
ASP for Anytime Dynamic Programming on Tree Decompositions

Bernhard Bliem1 and Benjamin Kaufmann2 and Torsten Schaub2,3 and Stefan Woltran1

1 TU Wien, Vienna, Austria 2 University of Potsdam, Germany 3 INRIA Rennes, France

Abstract
Answer Set Programming (ASP) has recently been
employed to specify and run dynamic program-
ming (DP) algorithms on tree decompositions, a
central approach in the field of parameterized com-
plexity, which aims at solving hard problems effi-
ciently for instances of certain structure. This ASP-
based method followed the standard DP approach
where tables are computed in a bottom-up fash-
ion, yielding good results for several counting or
enumeration problems. However, for optimization
problems this approach lacks the possibility to re-
port solutions before the optimum is found, and for
search problems it often computes a lot of unneces-
sary rows. In this paper, we present a novel ASP-
based system allowing for “lazy” DP, which utilizes
recent multi-shot ASP technology. Preliminary ex-
perimental results show that this approach not only
yields better performance for search problems, but
also outperforms some state-of-the-art ASP encod-
ings for optimization problems in terms of anytime
computation, i.e., measuring the quality of the best
solution after a certain timeout.

1 Introduction
Answer Set Programming (ASP) [Brewka et al., 2011] is
a vibrant area of AI providing a declarative formalism for
solving hard computational problems. Thanks to the power
of modern ASP technology [Gebser et al., 2012], ASP
was successfully used in many application areas, including
product configuration [Soininen and Niemelä, 1998], bio-
informatics [Guziolowski et al., 2013], and many more.

Recently, ASP has been proposed as a vehicle to spec-
ify and execute dynamic programming (DP) algorithms on
tree decompositions (TDs). TDs [Robertson and Seymour,
1984] are a central method in the field of parameterized com-
plexity [Downey and Fellows, 1999], offering a natural pa-
rameter (called treewidth) in order to identify instances that
can be solved efficiently due to inherent structural features.
Indeed, many real-world networks enjoy small treewidth;
problems like STEINER TREE can then be solved in lin-
ear time in the size of the network (see, e.g., [Chimani et
al., 2012]). Such efficient algorithms process a TD in a

bottom-up manner, storing in each node of the TD a table
containing partial solutions; see, e.g., [Niedermeier, 2006;
Bodlaender, 1993]. The size of these tables is bounded by
the treewidth, which, roughly speaking, guarantees the afore-
mentioned running times. Abseher et al. [2014] proposed a
system that calls an ASP solver in each node of the TD on a
user-provided specification (in terms of an ASP program) of
the DP algorithm, such that the answer sets characterize the
current table. Its contents are then handed over to the next
call which materializes the table of the parent node and so on.

Albeit this method proved useful for rapid prototyping of
DP algorithms and performed well on certain instances, there
is one major drawback: A table is always computed in its en-
tirety before the next table is processed. Hence, the system
cannot report anything before it has finished the table of the
TD’s root node (and thus computed all tables entirely). More-
over, this final table implicitly contains information on all so-
lutions. This leads to situations where unnecessarily many
rows are computed, in particular if we only need one solution.
Even worse, in optimization problems the system cannot give
any solution until all solutions have been obtained.

In this paper, we present an alternative approach to using
ASP for DP on TDs that overcomes these shortcomings. Our
method is based on a “lazy” table computation scheme. In
particular, for optimization problems this allows us to inter-
rupt the run and deliver the best solution found so far.

We first describe our general framework independently of
ASP. Then we show how we use ASP in the core of our algo-
rithm for computing the DP tables. In contrast to the standard
approach from [Abseher et al., 2014], we now require multi-
ple coexisting ASP solvers that communicate with each other.
Achieving this in an efficient way poses a challenge, however:
A naive way would be to restart a solver every time new in-
formation comes in. Alternatively, the recent multi-shot ASP
solving approach [Gebser et al., 2014] might be useful, as it
allows us to add information to a solver while it is running.

We implemented both alternatives and provide an exper-
imental evaluation on several problem encodings using real-
world graphs. The multi-shot approach turns out to have clear
advantages. We also demonstrate that the performance of our
new “lazy” algorithm is typically superior to the traditional
“eager” approach. Finally, we compare our algorithm to the
state-of-the-art ASP system clingo and show that on some
problems our system performs better in an anytime setting.

Related Work Anytime algorithms for certain ASP prob-
lem have been investigated in the literature. Alviano et
al. [2014] presented such an algorithm for computing atoms
that occur in all answer sets. Nieuwenborgh et al. [2006]
proposed an approximation theory for standard answer sets.
Also related to our approach, Gebser et al. [2015] propose a
method for improving the quality of solutions for optimiza-
tion problems within a certain time bound. They customize
the heuristics to find the first solutions faster, with the draw-
back that checking for optimality becomes more expensive.
In contrast to that, our lazy evaluation method does not have
such undesirable side-effects compared to the eager approach.

