum number of
answer sets to be computed. The run function internally calls
the grounder gringo to instantiate the input logic programs,
pipes gringo’s output into clasp, parses the output of clasp,
and finally returns answer sets as a list of TermSets.

Due to their computational complexity, some of our biologi-
cal problems are encoded by disjunctive logic programs. Since
clasp cannot handle such programs, BioASP also provides
the class GringoClaspD, which encapsulates gringo and the
solver claspD. The class works similarly to GringoClasp,
using gringo to instantiate logic programs but claspD instead
of clasp for computing their answer sets.

The third class, GringoClaspOpt, is designed for dealing
with optimization problems. Like GringoClasp, it encapsulates
gringo and clasp, but it aims at logic programs containing
optimization statements [8], [10]. Hence, clasp is here used to
compute an optimal solution, and the associated optimum is
returned by the run function.

The generic classes of the asp module can be utilized to
solve a variety of problems, depending on the logic programs
passed to the run functions of their objects.

C. The query module

The query module implements functionalities particular to
biological questions. The provided functions work in a generic
way on inputs given as TermSets. The contained facts are
combined with logic programs encoding the problem to be
solved, using an appropriate object of a class provided by
the asp module. Notably, the addressed biological question is
taken into account for picking the parameter setting of such
an object. Once they are computed, answer sets can be further
processed, e.g., by filtering out atoms derived from facts.

IV. APPLICATION AREAS

This section describes the biological questions that are
currently addressed by the BioASP library. They stem from
two major application areas in systems biology.

In our first application, we analyze gene regulatory networks
and data on the variation of gene expressions from steady state
shift experiments. Here, we rely upon the Sign Consistency
Model [18], imposing constraints between experimental mea-
surements and gene regulatory networks, modeled in terms of
so-called influence graphs. Observed variations are represented
as colorings on the nodes of an influence graph, as exemplified
in Figure 2. For this setting, we developed logic programs
to detect and explain inconsistencies between a network and
experimental observations [3] and to compute minimal repairs
allowing for prediction under inconsistency [4].

In our second application, we explore the biosynthetic
capabilities of metabolic networks. Many metabolic networks
are only partially defined, and only few metabolites can be
identified without ambiguity. Our approach builds upon a for-
mal method for analyzing large-scale metabolic networks [19],
[20]. The basic idea is that a reaction can operate only if

reb1

hsc82 rap1 sin3

ume6

ino2 hsf1 spo12 top1

Fig. 2. Influence graph of genetic regulations in Escherichia Coli

its reactants either are available as nutrients, referred to as
seeds, or can be produced by other metabolic reactions. This
allows for expanding a metabolic network by successively
adding operable reactions along with their products. The set of
metabolites in the resulting network represents all metabolites
that can in principle be synthesized from seeds. For this
setting, we developed logic programs to compute producible
metabolites and minimal expansions of a network required to
complete production pathways for target metabolites [5].

In the following, we further detail the workflow of these
two applications.

A. Diagnosing and Repairing on Gene Regulatory Networks

In the context of gene regulatory networks, we are interested
in checking whether behaviors observed in experiments can be
explained and in predicting behaviors of unobserved species.
If experimental observations are inconsistent with a network,
i.e., if they cannot be explained, minimal diagnoses can help to
identify unreliable data or regulations missing in the network.
Moreover, on the basis of minimal repairs, behaviors of
unobserved species can be predicted even in the case of mutual
inconsistency between network and data. Beyond analyzing
available experimental data, the provided functionalities can be
used for experiment planning. In this case, the input describes
the desired behavior of a biological system, and predictions
indicate conditions needed to achieve such behavior.

The BioQuali format has been designed for the textual
representation of gene regulatory networks as well as data on
the variation of gene expressions. For instance, Figure 3 shows
the BioQuali representation of the partially colored influence
graph in Figure 2. For such inputs, the BioASP library
provides the functions bioquali.readGraph(File) and
bioquali.readProfile(File) to parse a network and

reb1 -> hsc82 +
reb1 -> rap1 +
reb1 -> sin3 +
reb1 -> top1 +
sin3 -> ume6 -
ume6 -> ino2 +
ume6 -> hsf1 -
ume6 -> spo12 -
ume6 -> top1 -

hsc82 = -
rap1 = -
ume6 = +
ino2 = -
hsf1 = +
spo12 = +
top1 = +

Fig. 3. BioQuali format for networks (left) and observations (right)



