
From Non-Convex Aggregates to Monotone Aggregates in ASP

⇤

Mario Alviano

University of Calabria, Italy
alviano@mat.unical.it

Wolfgang Faber

University of Huddersfield, UK
wf@wfaber.com

Martin Gebser

University of Potsdam, Germany
gebser@cs.uni-potsdam.de

Abstract

In answer set programming, knowledge involving
sets of objects collectively is naturally represented
by aggregates, which are rewritten into simpler
forms known as monotone aggregates by current
implementations. However, there is a complexity
gap between general and monotone aggregates. In
this paper, this gap is filled by means of a poly-
nomial, faithful, and modular translation function,
which can introduce disjunction in rule heads. The
translation function is now part of the recent ver-
sion 4.5 of the grounder GRINGO. This paper fo-
cuses on the key points of the translation function,
and in particular on the mapping from non-convex
sums to monotone sums.

1 Introduction

Answer set programming (ASP) is a declarative language
for knowledge representation and reasoning [Brewka et al.,
2011]. In ASP knowledge is encoded by means of logic rules,
possibly using disjunction and default negation, interpreted
according to the stable model semantics [Gelfond and Lifs-
chitz, 1988; 1991]. In a nutshell, stable models are minimal
models of a program reduct obtained by deleting rules whose
body is false, and by fixing the interpretation of negative lit-
erals in the remaining rules. Hence, stable models are those
models that contain only necessary atoms under the assump-
tion they provide for default negated formulas.

Since its first proposal, the basic language was extended
by several constructs in order to ease the representation of
practical knowledge, and particular interest was given to ag-
gregate functions [Simons et al., 2002; Liu et al., 2010;
Bartholomew et al., 2011; Faber et al., 2011; Ferraris, 2011;
Gelfond and Zhang, 2014]. In fact, aggregates allow for
expressing properties on sets of atoms collectively, and are

⇤This work is based on a paper presented at the 31st Interna-
tional Conference on Logic Programming (ICLP 2015) [Alviano et
al., 2015]. Mario Alviano was partially supported by the Italian
Ministry of University and Research under PON project “Ba2Know
(Business Analytics to Know) Service Innovation - LAB”, No.
PON03PE 00001 1, and by Gruppo Nazionale per il Calcolo Sci-
entifico (GNCS-INdAM).

widely used for example to enforce functional dependencies,
where a rule of the form

? R0(X), COUNT[Y : R(X,Y,Z)] > 1

constrains relation R to satisfy the functional dependency
X ! Y, where X [Y [Z is the set of attributes of R,
and R0 is the projection of R on X. Among the several se-
mantics proposed for interpreting ASP programs with aggre-
gates, two of them [Faber et al., 2011; Ferraris, 2011] are
implemented in widely-used ASP solvers [Faber et al., 2008;
Gebser et al., 2012]. The two semantics agree for programs
without negated aggregates, and are thus referred indistinctly
in this paper as F-stable model semantics (where we often
leave “F-” implicit in the following). Interestingly, under this
restriction F-stable models can be still defined as minimal
models of a program reduct obtained by deleting rules whose
body is false, and by fixing the interpretation of negative lit-
erals in the remaining rules [Alviano et al., 2015], exactly as
in the aggregate-free case.

Non-convex aggregations are of particular interest because
they may arise in several contexts while modeling complex
knowledge [Eiter et al., 2008; 2012; Abseher et al., 2014]. A
minimalistic example is provided by the ⌃P

2 -complete prob-
lem called Generalized Subset Sum [Berman et al., 2002],
where two vectors u and v of integers as well as an inte-
ger b are given, and the task is to decide whether the for-
mula 9x8y(ux + vy 6= b) is true, where x and y are vec-
tors of binary variables of the same length as u or v, respec-
tively. For example, for u = [1, 2], v = [2, 3], and b = 5,
the task is to decide whether the following formula is true:
9x1x28y1y2(1 · x1 + 2 · x2 + 2 · y1 + 3 · y2 6= 5). Any natu-
ral encoding of such an instance would include a non-convex
aggregate of the form SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5,
which was not correctly handled by any ASP system before
2015. In fact, despite the fact that F-stable models were first
proposed more than a decade ago, a complete implementation
of non-convex aggregates was achieved only last year in the
paper that this one is based on [Alviano et al., 2015].