2 Background
Answer Set Programming ASP [Brewka et al., 2011] is
a popular tool for declarative problem solving due to its at-
tractive combination of a high-level modeling language with
high-performance search engines. In ASP, problems are de-
scribed as logic programs, which are sets of rules of the form

a0 ← a1,...,am,not am+1,...,not an

where each ai is a propositional atom and not stands for de-
fault negation. We call a rule a fact if n = 0, and an integrity
constraint if we omit a0. Semantically, a logic program in-
duces a collection of so-called answer sets, which are dis-
tinguished models of the program determined by answer sets
semantics; see [Gelfond and Lifschitz, 1991] for details.

To facilitate the use of ASP in practice, several exten-
sions have been developed. First of all, rules with vari-
ables are viewed as shorthand for the set of their ground in-
stances. Further language constructs include conditional lit-
erals and cardinality constraints [Simons et al., 2002]. The
former are of the form a:b1,...,bm, the latter can be writ-
ten as s{c1,...,cn}t, where a and bi are possibly default-
negated literals and each cj is a conditional literal; s and t
provide lower and upper bounds on the number of satisfied lit-
erals in the cardinality constraint. The practical value of both
constructs becomes apparent when used with variables. For
instance, a conditional literal like a(X):b(X) in a rule’s an-
tecedent expands to the conjunction of all instances of a(X)
for which the corresponding instance of b(X) holds. Simi-
larly, 2{a(X):b(X)}4 is true whenever at least two and at
most four instances of a(X) (subject to b(X)) are true.

We use the input language of the ASP system clingo [Geb-
ser et al., 2014], which allows us to set the truth values of cer-
tain external atoms in the ground program “from the outside”.
We can thus assume certain truth values for these atoms, com-
pute answer sets, and repeat this under different assumptions,
without having to re-ground the program. Atoms can be
declared as external by directives of the form #external
a:b1,...,bm where a:b1,...,bm is a conditional literal.

Tree decompositions Tree decompositions, originally in-
troduced in [Robertson and Seymour, 1984], are tree-shaped
representations of (potentially cyclic) graphs. The intuition is
that multiple vertices of a graph are subsumed under one TD
node, thus isolating the parts responsible for cyclicity.
Definition 1 A tree decomposition (TD) of a graph G =
(V,E) is a pair T = (T, χ) where T = (N,E′) is a (rooted)

a

b

c d e

{c, d}n5

{c, d}n2

{a, b, c}n1

{c, d} n4

{d, e} n3

Figure 1: A graph G and a (semi-normalized) TD T of G

tree and χ : N → 2V assigns to each node a set of vertices
(called the node’s bag) as follows: (1) For each vertex v ∈ V ,
there is a node n ∈ N such that v ∈ χ(n). (2) For each edge
e ∈ E, there is a node n ∈ N such that e ⊆ χ(n). (3) For
each v ∈ V , the subtree of T induced by {n ∈ N | v ∈ χ(n)}
is connected. We call maxn∈N |χ(n)| − 1 the width of T . We
call a node n ∈ N a join node if it has two children with
equal bags, and we call T semi-normalized if all nodes with
more than one child are join nodes.

In general, constructing a minimum-width TD is in-
tractable [Arnborg et al., 1987]. However, there are heuris-
tics that give “good” TDs in polynomial time [Dechter, 2003;
Dermaku et al., 2008; Bodlaender and Koster, 2010], and
anytime algorithms that allow for a trade-off between time
and width [Gogate and Dechter, 2004]. We can transform
any TD into a semi-normalized one in linear time without in-
creasing the width [Kloks, 1994].

Many computationally hard problems become tractable if
the instances admit TDs whose width can be bounded by a
constant. This is commonly achieved by DP algorithms that
traverse a TD in post-order (cf. [Niedermeier, 2006]). We use
the following framework for such computations: At each TD
node n, partial solutions for the subgraph induced by the ver-
tices encountered so far are computed and stored in a table
Tn. When clear from the context, we equate nodes with their
tables (e.g., “child tables” are tables at child nodes). Each
table is a set of rows r consisting of (a) a set items(r) that
stores problem-specific data to be handled by the DP algo-
rithm, (b) a nonempty set extend(r) of tuples (e1, . . . , ek),
where k is the number of child tables and ei is a row in the i-th
child table, and (c) an integer cost(r) whose intended purpose
is to indicate the cost of each (partial) solution obtainable by
recursively combining predecessor rows from extend(r). If
the root table is nonempty in the end, we can obtain complete
solutions by recursively combining rows with their predeces-
sors. To achieve tractability if the width w is bounded, the
size of each table should be bounded by some function f(w).

Example 1 Consider the graph G and TD T in Figure 1. To
compute a minimum vertex cover of G via DP on T , we start
at n1. For each vertex cover X of the subgraph induced by
the current bag χ(n1) = {a, b, c}, we insert a row r into Tn1

with items(r) = X , cost(r) = |X| and extend(r) = ∅ (as
n1 is a leaf, r has no predecessors). This gives us one row for
each of {a, b}, {a, c}, {b, c} and {a, b, c}.