4

obs_elabel(gen("reb1"),gen("hsc82"),1).
obs_elabel(gen("reb1"),gen("rap1"),1).
obs_elabel(gen("reb1"),gen("sin3"),1).
obs_elabel(gen("reb1"),gen("top1"),1).
obs_elabel(gen("sin3"),gen("ume6"),-1).
obs_elabel(gen("ume6"),gen("ino2"),1).
obs_elabel(gen("ume6"),gen("hsf1"),-1).
obs_elabel(gen("ume6"),gen("spo12"),-1).
obs_elabel(gen("ume6"),gen("top1"),-1).

exp("exp1").
obs_vlabel("exp1",gen("hsc82"),-1).
obs_vlabel("exp1",gen("rap1"),-1).
obs_vlabel("exp1",gen("ume6"),1).
obs_vlabel("exp1",gen("ino2"),-1).
obs_vlabel("exp1",gen("hsf1"),1).
obs_vlabel("exp1",gen("spo12"),1).
obs_vlabel("exp1",gen("top1"),1).

Fig. 4. ASP facts representing a network (top) and observations (bottom)

observations, respectively, and transform them into ASP facts.
For example, the facts obtained from the statements in Figure 3
are shown in Figure 4. (The name "exp1" associated with
experimental observations is obtained from the name of the
file containing the observations in BioQuali format.)

For consistency checking, BioASP’s query module provides
the function is_consistent(TermSet). It combines a
problem instance like the one shown in Figure 4 with a
logic program encoding the consistency check and uses a
GringoClasp object for solving. If this object returns some
answer set, network and observations are mutually consistent,
and inconsistent otherwise.

In the case of consistency, we can further use the func-
tion prediction_under_consistency(TermSet) to
compute predictions. It runs a GringoClasp object on the
same input as used for consistency checking, but with the
option --cautious of clasp being set. This makes clasp
compute the intersection of all answer sets, corresponding to
the predicted system behavior under the given observations.
The atoms in the intersection that are not derived from facts (in
the problem instance) are predicted and returned as a TermSet.

Otherwise, if network and observations are not consistent,
one might be interested in the causes for inconsistency.
To this end, BioASP’s query module provides the function
compute_subset_mic(TermSet). It combines a prob-
lem instance like the one shown in Figure 4 with a logic
program encoding diagnosis and uses a GringoClaspD object
for solving. The obtained answer sets, representing minimal

[TermSet([active("exp1",gen("spo12"))]),
TermSet([active("exp1",gen("hsf1"))]),
TermSet([active("exp1",gen("hsc82")),

active("exp1",gen("top1"))]),
...]

Fig. 5. Minimal diagnoses as a list of TermSets

[TermSet([
repair(vflip("exp1",gen("rap1"),-1)),
repair(vflip("exp1",gen("ume6"),1)),
repair(vflip("exp1",gen("hsc82"),-1))])

]

Fig. 6. A list containing a minimal repair as a TermSet

diagnoses of inconsistency, are returned as a list of TermSets.
For example, Figure 5 shows the first part of such a list.

Beyond diagnosing, BioASP supports several modes of
repairing inconsistent networks and observations. A repair
is understood as a collection of modifications on a network
and observations that makes them mutually consistent. Such
modifications can be the addition of regulations, flipping the
polarity (activation or inhibition) or the observed variation
(increase or decrease) of regulations or species, respectively,
and allowing for species with unexplained variation. Since
the adequacy of these modifications is application-specific,
BioASP provides separate functions for different repair modes,
confining the admissible kinds of modifications.

As the number of candidate repairs can be huge, one
is usually not interested in all them, but only in minimal
repairs, which modify network and observations as little as
possible. Thus, the query module of BioASP provides func-
tions to determine the minimum number of required modi-
fications relative to repair modes. For instance, the function
card_minimal_repair_flip_obs(TermSet) runs a
GringoClaspOpt object to determine the minimum number
of observations to be flipped for making a problem instance
like the one shown in Figure 4 consistent. Then, the function
card_minimal_repair_flip_obs2(Opt,TermSet)
can be used to compute all minimal repairs by running a
GringoClasp object with the options --opt-val=Opt and
--opt-all of clasp being set. This second function returns
a list of TermSets containing the computed minimal repairs,
such as the (singleton) list shown in Figure 6. The functions
for other repair modes also follow the described scheme.