Supporting non-convex aggregates was a challenge be-
cause typical ASP systems implement a two phases compu-
tation: first, the grounding phase instantiates the input pro-
gram; then, the stable models of the ground program are
computed by the solving phase. The two phases thus han-
dle different input formats: while the grounding phase can

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4100

process any program written by the user, the solving phase
expects to read ground programs having a limited structure.
In particular, the solving phase expects aggregates to be of
a simple form known as monotone aggregates, and many
common reasoning tasks on normal programs with mono-
tone aggregates belong to the first level of the polynomial
hierarchy, while in general they belong to the second level
for normal programs with aggregates [Faber et al., 2011;
Ferraris, 2011]. This observation already evidences that all
rewriting techniques introduced before 2015 are applicable
only if recursion is limited to convex aggregates [Liu and
Truszczyński, 2006], the largest class of aggregates for which
the common reasoning tasks still belong to the first level of
the polynomial hierarchy in the normal case [Alviano and
Faber, 2013]. In order to bridge the complexity gap between
monotone and non-convex aggregates, introducing disjunc-
tion in rule heads is necessary, and it is actually the missing
tile of the puzzle, discovered in [Alviano et al., 2015].

The translation is however non-trivial because in general
non-convex aggregates have to be replaced by disjunctions
of monotone aggregates, so that an auxiliary atom represent-
ing the truth value of a non-convex aggregate can be derived
whenever some of the monotone aggregates in the disjunction
is true. In logic programming, the conventional approach for
encoding such a disjunction consists in a set of rules, each
having the auxiliary atom in the head and one of the mono-
tone aggregates in the body. However, often this conventional
approach can only preserve models, but not stable models.
In fact, recall that stable models are minimal models of a
program reduct, and the program reduct only contains rules
whose body is true. So how to guarantee that all rules result-
ing from the translation of a non-convex aggregate survive in
a program reduct when the aggregate is true? In addition, the
program reduct is such that the interpretation of negative liter-
als is fixed. That is, how to guarantee that the interpretation of
positive literals in the non-convex aggregate does not become
fixed in program reducts? These and related “optimization”
issues have been solved in our previous work [Alviano et al.,
2015]. The basic ideas and intuitions of the translation func-
tion presented at ICLP 2015 are given in this paper. In partic-
ular, the paper focuses on SUM, as all other aggregation func-
tions considered in [Alviano et al., 2015] can be translated
to sums by using strong equivalences [Lifschitz et al., 2001;
Turner, 2003; Ferraris, 2011].

2 Background

Let V be a set of propositional atoms including ?. A propo-
sitional literal is an atom possibly preceded by one or more
occurrences of the negation as failure symbol ⇠. An aggre-
gate literal, or simply aggregate, is of the following form:

SUM[w1 : l1, . . . , wn

: l
n

]� b (1)

where n � 0, b, w1, . . . , wn

are integers, l1, . . . , ln are
propositional literals, � 2 {<,,�, >,=, 6=}, and [w1 :
l1, . . . , wn

: l
n

] is a multiset. (Note that this notation of
propositional aggregates differs from ASP-Core-2 format1 for

1https://www.mat.unical.it/aspcomp2013/ASPStandardization/

ease of presentation.) A literal is either a propositional literal,
or an aggregate. A rule r is of the following form:

p1 _ · · · _ p
m

 l1 ^ · · · ^ l
n

(2)

where m � 1, n � 0, p1, . . . , pm are propositional atoms,
and l1, . . . , ln are literals. The set {p1, . . . , pm} \ {?} is re-
ferred to as head, denoted by H(r), and the set {l1, . . . , ln}
is called body, denoted by B(r). A program ⇧ is a finite set
of rules. The set of propositional atoms (different from ?)
occurring in a program ⇧ is denoted by At(⇧).
Example 1. Consider the following program ⇧1:

x1 ⇠⇠x1 x2 ⇠⇠x2

y1 unequal y2 unequal ? ⇠
unequal

unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

As will be clarified after defining the notion of a stable model,
⇧1 encodes the instance of Generalized Subset Sum intro-
duced in Section 1. ⌅

