
Conflict-Driven Answer Set Solving

Martin Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub∗

Institut für Informatik, Universität Potsdam,
Postfach 90 03 27, D–14439 Potsdam, Germany

Abstract
We introduce a new approach to computing answer
sets of logic programs, based on concepts from con-
straint processing (CSP) and satisfiability checking
(SAT). The idea is to view inferences in answer
set programming (ASP) as unit propagation on no-
goods. This provides us with a uniform constraint-
based framework for the different kinds of infer-
ences in ASP. It also allows us to apply advanced
techniques from the areas of CSP and SAT. We have
implemented our approach in the new ASP solver
clasp. Our experiments show that the approach is
competitive with state-of-the-art ASP solvers.

1 Introduction
Answer set programming (ASP; [Baral, 2003]) has become
an attractive tool for knowledge representation and reason-
ing. Although the corresponding solvers are highly optimized
(cf. [Simons et al., 2002; Leone et al., 2006]), their per-
formance does not match the one of state-of-the-art solvers
for satisfiability checking (SAT; [Mitchell, 2005]). However,
computational mechanisms of SAT and ASP solvers are not
that far-off. This can, for instance, be seen on the success
of SAT-based ASP solvers assat [Lin and Zhao, 2004] and
cmodels [Giunchiglia et al., 2006]. But despite the close re-
lationship to SAT and, more generally, constraint processing
(CSP; [Dechter, 2003]), state-of-the-art look-back techniques
from these areas, like backjumping, conflict-driven learning,
and restarts, are not yet established in genuine ASP solvers.
In fact, recent approaches to adopt such techniques [Ward and
Schlipf, 2004; Ricca et al., 2006; Lin et al., 2006] are rather
implementation-specific and lack generality.

We address this deficiency by introducing a new compu-
tational approach to ASP solving, centered around the CSP
concept of a nogood. Apart from the fact that this allows us to
easily integrate solving technology from the areas of CSP and
SAT, e.g., conflict-driven learning, backjumping, watched lit-
erals, etc., it also provides us with a uniform representation of
inferences from logic program rules, unfounded sets, as well
as nogoods learned from conflicts.

∗Affiliated with the School of Computing Science at Simon
Fraser University, Canada, and IIIS at Griffith University, Australia.

After establishing the formal background, we provide in
Section 3 a constraint-based specification of ASP solving in
terms of nogoods. Based on this uniform representation, we
develop in Section 4 algorithms for ASP solving that rely on
advanced CSP and SAT techniques. Notably, our solving pro-
cedure is centered around conflict-driven learning and back-
jumping. In Section 5, we describe our new ASP solver clasp,
implementing our approach. We finally provide empirical re-
sults demonstrating the competitiveness of clasp.

2 Background
Given an alphabet P , a (normal) logic program is a finite set
of rules of the form p0 ← p1, . . . , pm,not pm+1, . . . ,not pn

where 0 ≤ m ≤ n and pi ∈ P is an atom for 0 ≤ i ≤ n.
A body literal is an atom p or its negation not p. For a
rule r, let head(r) = p0 be the head of r and body(r) =
{p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r. The
set of atoms occurring in a logic program Π is denoted by
atom(Π). The set of bodies in Π is body(Π) = {body(r) |
r ∈ Π}. For regrouping rule bodies sharing the same head p,
define body(p) = {body(r) | r ∈ Π, head(r) = p}. In ASP,
the semantics of a program Π is given by its answer sets, be-
ing total well-founded models of Π. For a formal introduction
to ASP, we refer the reader to [Baral, 2003].

A Boolean assignment A over a domain, dom(A), is a se-
quence (σ1, . . . , σn) of signed literals σi of form Tp or Fp
for p ∈ dom(A) and 1 ≤ i ≤ n; Tp expresses that p is
true and Fp that it is false. (We omit the attribute signed
for literals whenever clear from the context.) We denote
the complement of a literal σ by σ, that is, Tp = Fp and
Fp = Tp. We let A ◦ B denote the sequence obtained by
concatenating assignments A and B. We sometimes abuse
notation and identify an assignment with the set of its con-
tained literals. Given this, we access true and false propo-
sitions in A via AT = {p ∈ dom(A) | Tp ∈ A} and
AF = {p ∈ dom(A) | Fp ∈ A}.