Complementing prediction in the consistent case, prediction
under inconsistency can be accomplished by intersecting all
answer sets comprising a minimal repair. To this end, the func-
tion prediction_card_min_repair(Opt,TermSet)
runs a GringoClasp object on the same input as used for
computing minimal repairs, but with the option --cautious
of clasp being set in addition to --opt-val=Opt and
--opt-all. As in the case of consistency, the atoms in the

TermSet([
vlabel("exp1",gen("reb1"),1),
vlabel("exp1",gen("hsc82"),1),
vlabel("exp1",gen("rap1"),1),
vlabel("exp1",gen("sin3"),1),
vlabel("exp1",gen("ume6"),-1)

])

Fig. 7. Predicted variations as a TermSet



5

intersection of all answer sets (comprising a minimal repair)
that are not derived from facts (in the problem instance) are
predicted and returned as a TermSet, such as the one shown
in Figure 7. Since the returned atoms hold under all minimal
repairs relative to a repair mode, they describe system behavior
that can sensibly be predicted even though the system is not
globally consistent.

In summary, the functions provided by the BioASP library
implement a variety of reasoning tasks on gene regulatory
networks, modeled by influence graphs, and experimental
data, described by observed variations. Given that some func-
tionalities build on top of others, composite tasks can be
accomplished by chaining several function calls in a workflow.

B. Metabolic Network Expansion

Our second application deals with the biosynthetic capabil-
ities of metabolic networks. Given a set of nutrients, called
seeds, and target metabolites that cannot be produced by
reactions in a network, the goal is to generate hypotheses about
expansions with additional reactions completing production
pathways for the targets. Candidate reactions that can poten-
tially be added are obtained from related networks available
in web repositories, such as KEGG and MetaCyc.

The metabolic networks, seeds, and target metabolites used
in our application are described in SBML format. To parse
and transform such inputs into ASP facts, the BioASP library
provides the functions ReadSBMLnetwork(File,Name),
ReadSBMLseeds(File), and ReadSBMLtargets(Fi-
le). Exemplary facts obtained by them are shown in Figure 8.

For identifying unproducible targets, BioASP provides the
function get_unproducible(TermSet), which uses a
GringoClasp object along with logic programs encoding this
task. If there are unproducible targets, minimal expansions that
complete production pathways for them are of interest. Thus,
the function get_extension_minimum(TermSet) runs
a GringoClaspOpt object to determine the minimum num-
ber of reactions to be added. Since there often are plenty
minimal expansions in this application, it is useful to in-
vestigate their common fragments. To this end, the function

reaction("rea03981","ecoli").
reactant("com01126","rea03981").
product("com05702","rea03981").
reaction("rea09430","ecoli").
reactant("com05702","rea09430").
reactant("com00462","rea09430").
product("com03190","rea09430").
seed("com05702").
target("com03190").
target("com04283").

reaction("rea04982","metacyc").
reactant("com03190","rea04982").
reactant("com05702","rea04982").
product("com04283","rea04982").

Fig. 8. ASP facts representing metabolic networks, seeds, and targets

Fig. 9. Web interface for consistency checking, diagnosis, and prediction

get_cautious_4_opt_extensions(TermSet,Opt)
can be used to compute the intersection of all minimal
expansions by running a GringoClasp object with the op-
tions --opt-val=Opt, --opt-all, and --cautious of
clasp being set, as in the case of prediction under inconsistency
in the previous application.

V. WEB SERVICE

On the basis of the BioASP library, we built a web service1

providing easy access to functionalities used in our first
application, dealing with inconsistencies in gene regulatory
networks. The web service does not require any locally in-
stalled software on the user side other than a web browser.
As shown in Figure 9, it provides the possibility to upload
files describing networks and experimental data in the Bio-
Quali format. Furthermore, predefined examples allow users
to instantly experience the functionalities of the web service.
These include consistency checking, diagnosis, and prediction.

While consistency checking simply results in a positive or
negative answer, we offer three diagnosis modes: “find one
inconsistency,” “find all inconsistencies,” and “approximate
all inconsistencies.” The first mode provides a single minimal
diagnosis, and the second one retrieves all of them. Obtained
minimal diagnoses can be viewed either textually or graph-
ically, as shown in Figure 10. If there are several minimal
diagnoses, they can also be displayed in a combined way
joining subnetworks with common species, thus highlighting
regions of inconsistency. The third diagnosis mode works by
iteratively removing minimal inconsistent subnetworks until
the residual network is found to be consistent. This approach
has been used in previous work [16] and is also offered by
our web service for comparison.