An interpretation I is a set of propositional atoms such
that ? /2 I , and associates literals with binary digits as fol-
lows: for p 2 V , I(p) equals 1 if p 2 I , and 0 otherwise;
I(⇠l) := 1� I(l); I(SUM[w1 : l1, . . . , wn

: l
n

]� b) equals 1
if
P

i2[1..n] wi

I(l
i

)� b, and 0 otherwise.
Relation |= is inductively defined as follows: for a literal l,

I |= l if I(l) = 1; for a rule r of the form (2), I |= B(r) if
I |= l

i

for all i 2 [1..n], and I |= r if H(r) \ I 6= ; when
I |= B(r); for a program ⇧, I |= ⇧ if I |= r for all r 2 ⇧.
For any expression ⇡, if I |= ⇡, we say that I is a model of ⇡,
I satisfies ⇡, or ⇡ is true in I . In the following, > will be a
shorthand for ⇠?, i.e., > is a literal true in all interpretations.
Example 2. Continuing with Example 1, the models of ⇧1,
restricted to the atoms in At(⇧1), are X , X[{x1}, X[{x2},
and X [{x1, x2}, where X = {unequal , y1, y2}. ⌅

The reduct of a program ⇧ with respect to an interpretation
I is obtained by removing rules with false bodies and by fix-
ing the interpretation of all negative literals. More formally,
the following function is inductively defined: for p 2 V ,
F (I, p) := p; F (I,⇠l) := > if I 6|= l, and F (I,⇠l) := ?
otherwise; F (I, SUM[w1 : l1, . . . , wn

: l
n

]� b) := SUM[w1 :
F (I, l1), . . . , wn

: F (I, l
n

)]� b; for a rule r of the form (2),
F (I, r) := p1 _ · · · _ p

m

 F (I, l1) ^ · · · ^ F (I, l
n

); for
a program ⇧, F (I,⇧) := {F (I, r) | r 2 ⇧, I |= B(r)}.
Program F (I,⇧) is the reduct of ⇧ with respect to I .

An interpretation I is a stable model of a program ⇧ if
I |= ⇧ and there is no J ⇢ I such that J |= F (I,⇧).
Let SM (⇧) denote the set of stable models of ⇧. Two pro-
grams ⇧ and ⇧0 are equivalent with respect to a context
V ✓ V , denoted ⇧ ⌘

V

⇧0, if both |SM (⇧)| = |SM (⇧0)|
and {I \ V | I 2 SM (⇧)} = {I \ V | I 2 SM (⇧0)}.
Example 3. Continuing with Example 2, the only stable
model of ⇧1 is {x1, unequal , y1, y2}. Indeed, the reduct
F ({x1, unequal , y1, y2},⇧1) is

x1 > y1 unequal y2 unequal

unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

and no strict subset of {x1, unequal , y1, y2} is a model
of the above program. On the other hand, the reduct

4101

F ({x2, unequal , y1, y2},⇧1) is
x2 > y1 unequal y2 unequal

unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

and {x2, y2} is a model of the above program. Sim-
ilarly, it can be checked that {unequal , y1, y2} and
{x1, x2, unequal , y1, y2} are not stable models of ⇧1. ⌅

An aggregate A is monotone (in program reducts) if J |=
F (I, A) implies K |= F (I, A), for all J ✓ K ✓ I ✓ V , and
it is convex (in program reducts) if J |= F (I, A) and L |=
F (I, A) implies K |= F (I, A), for all J ✓ K ✓ L ✓ I ✓ V;
when either property applies, I |= A and J |= F (I, A) yield
K |= F (I, A), for all J ✓ K ✓ I .
Example 4. Resorting again to Example 2, note that the ag-
gregate SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5 is non-convex.
Replacing 6= with > (resp. <) would result into a monotone
(resp. convex) aggregate. ⌅