Now we proceed to n2. Here a and b have been re-
moved ({a, b} ⊆ χ(n1) \ χ(n2)), and d has been introduced
(d ∈ χ(n2) \ χ(n1)). We go through each row r1 ∈ Tn1

and
try to extend it as follows. We try each subsetX ⊆ χ(n2) with
items(r1) ∩ χ(n2) ⊆ X . If X is a vertex cover of the sub-
graph induced by χ(n2),X extends r1 to a vertex cover of the

subgraph induced by χ(n1)∪χ(n2), so we insert a row r into
Tn2 with items(r) = X , extend(r) = {r1} and cost(r) =
cost(r1) + |X \ χ(n1)|. When we have tried out all r1 and
X , we compress Tn2

by discarding each row r such that there
is a row s with items(r) = items(s) and cost(r) > cost(s)
(no solution involving r will be optimal). Then we exhaus-
tively replace all r, s ∈ Tn2

such that items(r) = items(s)
with a single row t having items(t) = items(r), extend(t) =
extend(r) ∪ extend(s) and cost(t) = cost(r).

For instance, let r1 be the row in Tn1
with items(r1) =

{a, c}. We try to extend this row at n2 by trying out subsets of
χ(n2) = {c, d} that contain c (as c ∈ items(r1) and c is still
present in the bag of n2). Both subsets {c} and {c, d} are ver-
tex covers of the subgraph induced by χ(n2), so we add a row
into Tn2 with items {c} and a row with items {c, d}. These
rows extend r1 to the partial solution {a, c} and {a, c, d}, re-
spectively. Next, to extend the row in Tn1 with items {a, b},
we go through all subsets of χ(n2). The subset ∅ is not a ver-
tex cover of the subgraph induced by χ(n2), so we skip it. For
the subset {c}, for example, we again add a row. Note that
Tn2

now contains two rows whose items are {c}: One has
cost 2 and one has cost 3. Due to the compression outlined
above, we will eventually delete the latter. Finally, we merge
all remaining rows that have the same items into one. For
instance, we end up with a row having items {c} and cost 2
that extends two rows in Tn1 : The one with items {a, c} and
the one with items {b, c}.

We handle n3 and n4 in an analogous way. For the join
node n5, we try out each pair of predecessors (r2, r4) from
Tn2

and Tn4
, respectively, such that they are “compatible”,

i.e., items(r2) = items(r4). From such a pair we obtain
a row r at Tn5 with items(r) = items(r2), extend(r) =
{(r2, r4)} and cost(r) = cost(r2) + cost(r4) − |items(r)|
(due to the inclusion-exclusion principle). Finally we com-
press Tn5

as before. Any row at Tn5
whose cost is minimal

among all rows in Tn5
can then be recursively extended to

obtain a minimum vertex cover of the original graph.

Traditional TD-based DP algorithms like this follow an
“eager evaluation” approach: At each decomposition node,
they compute a table in its entirety based on the (entire) child
tables. While this is theoretically efficient in many cases (as
long as the width is bounded), it has the property that we can-
not give any solution until all tables are computed and we can
construct an optimal solution. In many practical applications,
though, we would like to report the best solution found after
a certain amount of time even if this solution is not optimal.
Traditional DP on TDs lacks such an anytime feature.

3 ASP for Anytime DP on TDs
We now present our main contribution: An algorithm that
performs DP on TDs via “lazy evaluation” in contrast to the
traditional “eager” approach. The basic idea is that whenever
a new row r is inserted into a table T , we try to extend r to
a new row in the parent table, and we only compute a new
row at T if all attempts of extending r have failed. In the best
case, we thus only need to compute a single row at each table
to reach a solution, whereas the eager approach would com-
pute potentially huge tables. In the worst case, we compute as

many rows as the eager approach, with some additional over-
head due to the constant “jumping around” between tables.

3.1 Algorithm Description

Algorithm 1: Main program
Input: table Troot of the root of a tree decomposition

1 lowestCost←∞
2 r ← nextRow(Troot)
3 while r 6= fail do
4 construct a solution from r and print it
5 lowestCost← cost(r)
6 r ← nextRow(Troot)

We first compute a TD and run the main program (Algo-
rithm 1) with the (still empty) root table Troot as input. There
we initialize the global variable lowestCost, which will keep
track of the cost of the best complete solution found so far.
Then we try to compute a row r at Troot by calling nextRow.
If this succeeds, then r witnesses a solution whose cost is de-
noted by cost(r). As we will see, nextRow only produces
rows that lead to solutions cheaper than lowestCost. Hence,
whenever we reach Line 4, we can use r to obtain a solution
that is the best so far. Then we update lowestCost and repeat
these steps to compute even better rows until this is no longer
possible and we have reached the optimum.

Algorithm 2: nextRow
Input: table T whose children we call T1, . . . , Tn
Result: adds a row r to T s.t. cost(r) < lowestCost;

returns r, or “fail” if there is no such row
7 if T is empty then
8 initialize solverT
9 foreach T ′ in {T1, . . . , Tn} do

10 r′ ← nextRow(T ′)
11 if r′ = fail then return fail
12 activeT ′ ← r′

13 childCalledLastT ← n
14 r ← fail
15 while r = fail do
16 while solverT cannot find a new row candidate do
17 if activateNext(T) = false then
18 if callChild(T) = false then return fail
19 s← new row candidate from solverT
20 if cost(s) < lowestCost and s is cheaper than any

row in T that has the same items as s then
21 insert s into T
22 r ← s
23 return r

In the beginning, the subroutine nextRow (Algorithm 2)
initializes all tables (Lines 7–13): For each table T we start
an instance of an external solver, denoted by solverT , which
for now we consider as a black box responsible for computing
rows at T when given a combination of child rows.