For a canonical representation of constraints, we use the
CSP concept of a nogood. In our setting, a nogood is a set
{σ1, . . . , σn} of signed literals, expressing a constraint vio-
lated by any assignment containing σ1, . . . , σn. An assign-
ment A such that AT ∪AF = dom(A) and AT ∩AF = ∅ is
a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we
say that σ is unit-resulting for δ wrt A, if (1) δ \ A = {σ}

and (2) σ 6∈ A. By (1), σ is the single literal from δ that is not
contained in A. This implies that a violated constraint does
not have a unit-resulting literal. Condition (2) makes sure
that no duplicates are introduced: If A already contains σ,
then it is no longer unit-resulting. For instance, literal Fq is
unit-resulting for nogood {Fp,Tq} wrt assignment (Fp), but
neither wrt (Fp,Fq) nor wrt (Fp,Tq). Note that our notion
of a unit-resulting literal is closely related to the unit clause
rule of DPLL (cf. [Mitchell, 2005]). For a set ∆ of nogoods
and an assignment A, we call unit propagation the iterated
process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.

3 Nogoods of Logic Programs
Inferences in ASP rely on atoms and program rules, which
can be expressed by using atoms and bodies. For a pro-
gram Π, we thus fix the domain of assignments A to
dom(A) = atom(Π) ∪ body(Π). Such a hybrid approach
may result in exponentially smaller search spaces [Gebser and
Schaub, 2006]; it moreover allows for an adequate represen-
tation of nogoods, as we show in the sequel.

Our approach is guided by the idea of Lin and Zhao [2004]
and decomposes ASP solving into (local) inferences obtain-
able from the Clark completion of a program [Clark, 1978]
and those obtainable from loop formulas. We begin with no-
goods capturing inferences from the Clark completion.

The body of a rule is true if all its body literals are true.
Conversely, some of its literals must be false if the body is
false. For a body β = {p1, . . . , pm,not pm+1, . . . ,not pn},
the following nogood captures this:

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
Intuitively, δ(β) is a constraint enforcing the truth of body β,
or the falsity of a contained literal. E.g. for body {x,not y},
we obtain δ({x,not y}) = {F{x,not y},Tx,Fy}.

Additionally, a body must be false if one of its literals is
false. And conversely, all contained literals must be true if the
body is true. For β = {p1, . . . , pm,not pm+1, . . . ,not pn},
this is reflected by the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm},
{Tβ,Tpm+1}, . . . , {Tβ,Tpn} }

Taking again body {x,not y}, we obtain ∆({x,not y}) =
{ {T{x,not y},Fx}, {T{x,not y},Ty} }.

Nogoods induce a set of clauses, which can be used for
investigating the logical contents of the underlying infer-
ences. Given a program Π, we associate a nogood δ =
{Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} with the clause γ(δ) =
{¬q1, . . . ,¬qm, qm+1, . . . , qn} where qi = pi, if pi ∈
atom(Π), and qi = pβ , if pi = β ∈ body(Π), for 1 ≤ i ≤ n;
and define Γ(∆) = {γ(δ) | δ ∈ ∆} for a set of nogoods ∆.
For the bodies of Π, we obtain the following correspondence.
Proposition 3.1 Let Π be a logic program.

The set of clauses
{γ(δ(β)) | β ∈ body(Π)} ∪ {γ ∈ Γ(∆(β)) | β ∈ body(Π)}
is logically equivalent to the propositional theory
{pβ ≡ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn |

β ∈ body(Π), β = {p1, . . . , pm,not pm+1, . . . ,not pn}}.

This result captures the intuition that a body should be equiv-
alent to the conjunction of its body literals.