3 Compilation

Current ASP solvers (as opposed to grounders) only accept
a limited set of aggregates, essentially sums of the form (1)
such that b, w1, . . . , wn

are non-negative integers, and� is�.
The corresponding class of programs will be referred to as
LPARSE-like programs. Hence, compilations from the gen-
eral language are required. More formally, what is needed
is a polynomial-time computable function associating ev-
ery program ⇧ with an LPARSE-like program ⇧0 such that
⇧ ⌘At(⇧) ⇧0. Such a function was given in [Alviano et al.,
2015], and is briefly recalled in this section. Before, how-
ever, it is instructive to consider a few examples that show
why other approaches fail to preserve stable models.
Example 5. Consider program ⇧1 from Example 1 and the
following program ⇧2, often used as an intermediate step to
obtain an LPARSE-like program:

x1 ⇠⇠x1 x2 ⇠⇠x2

y1 unequal y2 unequal ? ⇠
unequal

unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5
unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] < 5

The two programs differ only subtly: the last rule of ⇧1 is
replaced by two rules in ⇧2, following the intuition that the
original aggregate is true in an interpretation I if and only if
either I |= SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5 or I |=
SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] < 5. However, the two pro-
grams are not equivalent. Indeed, it can be checked that ⇧2

has no stable model, and in particular {x1, unequal , y1, y2}
is not stable because F ({x1, unequal , y1, y2},⇧2) is

x1 > y1 unequal y2 unequal

unequal SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5

and {x1} is one of its models. ⌅
Example 5 is essentially the origin of the first question

posed in the introduction: How to guarantee that all rules
resulting from the translation of a non-convex aggregate sur-
vive in a program reduct when the aggregate is true? Another
obstacle for previous translation functions is represented by
negative integers, whose substitution may change the seman-
tics of programs.

Example 6. Let ⇧3 be the following program:

p SUM[1 : p,�1 : q] � 0 p q q p

Its only stable model is {p, q}. The negative integer is usu-
ally removed by means of a rewriting adapted from pseudo-
Boolean constraint solvers, which replaces each element w : l
in (1) such that w < 0 by �w : ⇠l, and also adds �w to b.
The resulting program in this example is

p SUM[1 : p, 1 : ⇠q] � 1 p q q p

which has no stable models. In particular, {p, q} is not stable
because in the program reduct the aggregate is replaced by
SUM[1 : p, 1 : ?] � 1, and therefore ; is a smaller model. ⌅

Example 6 is thus the origin of the second question posed
in the introduction: How to guarantee that the interpretation
of positive literals in the non-convex aggregate does not be-
come fixed in program reducts? Actually, the fact that rewrit-
ings such as those hinted in the above examples do not pre-
serve stable models in general can be also explained via com-
plexity arguments. Indeed, while checking the existence of
a stable model is ⌃P

2 -complete for programs with atomic
heads, this problem is in NP for LPARSE-like programs with
atomic heads, and disjunction is necessary for modeling ⌃P

2 -
hard instances. It follows that, unless the polynomial hier-
archy collapses to its first level, a polynomial-time compila-
tion must possibly introduce disjunction when rewriting re-
cursive programs. This intuition is used in Section 3.2. Be-
fore, in Section 3.1, the structure of input programs is simpli-
fied by rewriting sums so that comparison operators are either
� or 6=; after this simplification, negative integers and 6= con-
stitute the remaining gap to LPARSE-like programs.

3.1 Mapping to sums

The notion of strong equivalence [Lifschitz et al., 2001;
Turner, 2003; Ferraris, 2011] will be used in this section. Let
⇡ := l1^ · · ·^ ln be a conjunction of literals, for some n � 0.
A pair (J, I) of interpretations such that J ✓ I is an SE-
model of ⇡ if I |= ⇡ and J |= F (I, l1) ^ · · · ^ F (I, l

n

).
Two conjunctions ⇡,⇡0 are strongly equivalent, denoted by
⇡ ⌘SE ⇡0, if they have the same SE-models. Strong equiva-
lence means that replacing ⇡ by ⇡0 preserves the stable mod-
els of any logic program.