Let T be any table and T1, . . . , Tn be its children (if there
are any). By the time we reach Line 13 during a call to
nextRow(T), there is exactly one row r′ in each T ′ ∈
{T1, . . . , Tn} that has been marked as the active row of T ′

(using the global variable activeT ′ in Line 12). The meaning
of active rows is the following: At any point of the execution,
the tuple (activeT1

, . . . , activeTn
) indicates the combination

of child rows that we are currently trying to extend to a new
row at T . Whenever solverT is invoked, it uses this tuple to
construct row candidates that extend the active rows.

Once we have set the active rows, we try to find a row
candidate s extending them. Suppose there is one (Line 19).
If its cost exceeds our bound (lowestCost), or if there is a row
in T having the same items as s and at most the cost of s, we
continue with the next row candidate. Otherwise we insert
s into T (replacing a row having the same items if possible)
and return s; execution will then proceed with the parent of T
making use of s (or, if T is the root, with the main program
registering a new solution).

Once there are no more row candidates at T for the current
active row combination (Line 16), we try the next combina-
tion of existing child rows (Line 17). If we have already tried
all of those, we need to compute a new child row (Line 18). If
this also fails, we know that there is no further row at T since
we have processed all combinations of child rows.

Algorithm 3 sets the active rows to a combination of ex-
isting child rows that has not been considered yet. For each
table T we use the global variable childCalledLastT to store
which child table has most recently produced a row (initial-
ized in Line 13). The reason is the following: Once a row r
has been added to a child table Ti, we need to check whether
r allows us to produce a new row at T by trying out all combi-
nations of r with existing rows from the other child tables. In
the course of this, we will keep activeTi

fixed to r and vary all
activeTj

with j 6= i until we have handled all combinations of
r with existing rows. Only then will we proceed to compute
a new row at a child table in Line 18.

Algorithm 3: activateNext
Input: table T whose children we call T1, . . . , Tn;

integer i (1 if not specified)
Result: sets (activeTi , . . . , activeTn) to next combination

of existing rows; returns true iff successful
24 if i > n then return false
25 if i = childCalledLastT then
26 return activateNext(T, i+ 1)
27 if activeTi

is the last row of Ti then
28 activeTi

← first row of Ti
29 return activateNext(T, i+ 1)
30 activeTi

← row in Ti that follows activeTi

31 return true

Repeated calls of activateNext(T) allow us to iterate
over all existing child rows similar to the way we can produce
all n-digit numbers by repeatedly incrementing a variable that
is initially 0. We can adapt this idea for our purpose by imag-
ining that each of these n digits can have a different base:
For i 6= childCalledLastT , the i-th digit identifies a row in Ti,

while the digit at position childCalledLastT can only take one
symbol (representing r) as if its base was 1.

Algorithm 4: callChild
Input: table T whose children we call T1, . . . , Tn
Result: produces new row at a child of T ; resets active

rows of other children; returns true iff successful
32 if T has no children then return false
33 i← nextChildToCall(T)
34 r ← nextRow(Ti)
35 while r = fail do
36 mark the table Ti as exhausted
37 if all of T1, . . . , Tn are exhausted then return false
38 i← nextChildToCall(T)
39 r ← nextRow(Ti)
40 childCalledLastT ← i
41 foreach T ′ in {T1, . . . , Tn} do
42 if T ′ = Ti then activeT ′ ← r
43 else activeT ′ ← first row of T ′

44 return true

The subroutine callChild (Algorithm 4) is invoked
with T as input when all combinations of existing child rows
have been active. Its purpose is to compute a new row at a
child of T or return false if this is not possible. Let the chil-
dren of T be called T1, . . . , Tn. For each Tj we maintain a
flag that indicates whether Tj is exhausted, i.e., whether no
new rows can be added to Tj . Algorithm 4 uses a subrou-
tine nextChildToCall (whose code we omit) to decide
which child table should produce the next row. The idea is
that nextChildToCall(T) takes the tuple (1, . . . , n), ro-
tates it such that the element equal to childCalledLast is at the
back, and then removes any j such that Tj is exhausted. Then
nextChildToCall(T) returns the first element of the re-
sulting tuple and thus identifies the next non-exhausted child
table following the child table called most recently (possibly
with “wrapping around”). In this way, we call child tables in
a round-robin fashion to ensure a certain fairness in the hope
of obtaining solutions more quickly than by filling one table
completely before proceeding to the next one. This hope is
based on the assumption that the likelihood of one row from,
say, T2 being “bad” (i.e., not leading to a solution) is higher
than the likelihood of a lot of rows from T1 being “bad”.

3.2 Further Optimizations
We implemented two further optimizations that we omitted
in the pseudocode for the sake of a clearer presentation. First
of all, especially TD nodes with more than one child incur a
big computational effort. For this reason, in addition to our
general algorithm that works on every TD, we implemented a
special treatment for semi-normalized TDs that does not call
an external solver at join nodes. Rather, it uses the fact that
many DP algorithms (e.g., the one in Example 1) produce a
row at a join node if and only if there is a combination of child
rows that “fits together”, which means that they all contain the
same “join-relevant” items. Which items are “join-relevant”
depends on the problem. In our implementation, the user can
mark the desired items with a special flag.