We now come to inferences primarily aiming at atoms. An
atom p must be true if some body in body(p) is true. Con-
versely, all elements of body(p) must be false if p is false.
For body(p) = {β1, . . . , βk}, we get the nogoods:

∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} }
For example, for an atom x with body(x) = {{y}, {not z}},
we get ∆(x) = { {Fx,T{y}}, {Fx,T{not z}} }.

Finally, an atom p must be false if all elements of body(p)
are false. And conversely, some body in body(p) must be true
if p is true. For body(p) = {β1, . . . , βk}, this is reflected by
the following nogood:

δ(p) = {Tp,Fβ1, . . . ,Fβk}
Taking once more atom x with body(x) = {{y}, {not z}},
we obtain δ(x) = {Tx,F{y},F{not z}}.

Dually to Proposition 3.1, we have the following for atoms.
Proposition 3.2 Let Π be a logic program.

The set of clauses

{γ ∈ Γ(∆(p)) | p ∈ atom(Π)} ∪ {γ(δ(p)) | p ∈ atom(Π)}
is logically equivalent to the propositional theory

{p ≡ pβ1 ∨ · · · ∨ pβk
|

p ∈ atom(Π), body(p) = {β1, . . . , βk}}.
Combining the last propositions yields the following result.
Theorem 3.3 Let Π be a tight logic program and

∆Π = {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)}
∪ {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)}.

Then, X ⊆ atom(Π) is an answer set of Π iff X = AT ∩
atom(Π) for a (unique) solution A for ∆Π.

The nogoods in ∆Π capture the supported models of a pro-
gram [Apt et al., 1987]. Any answer set is a supported model,
but the converse only holds for tight programs [Fages, 1994].
The mismatch on non-tight programs is caused by loops [Lin
and Zhao, 2004], responsible for cyclic support among true
atoms. Such cyclic support can be prohibited by loop formu-
las. As shown in [Lee, 2005], the answer sets of a program Π
are precisely the models of Π that satisfy the loop formulas
of all non-empty subsets of atom(Π).1 Observe that the ex-
ponential number of loops in the worst case [Lifschitz and
Razborov, 2006] makes an enumeration of all loop formulas
infeasible. All loop formulas can however be checked in lin-
ear time, and propagation within genuine ASP solvers makes
sure that they are satisfied by a solution.

For a program Π and some U ⊆ atom(Π), we define the
external bodies of U for Π, EBΠ(U), as

{body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}.
The (disjunctive) loop formula of U for Π, LFΠ(U), is

¬
(∨

β∈EBΠ(U)(
∧

p∈β+ p ∧
∧

p∈β− ¬p)
)
→ ¬

(∨
p∈U p

)
,

1Note that a loop formula can be constructed for any set of atoms,
even if this set is not a loop in the sense of [Lin and Zhao, 2004].

where β+ = β ∩ atom(Π) and β− = {p | not p ∈ β}. The
loop formula of a set U of atoms enforces all elements of U
to be false, if U is not externally supported [Lee, 2005].

To capture the effect of a loop formula induced by a set
U ⊆ atom(Π), we define the loop nogood of an atom p ∈ U
as

λ(p, U) = {Fβ1, . . . ,Fβk,Tp}
where EBΠ(U) = {β1, . . . , βk}. Overall, we get the follow-
ing set of loop nogoods for a program Π:

ΛΠ =
⋃

U⊆atom(Π),U 6=∅{λ(p, U) | p ∈ U} (1)

Observe that loop nogoods make direct use of the bodies in
EBΠ(U) = {β1, . . . , βk}, unlike loop formulas LFΠ(U) re-
lying on the literals in each βi. Using bodies in loop no-
goods is reasonable because unit propagation on completion
nogoods makes a body false if it contains a false literal. No-
tably, the usage of bodies avoids a combinatorial blow-up,
faced when expressing these constraints in terms of body lit-
erals. In fact, representing λ(p, U) in terms of body literals
yields about |β1 × · · · × βk| nogoods instead of a single one.