The following strong equivalences can be proven by show-
ing equivalence with respect to models, and by noting that ⇠
is neither introduced nor eliminated:
(A) SUM[w1 : l1, . . . , wn

: l
n

] b ⌘SE

SUM[�w1 : l1, . . . ,�wn

: l
n

] � �b
(B) SUM[w1 : l1, . . . , wn

: l
n

] < b ⌘SE

SUM[w1 : l1, . . . , wn

: l
n

] b� 1

(C) SUM[w1 : l1, . . . , wn

: l
n

] > b ⌘SE

SUM[w1 : l1, . . . , wn

: l
n

] � b+ 1

(D) SUM[w1 : l1, . . . , wn

: l
n

] = b ⌘SE

SUM[w1 : l1, . . . , wn

: l
n

] � b ^
SUM[w1 : l1, . . . , wn

: l
n

] b

(E) SUM[w1 : l1, . . . , wn

: l
n

]� b ⌘SE

SUM[w : l | l2{l1, . . . , ln}\{?}, w :=
P

i2[1..n],li=l

w
i

, w 6=0]

4102

For example, (A) is based on the fact that the following state-
ments are equivalent, for every interpretation I:

1. I |= SUM[w1 : l1, . . . , wn

: l
n

] b;
2.

P
i2[1..n] wi

I(l
i

) b;

3.
P

i2[1..n]�wi

I(l
i

) � �b;
4. I |= SUM[�w1 : l1, . . . ,�wn

: l
n

] � �b.
Similar observations apply to (B)–(E). The application of
(A)–(E), from the last to the first, to a program ⇧ gives an
equivalent program ⇧0 with sums over distinct literals associ-
ated with integers different from zero, and whose comparison
operators are � and 6=.

3.2 Eliminating non-monotone aggregates

The structure of program ⇧0 can be further simplified by elim-
inating non-monotone aggregates. (To ease the presentation,
in the following we call an aggregate A non-monotone if it
contains a negative integer, or if � is 6=, thus disregarding
special cases in which A would still be monotone or convex.)
For an aggregate A of the form (1) such that� is�, we define
a rule with a fresh propositional atom aux , representing the
truth value of A, as head and a monotone aggregate as body:

aux SUM

0

@
[w

i

: l
i

| i2 [1..n], w
i

> 0] [
[�w

i

: lF
i

| i2 [1..n], w
i

< 0, l
i

2V] [
[�w

i

: ⇠l
i

| i2 [1..n], w
i

< 0, l
i

/2V]

1

A

� b�
X

i2[1..n],wi<0

w
i

(3)

Note that any (w
i

: l
i

) such that w
i

< 0 and l
i

/2 V
is replaced by (�w

i

: ⇠l
i

), thus rewarding the falsity
of l

i

rather than penalizing l
i

, which is in turn compen-
sated by adding �w

i

to the bound b; such a replacement
preserves models even if condition l

i

/2 V is removed [Si-
mons et al., 2002], while this is not the case for stable mod-
els [Ferraris and Lifschitz, 2005]. For this reason, for any
l
i

2 V associated with a negative weight in A, (3) introduces
a fresh, hidden propositional atom lF

i

[Eiter et al., 2005;
Janhunen and Niemelä, 2012], and the following rules are
also added to the rewritten program:

lF
i

 ⇠l
i

(4)

lF
i

 aux (5)

l
i

_ lF
i

 ⇠⇠
aux (6)

Intuitively, lF
i

must be true whenever l
i

is false, but also when
aux is true, so to implement the concept of saturation [Eiter
and Gottlob, 1995]. Rules (4) and (5) encode such an intu-
ition. Moreover, rule (6) guarantees that at least one of l

i

and
lF
i

belongs to any model of reducts obtained from interpre-
tations I containing aux . In fact, lF

i

represents the falsity
of l

i

in the reduct of rule (3) with respect to I in order to test
the satisfaction of the monotone aggregate in (3) relative to
subsets of I .
Example 7. Consider ⇧3 from Example 6, and the following
program ⇧0