This join behavior allows us to greatly restrict the active
row combinations that must be considered. In fact, we can
ignore all combinations where some activei and activej dif-
fer on their “join-relevant” items. Whenever a new row r is
added to a child table, we can quickly identify which rows
from the other child tables can be combined with r. To find
such matches, we keep tables sorted and use binary search.

The second optimization regards the cost bound that is
used to discard rows that are too expensive. In our pseu-
docode, we follow the naive approach of eliminating rows
whose cost exceeds the cost of the best solution found so far
(Line 20). However, we can do better if the DP algorithm ex-
hibits “monotone costs” (i.e., the cost of a row is at least the
sum of the costs of its origins): Suppose, for example, that T
is a table with children T1, T2, and that T1 is exhausted, which
means that all tables below it are exhausted, too. Then, in a
way, we “know everything” about the subgraph G′ induced
by the vertices that occur somewhere below T1 but have been
forgotten. In particular, we know that G′ contributes at least
a certain amount c to the cost of every solution, since each so-
lution in part originates from some row in T1. If the currently
best solution has cost k and we now try to compute a new row
at T2, we can restrict ourselves to rows whose cost is below
k − c: If a row r at T2 had cost(r) ≥ k − c, any row in
T that originates from r would have a cost of at least k (due
to monotonicity) and would thus not lead to a better solution.
This argument can easily be extended to the case where not
T1 but some table below T1 is exhausted, and to the case of
more than two child tables. In this way, our implementation
can tighten the cost bound for new rows in many cases, which
often results in significantly fewer rows being computed.

3.3 Practical Realization
We implemented our algorithm by modifying the publicly
available D-FLAT system [Abseher et al., 2014]. This sys-
tem so far only allowed for an eager evaluation technique
that works as follows. The user provides an ASP specifica-
tion Π of a DP algorithm for her problem. At each TD node,
D-FLAT runs the ASP system clingo on Π, with the input
facts consisting of (a) the bags of the current node and its
children, (b) the subgraph of the problem instance induced by
the vertices in these bags, and (c) the (complete) child tables.
From each answer set D-FLAT then extracts a table row.

Our lazy evaluation algorithm on the other hand also calls
clingo on Π with the relevant bags and part of the instance
as input, but this time we do not provide the entire child ta-
bles. Instead, we only supply the currently active child rows.
In Line 8 of Algorithm 2, we set up clingo by grounding Π
together with its input. Note that we perform grounding only
in this initialization step and use the resulting propositional
program for all of the remaining execution.

For example, the following encoding allows us to compute
vertex covers of a graph with our lazy evaluation algorithm:
item(X) ← childItem(X), current(X).
{ item(X) : introduced(X) }.
← edge(X,Y), current(X), current(Y)

not item(X), not item(Y).
#external childItem(X) :

childNode(N), bag(N,X).

At each TD node, the system grounds this program together
with the bag information (provided as facts over predicates
childNode/1, bag/2, current/1 and introduced/1)
and the induced subinstance (facts over edge/2). The last
line declares all atoms of the form childItem(X) (where X
is a vertex in a child bag) as external, so the grounder does not
assume these atoms to be false even though no rule can de-
rive them. Assumption-based solving allows us to temporar-
ily freeze the truth value of these atoms according to the cur-
rently active rows, compute answer sets, then possibly change
the active rows and repeat the process.

Whenever we call the ASP solver (Line 16 of Algorithm 2),
one row in each child table is active and we set those atoms
childItem(X) to true where X is in an active child row (and
the others to false). Each resulting answer set specifies a table
row whose content is given by the terms within true atoms
over the item/1 predicate.

For optimization problems, a cost is associated with each
row. Our prototype implementation just uses the size of the
set of (join-relevant) items for this. This suffices for many
problems (in particular the ones we investigate in Section 4).
In the future, we will allow costs to be specified in ASP.

3.4 Applicability
It is a natural question for which problems our approach is
suitable. If a problem is expressible in monadic second-
order (MSO) logic, bounded treewidth leads to tractability
by [Courcelle, 1990]. The eager approach followed by the
D-FLAT systems works for all such problems [Bliem et al.,
2016]. In principle this also holds for our lazy algorithm,
but our implementation is currently restricted to problems in
NP (which simplifies algorithm descriptions and implemen-
tation). For MSO-definable problems on sufficiently large in-
stances of small treewidth, our algorithm is expected to out-
perform systems that do not exploit bounded treewidth.

4 Experiments
We pursued three research questions in our experiments:
1. Does our lazy evaluation approach pay off compared to
the traditional “eager” one, which is conceptually simpler but
does not allow for anytime solving? 2. How does our system
compare to the ASP system clingo with respect to running
time, or the solution quality in case of timeouts? 3. Does
assumption-based solving perform better than the straightfor-
ward way of re-grounding for each active row combination?

We encoded two search problems (3-COL, INDEPEN-
DENT DOMINATING SET) and three optimization problems
(VERTEX COVER, DOMINATING SET, STEINER TREE with
unit costs) using 11 real-world graphs (public transport net-
works of different cities) as input. All instances and problem
encodings are available at http://dbai.tuwien.ac.
at/proj/dflat/lazy-experiments.tar.gz. We
chose real-world instances because DP on TDs is reasonable
only when the width is small, and the observation that real-
world graphs often admit TDs of small width is the main mo-
tivation for this approach. The median width of our consid-
ered TDs is 5 (minimum: 3; maximum: 8).