Finally, our web service allows for prediction “under con-
sistency” and “under cardinality minimal repair.” The first
mode is used if network and data are mutually consistent,

1http://data.haiti.cs.uni-potsdam.de/wsgi/app



6

Fig. 10. Minimal diagnoses in textual (top) and graphical (bottom) mode

Fig. 11. Predictions in textual mode

and the second otherwise. In the latter case, the repair mode
is currently fixed to modifying experimental observations by
flipping increase to decrease, and vice versa. Hence, predic-
tions are obtained only if the network as such (without any
observations) is consistent. The computed predictions can be
viewed textually, as shown in Figure 11.

VI. RELATED WORK

Several libraries, such as BioPython [13], BioPerl [14],
and BioJava [15], implement tools and methods for biological

computations. To our knowledge, BioASP is the first library
providing access to ASP-based methods in systems biology.

Biochemical networks can be modeled at different levels
of abstraction. One usually distinguishes between quantitative
(kinetic) and qualitative (stoichiometric or even purely causal)
models. Quantitative models are applicable only if a certain
amount of kinetic parameters is known, such as substance
concentrations, equilibrium constants, or reaction rates. If
enough information is available, a quantitative model (a set
of differential equations) can be developed and analyzed
with tools like CellDesigner [21] or GEPASI [22]. However,
biological systems lacking detailed quantitative information
are better analyzed with qualitative methods.

The BioASP library provides unique solutions for the qual-
itative analysis of metabolic and gene regulatory networks.
Our approaches to diagnosis, repair, and prediction rely upon
the Sign Consistency Model [18], which is also the basis of
the BioQuali system [16]. BioQuali internally uses a solver
for binary decision diagrams as inference engine. By virtue of
exploiting logic programs and ASP solvers, the functionalities
offered by BioASP (computing all minimal diagnoses, repair-
ing, and predicting relative to repairs) go beyond the ones of
BioQuali. Other qualitative methods for analyzing gene regu-
latory networks, e.g., [23], build on Thomas’ approach [24].
Here, a system is represented by a state transition graph, and
the goal is to analyze the dynamic behavior of the system,
e.g., for identifying attractors and steady states.

Our approach to the analysis of metabolic networks is
inspired by the network expansion algorithm due to Ebenhöh,
Handorf, and Heinrich [19], [20]. They originally applied
a stochastic method, determining and drawing conclusions
from a representative yet incomplete set of samples of valid
network expansions. Our approach additionally allows for the
computation of minimal expansions and for reasoning over
the complete set of all (minimal) expansions. Schuster et
al. [25] use Petri nets for simulating metabolic networks and
for computing elementary flux modes. A recent SAT-based
approach by Soh and Inoue [26] aims at identifying necessary
reactions in metabolic pathways.

VII. CONCLUSION

We presented the BioASP library as a framework providing
ASP solutions for applications in systems biology. BioASP
integrates with traditional programming paradigms to make
the power of ASP accessible within an existing, rich system
environment. Its current functionalities allow for analyzing
metabolic and gene regulatory networks. The supported rea-
soning tasks include consistency checking, diagnosis, repair,
prediction, and network expansion. The BioASP library is pub-
licly available at http://www.cs.uni-potsdam.de/
bioasp/library/BioASP.tar.gz. In the future, we
want to address further biological applications and extend the
BioASP library with functionalities for them.

Acknowledgments
This work was partially funded by the German Federal

Ministry of Education and Research within the GoFORSYS
project (http://www.goforsys.org/; grant 0313924).



7

REFERENCES

[1] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[2] M. Gelfond, “Answer sets,” in Handbook of Knowledge Representation,
V. Lifschitz, F. van Hermelen, and B. Porter, Eds. Elsevier, 2008, pp.
285–316.

[3] M. Gebser, T. Schaub, S. Thiele, and P. Veber, “Detecting inconsistencies
in large biological networks with answer set programming,” Theory and
Practice of Logic Programming, 2010, to appear.

[4] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele,
and P. Veber, “Repair and prediction (under inconsistency) in large
biological networks with answer set programming,” in Proceedings
of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR’10), F. Lin and U. Sattler, Eds.
AAAI Press, 2010, pp. 497–507.

[5] T. Schaub and S. Thiele, “Metabolic network expansion with ASP,”
in Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), P. Hill and D. Warren, Eds. Springer-Verlag,
2009, pp. 312–326.

[6] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), M. Veloso, Ed. AAAI
Press/MIT Press, 2007, pp. 386–392.

[7] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Os-
trowski, and T. Schaub, “Conflict-driven disjunctive answer set solving,”
in Proceedings of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR’08), G. Brewka and
J. Lang, Eds. AAAI Press, 2008, pp. 422–432.

[8] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele, “A user’s guide to gringo, clasp, clingo, and
iclingo,” [12].