3 obtained by applying the rewriting above:
p aux aux SUM[1 : p, 1 : qF] � 1
p q q p
qF ⇠q qF aux q _ qF ⇠⇠

aux

Since SM (⇧0
3) consists of the stable model {p, q, aux , qF }

only, we have ⇧3 ⌘{p,q} ⇧0
3. That is, the two programs are

equivalent with respect to the visible atoms {p, q} . ⌅
Note that so far the rewriting of non-monotone aggre-

gates provided an answer to the second question posed in
the introduction, i.e., the interpretation of positive literals
is not fixed in program reducts thanks to the addition of
auxiliary atoms that allow for checking all possible assign-
ments. In order to also answer the first question posed in
the introduction, the rewriting has to be extended to an ag-
gregate A := SUM[w1 : l1, . . . , wn

: l
n

] 6= b. In fact,
we are going to consider two cases based on splitting A
into A

>

:= SUM[w1 : l1, . . . , wn

: l
n

] � b + 1 and
A

<

:= SUM[�w1 : l1, . . . ,�wn

: l
n

] � �b + 1. (Note
that A

>

⌘SE SUM[w1 : l1, . . . , wn

: l
n

] > b, and A
<

⌘SE

SUM[w1 : l1, . . . , wn

: l
n

] < b.) In a nutshell, all occurrences
of A are replaced by a fresh atom aux , which is also the head
of two new rules of the form (3), one for A

>

and one for A
<

.
Moreover, rules of the form (4)–(6) are introduced for each
i 2 [1..n] such that l

i

2 V , so that all possible assignments
can still be checked in program reducts.
Example 8. Consider ⇧1 from Example 1, and the following
program ⇧0

1 obtained by applying the rewriting above:
x1 ⇠⇠x1 x2 ⇠⇠x2

y1 unequal y2 unequal ? ⇠
unequal

unequal aux

aux SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] � 6
aux SUM[1 : xF

1 , 2 : xF

2 , 2 : yF1 , 3 : yF2] � 4

where rules of the form (4)–(6) for all l
i

2 {x1, x2, y1, y2}
are omitted for brevity. Since the only stable model of
⇧0

1 is {x1, unequal , y1, y2, aux , x
F

1 , x
F

2 , y
F

1 , y
F

2 }, we have
⇧1 ⌘{x1,x2,unequal,y1,y2} ⇧0

1. ⌅
It is important to note that the rewritten A

>

and A
<

are
both true in the stable model above, which is eventually the
answer to the first question posed in the introduction. In fact,
the rewriting process described in this section can be iterated
to eliminate all non-monotone aggregates from a program ⇧,
where rew(⇧) denotes the resulting LPARSE-like program.
Theorem 1. For any program ⇧, we have ⇧ ⌘At(⇧) rew(⇧).

4 Conclusion

The representation of knowledge in ASP is eased by the avail-
ability of several constructs, among them aggregation func-
tions. As it is common in combinatorial problem solving,
the structure of input instances is simplified in order to im-
prove the efficiency of low-level reasoning. Concerning ag-
gregation functions, the simplified form processed by current
ASP solvers is known as monotone, and by complexity argu-
ments faithfulness of any polynomial rewriting requires the
introduction of disjunction if recursion is not limited to con-
vex aggregates. Even though the translation presented in this
paper is not particularly optimized towards actual recursion,
an experiment reported in [Alviano, 2015] shows that it can
pave the way to new applications of ASP. In fact, among 46
tested instances of Generalized Subset Sum, 38 were solved
by GRINGO+CLASP within a timeout of 900 seconds, while
the SMT solver Z3 could only solve 14 of these instances.

4103

References

[Abseher et al., 2014] M. Abseher, B. Bliem, G. Charwat,
F. Dusberger, and S. Woltran. Computing secure sets in
graphs using answer set programming. In D. Inclezan and
M. Maratea, editors, Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP), 2014.

[Alviano and Faber, 2013] M. Alviano and W. Faber. The
complexity boundary of answer set programming with
generalized atoms under the FLP semantics. In P. Cabalar
and T. Son, editors, International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR),
volume 8148 of LNCS, pages 67–72. Springer, 2013.

[Alviano et al., 2015] M. Alviano, W. Faber, and M. Geb-
ser. Rewriting recursive aggregates in answer set program-
ming: Back to monotonicity. Theory and Practice of Logic
Programming, 15(4-5):559–573, 2015.