We used the D-FLAT system with eager evaluation as well
as our lazy evaluation algorithm (denoted by eager and lazy,

Beijing Berlin London Munich Sant. Shangh. Sing. Timis. Tokyo V. (M) V. (MT)

STEINER TREE (times in seconds)

clingo B ∞ 154 ∞ (569) 20 103 ∞ ∞ ∞ ∞ 22 ∞
clingo U 253 176 341 (206) 20 134 313 136 141 136 (205) 22 150
lazy (476) 65 (4) 65 136 (1) 20 (4) 44 (172) 73 (18) 44 74 (5) 35 (1) 22 (42) 33
eager ∞ (4) 65 ∞ (1) 20 (3) 44 ∞ (59) 44 ∞ (38) 35 (1) 22 (439) 33

DOMINATING SET (times in seconds)

clingo B 113 85 132 (589) 48 61 142 63 86 69 45 44
clingo U (0) 112 (0) 85 (0) 132 (0) 48 (0) 61 (0) 139 (0) 63 (0) 82 (0) 69 (0) 45 (0) 43
lazy (16) 112 (3) 85 (1) 132 (0) 48 (0) 61 (8) 139 (1) 63 (132) 82 (1) 69 (0) 45 (4) 43
eager (23) 112 (3) 85 (1) 132 (0) 48 (0) 61 (4) 139 (1) 63 (229) 82 (1) 69 (0) 45 (5) 43

VERTEX COVER (times in centiseconds)

clingo B 115 85 153 48 63 146 62 98 70 45 66
clingo U (1) 111 (1) 83 (1) 150 (0) 48 (0) 63 (1) 141 (0) 62 (1) 96 (0) 69 (0) 45 (1) 64
lazy (55) 111 (24) 83 (55) 150 (13) 48 (19) 63 (52) 141 (20) 62 (46) 96 (22) 69 (12) 45 (26) 64
eager (65) 111 (32) 82 (68) 150 (17) 48 (24) 63 (63) 141 (26) 62 (68) 96 (28) 69 (15) 45 (36) 64

Table 1: Cost of best found solution for optimization problems after ten minutes (median over all runs; bold if optimal). Cells
without parentheses: timeout. In parentheses: running time. Some eager runs on STEINER TREE ran out of memory; we treated
this as timeout. For clingo, “B” and “U” denote branch-and-bound-based and USC-based optimization, respectively.

Beijing Berlin London Munich Santiago Shanghai Singap. Timisoara Tokyo Vienna (M) Vienna (MT)

3-COL

clingo 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01
lazy 2.14 0.36 0.90 0.18 0.27 0.95 0.30 1.34 0.32 0.16 0.49
eager 16.28 1.28 3.96 0.36 0.75 6.22 0.97 30.93 1.07 0.30 2.85

INDEPENDENT DOMINATING SET

clingo 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01
lazy 0.47 0.31 0.61 0.17 0.24 0.55 0.24 0.43 0.26 0.16 0.30
eager 0.62 0.36 0.73 0.20 0.29 0.68 0.24 0.64 0.32 0.18 0.65

Table 2: Time (in seconds; median over all runs) for finding a solution or determining that none exists.

respectively), and for lazy we tested both the re-grounding
and the assumption-based approach. Moreover, we compared
lazy against the ASP system clingo 4.5.4 with the default
branch-and-bound optimization strategy as well as one based
on unsatisfiable cores (with disjoint-core preprocessing). Our
encodings for clingo do not make use of decomposition.

The benchmarks ran on a Debian GNU/Linux system (ker-
nel 3.16.0.4) on an Intel Xeon E5345 CPU at 2.33 GHz, using
only one core without hyperthreading. We limited each run to
1 GB of main memory and 10 minutes of CPU time. D-FLAT
running times include heuristic generation of a TD. As per-
formance varies greatly depending on the TD, we used 30
different random seeds (causing different TDs) per instance.

4.1 Impact of Lazy Evaluation
Here we mainly inspect the ratio of the running time of lazy
to eager to find out if lazy brings improvements. The results
are summarized in Table 1 and Table 2.

Eager terminated within the resource limits on all runs ex-
cept for some on STEINER TREE: On Beijing, Shanghai and
Timisoara all of the respective 30 runs were aborted, and 25

on London. For lazy, the situation is better: Only STEINER
TREE on Beijing, Timisoara and London had aborted runs (6,
25 and 2, respectively). Thanks to lazy evaluation all of the
aborted runs were able to report a solution. The median cost
was even optimal (65) on Beijing, whereas on London it was
136 (optimum: 75) and on Timisoara 74 (optimum: 29).

In the following we compare the times for each pair of
completed runs. On all 3-COL instances, lazy is significantly
faster (based on a Wilcoxon signed-rank test) with an overall
improvement of 72 % (1 minus median of the ratio of lazy’s
time to eager’s time; lower quartile Q1 = 64 %, upper quar-
tile Q3 = 84 %). The improvement was particularly high on
Timisoara with 95 % (Q1 = 94 %, Q3 = 96 %).