[9] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele, “On
the input language of ASP grounder gringo,” in Proceedings of the
Tenth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’09), E. Erdem, F. Lin, and T. Schaub, Eds.
Springer-Verlag, 2009, pp. 502–508.

[10] T. Syrjänen, “Lparse 1.0 user’s manual,” http://www.tcs.hut.
fi/Software/smodels/.

[11] E. Giunchiglia, Y. Lierler, and M. Maratea, “Answer set programming
based on propositional satisfiability,” Journal of Automated Reasoning,
vol. 36, no. 4, pp. 345–377, 2006.

[12] “Potassco, the Potsdam answer set solving collection, bundles tools
for answer set programming developed at the University of Potsdam,”
http://potassco.sourceforge.net/.

[13] P. Cock, T. Antao, J. Chang, B. Chapman, C. Cox, A. Dalke, I. Friedberg,
T. Hamelryck, F. Kauff, B. Wilczynski, and M. de Hoon, “Biopython:
freely available Python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009.

[14] J. Stajich, D. Block, K. Boulez, S. Brenner, S. Chervitz, C. Dagdigian,
G. Fuellen, J. Gilbert, I. Korf, H. Lapp, H. Lehväslaiho, C. Matsalla,
C. Mungall, B. Osborne, M. Pocock, P. Schattner, M. Senger, L. Stein,
E. Stupka, M. Wilkinson, and E. Birney, “The Bioperl toolkit: Perl
modules for the life sciences,” Genome Research, vol. 12, no. 10, pp.
1611–1618, 2002.

[15] R. Holland, T. Down, M. Pocock, A. Prlić, D. Huen, K. James, S. Foisy,
A. Dräger, A. Yates, M. Heuer, and M. Schreiber, “BioJava: an open-
source framework for bioinformatics,” Bioinformatics, vol. 24, no. 18,
pp. 2096–2097, 2008.

[16] C. Guziolowski, A. Bourde, F. Moreews, and A. Siegel, “BioQuali Cy-
toscape plugin: analysing the global consistency of regulatory networks,”
BMC Genomics, vol. 10, 2009.

[17] B. Bornstein, S. Keating, A. Jouraku, and M. Hucka, “LibSBML: an
API library for SBML,” Bioinformatics, vol. 24, no. 6, pp. 880–881,
2008.

[18] A. Siegel, O. Radulescu, M. Le Borgne, P. Veber, J. Ouy, and S. La-
garrigue, “Qualitative analysis of the relation between DNA microarray
data and behavioral models of regulation networks,” Biosystems, vol. 84,
no. 2, pp. 153–174, 2006.

[19] O. Ebenhöh, T. Handorf, and R. Heinrich, “Structural analysis of
expanding metabolic networks,” Genome Informatics, vol. 15, no. 1,
pp. 35–45, 2004.

[20] T. Handorf, O. Ebenhöh, and R. Heinrich, “Expanding metabolic net-
works: scopes of compounds, robustness, and evolution,” Journal of
Molecular Evolution, vol. 61, no. 4, pp. 498–512, 2005.

[21] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, and
H. Kitano, “CellDesigner 3.5: a versatile modeling tool for biochemical
networks,” Proceedings of the IEEE, vol. 96, no. 8, pp. 1254–1265,
2008.

[22] P. Mendes, “GEPASI: a software package for modelling the dynamics,
steady states and control of biochemical and other systems,” Computer
Applications in the Biosciences, vol. 9, no. 5, pp. 563–571, 1993.

[23] H. de Jong, M. Page, C. Hernandez, and J. Geiselmann, “Qualitative
simulation of genetic regulatory networks: method and application,”
in Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI’01), B. Nebel, Ed. Morgan Kaufmann,
2001, pp. 67–73.

[24] R. Thomas and R. d’Ari, Biological Feedback. CRC Press, 1990.
[25] S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar,

“Structural analysis of metabolic networks: elementary flux modes,
analogy to Petri nets, and application to Mycoplasma pneumoniae,” in
Proceedings of the German Conference on Bioinformatics (GCB’00),
E. Bornberg-Bauer, U. Rost, and J. Stoye, Eds. Logos Verlag, 2000,
pp. 115–120.

[26] T. Soh and K. Inoue, “Identifying necessary reactions in metabolic path-
ways by minimal model generation,” in Proceedings of the Nineteenth
European Conference on Artificial Intelligence (ECAI’10), H. Coelho,
R. Studer, and M. Wooldridge, Eds. IOS Press, 2010, pp. 277–282.