[Alviano, 2015] M. Alviano. Evaluating answer set pro-
gramming with non-convex recursive aggregates. In
S. Bistarelli, A. Formisano, and M. Maratea, editors,
RCRA International Workshop on Experimental Evalua-
tion of Algorithms for Solving Problems with Combinato-
rial Explosion (RCRA), volume 1451 of CEUR Workshop
Proceedings, pages 1–15. CEUR-WS.org, 2015.

[Bartholomew et al., 2011] M. Bartholomew, J. Lee, and
Y. Meng. First-order semantics of aggregates in answer
set programming via modified circumscription. In AAAI
Spring Symposium on Logical Formalizations of Common-
sense Reasoning (SS-11-06), pages 16–22. AAAI, 2011.

[Berman et al., 2002] P. Berman, M. Karpinski, L. Lar-
more, W. Plandowski, and W. Rytter. On the com-
plexity of pattern matching for highly compressed two-
dimensional texts. Journal of Computer and System Sci-
ences, 65(2):332–350, 2002.

[Brewka et al., 2011] G. Brewka, T. Eiter, and
M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. On the
computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial
Intelligence, 15(3-4):289–323, 1995.

[Eiter et al., 2005] T. Eiter, H. Tompits, and S. Woltran. On
solution correspondences in answer set programming. In
L. Kaelbling and A. Saffiotti, editors, International Joint
Conference on Artificial Intelligence (IJCAI), pages 97–
102. Professional Book Center, 2005.

[Eiter et al., 2008] T. Eiter, G. Ianni, T. Lukasiewicz,
R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

[Eiter et al., 2012] T. Eiter, M. Fink, T. Krennwallner, and
C. Redl. Conflict-driven ASP solving with external
sources. Theory and Practice of Logic Programming,
12(4-5):659–679, 2012.

[Faber et al., 2008] W. Faber, G. Pfeifer, N. Leone,
T. Dell’Armi, and G. Ielpa. Design and implementation

of aggregate functions in the DLV system. Theory and
Practice of Logic Programming, 8(5-6):545–580, 2008.

[Faber et al., 2011] W. Faber, G. Pfeifer, and N. Leone. Se-
mantics and complexity of recursive aggregates in answer
set programming. Artificial Intelligence, 175(1):278–298,
2011.

[Ferraris and Lifschitz, 2005] P. Ferraris and V. Lifschitz.
Weight constraints as nested expressions. Theory and
Practice of Logic Programming, 5(1-2):45–74, 2005.

[Ferraris, 2011] P. Ferraris. Logic programs with proposi-
tional connectives and aggregates. ACM Transactions on
Computational Logic, 12(4):25:1–25:44, 2011.

[Gebser et al., 2012] M. Gebser, B. Kaufmann, and
T. Schaub. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187:52–89,
2012.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, International Confer-
ence and Symposium of Logic Programming (ICLP), pages
1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3):365–386,
1991.

[Gelfond and Zhang, 2014] M. Gelfond and Y. Zhang. Vi-
cious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming, 14(4-5):587–
601, 2014.

[Janhunen and Niemelä, 2012] T. Janhunen and I. Niemelä.
Applying visible strong equivalence in answer-set pro-
gram transformations. In E. Erdem, J. Lee, Y. Lierler, and
D. Pearce, editors, Correct Reasoning: Essays on Logic-
Based AI in Honour of Vladimir Lifschitz, volume 7265 of
LNCS, pages 363–379. Springer, 2012.

[Lifschitz et al., 2001] V. Lifschitz, D. Pearce, and
A. Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2(4):526–541,
2001.

[Liu and Truszczyński, 2006] L. Liu and M. Truszczyński.
Properties and applications of programs with monotone
and convex constraints. Journal of Artificial Intelligence
Research, 27:299–334, 2006.

[Liu et al., 2010] L. Liu, E. Pontelli, T. Son, and
M. Truszczyński. Logic programs with abstract con-
straint atoms: The role of computations. Artificial
Intelligence, 174(3-4):295–315, 2010.

[Simons et al., 2002] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[Turner, 2003] H. Turner. Strong equivalence made easy:
Nested expressions and weight constraints. Theory and
Practice of Logic Programming, 3(4-5):609–622, 2003.

4104