Similarly, for INDEPENDENT DOMINATING SET, lazy is
significantly faster on all instances except Singapore, where
there is no significant difference. In fact, this is the only case
where there is no solution, so lazy is forced to compute as
many rows as eager. On the other instances, lazy overall gives
an 18 % improvement (Q1 = 15 %, Q3 = 22 %).

For DOMINATING SET, lazy is faster on most instances,
but significantly slower on Shanghai and Tokyo (median “im-

provement” −82 % and −11 %, respectively). On the other
hand, lazy is particularly fast on Singapore (58 % improve-
ment, Q1 = 56 %, Q3 = 61 %). Overall, lazy gives a 22 %
improvement (Q1 = 2 %, Q3 = 41 %) for this problem.

STEINER TREE displays interesting behavior since the im-
provement ratios vary a lot between instances. On three in-
stances lazy is significantly faster and on four it is signifi-
cantly slower (which is not visible in Table 1 due to round-
ing). When looking at all instances together, its median “im-
provement” is −4 % (Q1 = −10%, Q3 = 80 %), but the
mean is 20 %. The reason is that on those instances where
lazy is better it offers a huge improvement (up to 90 %).

On all VERTEX COVER instances, lazy is significantly
faster (overall improvement 22 %, Q1 = 20 %, Q3 = 25 %).

4.2 Comparison to Clingo
As expected, clingo is always faster than lazy on the search
problems (cf. Table 2). For the optimization problems, we
compare the quality of the best solution found before time-
out in Table 1. It makes a huge difference which of clingo’s
optimization strategies is used: By default, clingo employs
branch-and-bound search (BB), which aims at successively
producing models of decreasing costs until an optimal model
is found. Alternatively, clingo supports unsatisfiable-core-
based (USC) optimization, which relies on successively iden-
tifying and relaxing unsatisfiable cores until eventually an op-
timal model is obtained. USC often has an edge over BB
when the optimum can be established. However, while it can
be combined with disjoint core preprocessing, aiming at an
approximation of the optimal solution, it lacks the anytime
behavior of BB. Hence, when the optimum is out of reach,
BB may dominate USC in terms of solution quality. More
detailed explanations are given in [Gebser et al., 2015].

On DOMINATING SET and VERTEX COVER, USC solves
each instance optimally in at most 0.012 seconds, whereas
BB mostly times out. The corresponding median of the run-
ning times of lazy is 0.49 seconds (Q1 = 0.2, Q3 = 1.33),
with many outliers (maximum: 255.9 seconds).

The situation is different on STEINER TREE, however.
Both USC and BB time out on most instances. On a few in-
stances BB finds better solutions than USC before timing out,
but generally USC is better. We can observe that lazy clearly
outperforms both clingo configurations in this benchmark.

4.3 Influence of Assumption-based Solving
We compared our assumption-based algorithm to a naive ap-
proach, which, instead of using assumptions, simply grounds
the program anew whenever the active rows change. For this
comparison, we used all problems except STEINER TREE due
to technical limitations that we will eliminate in the future.
As all of the 3960 runs completed except for 17 timeouts, we
only considered completed runs. Overall the re-grounding ap-
proach is significantly slower on each instance of every prob-
lem. It is 7.93 times slower overall (Q1 = 4.34,Q3 = 14.92),
and 1.79 times slower in its best run.

4.4 Discussion
Usually lazy is more efficient than eager. Especially on
search problems it often manages to avoid computation of

many rows and thus yields a solution much quicker. On op-
timization problems, lazy is forced to inspect a larger search
space, which leads to less predictable behavior in terms of
running time compared to eager. Lazy mostly still offers bet-
ter performance, but it depends heavily on the problem and
instance. For example, on one DOMINATING SET instance
lazy required 82 % more time for finding the optimum, but
on a STEINER TREE instance eager was more than ten times
slower. Even though lazy may sometimes find the optimum
slower, this might be a price worth paying due to the possi-
bility of giving suboptimal solutions along the way.

Clingo is generally very quick in finding some solution, so
on the search problems lazy could not compete with it. For
some optimization problems, clingo’s USC-based optimiza-
tion strategy works remarkably well and outperforms lazy.
On other problems, it works less well: On STEINER TREE
lazy often terminates in a short amount of time where clingo
times out, and even in cases where lazy times out it produces
much better solutions. We conclude that lazy offers a clear ad-
vantage compared to the traditional eager approach and can
in some cases outperform state-of-the-art ASP systems.

As a by-product, initial experiments yielded the insight that
for some search problems lazy is much faster when given a
path decomposition, i.e., a TD where every node has at most
one child. However, when using path decompositions for op-
timization problems, the memory requirements are usually
prohibitive. Furthermore, when comparing lazy and eager
on semi-normalized TDs, our experiments did not indicate a
clear winner in terms of memory. Which variant requires less
space seems to depend on the problem, instance and TD. We
plan to investigate this in future work.

5 Conclusion
We presented a generic algorithm for performing DP on TDs
by means of lazy evaluation, and we implemented a system
that allows the user to specify the DP steps for a particu-
lar problem in a declarative language. In contrast to exist-
ing solutions like [Abseher et al., 2014], this allows us to
print solutions before the optimum is found. Our experi-
ments demonstrated that this is typically more efficient, also
for search problems without optimization, and on some prob-
lems it outperforms state-of-the-art ASP systems. We verified
that assumption-based solving, a recent advance in ASP solv-
ing technology, is indispensable for good performance.

In the future, we intend to improve efficiency by integrat-
ing the ASP solver tighter and tuning its parameters. Alter-
natively, it might be interesting to incorporate different for-
malisms instead of ASP. Moreover, for deciding at which ta-
ble we should compute a new row, we proposed a round-robin
strategy, and we plan to investigate different strategies. As de-
scribed in Section 3.2, we implemented a branch-and-bound
technique by discarding table rows that are more expensive
than the best known (global) solution so far. Currently, we
just ignore models that would induce such rows. We plan
to compare this to a version that adds constraints in ASP in-
stead. Finally, our experiments indicate that the actual shape
of the TD has a high impact on running times, so techniques
from [Abseher et al., 2015] could also be beneficial.

Acknowledgments This work was funded by DFG grant
SCHA 550/9 and by the Austrian Science Fund (FWF):
Y698, P25607.

References
[Abseher et al., 2014] Michael Abseher, Bernhard Bliem,

Günther Charwat, Frederico Dusberger, Markus Hecher,
and Stefan Woltran. The D-FLAT system for dynamic pro-
gramming on tree decompositions. In Proc. JELIA, vol-
ume 8761 of LNCS, pages 558–572, 2014.

[Abseher et al., 2015] Michael Abseher, Frederico Dus-
berger, Nysret Musliu, and Stefan Woltran. Improving
the efficiency of dynamic programming on tree decompo-
sitions via machine learning. In Proc. IJCAI, pages 275–
282, 2015.

[Alviano et al., 2014] Mario Alviano, Carmine Dodaro, and
Francesco Ricca. Anytime computation of cautious conse-
quences in answer set programming. TPLP, 14(4-5):755–
770, 2014.

[Arnborg et al., 1987] Stefan Arnborg, Derek G. Corneil,
and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Algebraic Discrete Methods,
8(2):277–284, 1987.

[Bliem et al., 2016] Bernhard Bliem, Reinhard Pichler, and
Stefan Woltran. Implementing Courcelle’s Theorem in a
declarative framework for dynamic programming. Jour-
nal of Logic and Computation, 2016. DOI: 10.1093/log-
com/exv089.

[Bodlaender and Koster, 2010] Hans L. Bodlaender and Arie
M. C. A. Koster. Treewidth computations I. Upper bounds.
Inf. Comput., 208(3):259–275, 2010.

[Bodlaender, 1993] Hans L. Bodlaender. A tourist guide
through treewidth. Acta Cybern., 11(1-2):1–22, 1993.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirosław Truszczyński. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Chimani et al., 2012] Markus Chimani, Petra Mutzel, and
Bernd Zey. Improved Steiner tree algorithms for bounded
treewidth. J. Discrete Algorithms, 16:67–78, 2012.

[Courcelle, 1990] Bruno Courcelle. The monadic second-
order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[Dechter, 2003] Rina Dechter. Constraint Processing. Mor-
gan Kaufmann, 2003.

[Dermaku et al., 2008] Artan Dermaku, Tobias Ganzow,
Georg Gottlob, Benjamin J. McMahan, Nysret Musliu,
and Marko Samer. Heuristic methods for hypertree decom-
position. In Proc. MICAI, volume 5317 of LNCS, pages
1–11. Springer, 2008.

[Downey and Fellows, 1999] Rodney G. Downey and
Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solving

in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers,
2012.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014.

[Gebser et al., 2015] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Javier Romero, and Torsten Schaub.
Progress in clasp series 3. In Proc. LPNMR, pages 368–
383, 2015.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Comput., 9(3/4):365–386, 1991.

[Gogate and Dechter, 2004] Vibhav Gogate and Rina
Dechter. A complete anytime algorithm for treewidth.
In David Maxwell Chickering and Joseph Y. Halpern,
editors, Proc. UAI ’04, pages 201–208. AUAI Press, 2004.

[Guziolowski et al., 2013] Carito Guziolowski, Santiago
Videla, Federica Eduati, Sven Thiele, Thomas Cokelaer,
Anne Siegel, and Julio Saez-Rodriguez. Exhaustively
characterizing feasible logic models of a signaling net-
work using answer set programming. Bioinformatics,
29(18):2320–2326, 2013. Erratum see Bioinformatics 30,
13, 1942.

[Kloks, 1994] Ton Kloks. Treewidth: Computations and Ap-
proximations, volume 842 of LNCS. Springer, 1994.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and its Applications. OUP, 2006.

[Nieuwenborgh et al., 2006] Davy Van Nieuwenborgh, Stijn
Heymans, and Dirk Vermeir. Approximating extended an-
swer sets. In Proc. ECAI, pages 462–466, 2006.

[Robertson and Seymour, 1984] Neil Robertson and Paul D.
Seymour. Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[Soininen and Niemelä, 1998] Timo Soininen and Ilkka
Niemelä. Developing a declarative rule language for appli-
cations in product configuration. In Proc. PADL, volume
1551 of LNCS, pages 305–319. Springer, 1998.