Dropping the tightness requirement, we can show that
completion and loop nogoods characterize answer sets.

Theorem 3.4 Let Π be a logic program, let ∆Π and ΛΠ as
in Theorem 3.3 and (1).

Then, X⊆atom(Π) is an answer set of Π iff X = AT ∩
atom(Π) for a (unique) solution A for ∆Π ∪ ΛΠ.

The nogoods in ∆Π ∪ ΛΠ describe a set of constraints
that must principally be checked for computing answer sets.
While the size of ∆Π is linear in atom(Π)×body(Π), the one
of ΛΠ is exponential. These magnitudes apply to all exist-
ing ASP solvers, where ∆Π is either encoded via dependency
graphs (linking atoms and bodies/rules) or given through the
Clark completion of Π. Loop nogoods in ΛΠ are determined
only on demand by dedicated algorithms.

4 Conflict-Driven ASP Solving
Given the specification of ASP solving in terms of nogoods,
we can now make use of advanced techniques from CSP and
SAT for developing equally advanced ASP solving proce-
dures. Different from SAT, where every (known) nogood is
usually explicated as a clause, our algorithms work on logic
programs, inducing several kinds of nogoods. In particular,
the exponentially many nogoods resulting from loop formulas
are implicitly given by a program, and determined only when
used for propagation. The key role of the different kinds of
(and partially implicit) constraints, expressed as nogoods, is
to identify a reason responsible for deriving a literal by unit
propagation. This makes the logical fundament of ASP solv-
ing the same as the one of CSP and SAT solving, so that we
can directly apply similar reasoning strategies, without the
need of a SAT conversion or proprietary designs.

To begin, we give a specification of our nogood propaga-
tion procedure in Algorithm 1. Propagation works on a pro-
gram Π, a set ∇ of recorded nogoods, and an assignment A.
First, we invoke LOCALPROPAGATION on Π and accumu-
lated nogoods in ∇. This function adds unit-resulting literals
to A, derived via nogoods either in ∆Π or in ∇; that is, a

Algorithm 1: NOGOODPROPAGATION

Input : A program Π, a set ∇ of nogoods, and an
assignment A.

Output: An extended assignment and set of nogoods.

U ← ∅ // set of unfounded atoms1
loop2

A← LOCALPROPAGATION(Π,∇, A)3
if δ ⊆ A for some δ ∈ ∆Π ∪∇ or TIGHT(Π) then4

return (A,∇)5
else6

U ← U \AF7
if U = ∅ then U ← UNFOUNDEDSET(Π, A)8
if U = ∅ then return (A,∇)9
else let p ∈ U in10
∇ ← ∇∪ {λ(p, U)}11
if Tp ∈ A then return (A,∇)12
else A← A ◦ (Fp)13

fixpoint of unit propagation is computed. If LOCALPROPA-
GATION yields a violated nogood δ (line 4), then A cannot be
extended to a solution. Also if Π is tight, all unfounded atoms
are already falsified. In both cases, we are done with nogood
propagation. Only if Π is non-tight, we check whether an un-
founded set [van Gelder et al., 1991] (accumulated in U) has
to be falsified.

Initially, U is empty; so in line 8 we determine an un-
founded set. Note that, if some non-false atom is unfounded,
there always is an unfounded set not containing any false
atoms. In Section 5, we describe our implementation of UN-
FOUNDEDSET; we here only require that a non-empty un-
founded set U of non-false atoms is returned, if it exists. If
so, we select in line 10 an atom p from U and add its loop no-
good λ(p, U) to∇ (line 11).2 If p is true, then λ(p, U) is vio-
lated, and we return A and∇ (line 12). Otherwise, Fp is unit-
resulting for λ(p, U) wrt A, and we add Fp to A (line 13).
Having falsified a single element of U , we re-invoke LOCAL-
PROPAGATION before adding any further loop nogoods. In
fact, completion nogoods in ∆Π might suffice for falsifying
the residual atoms in U . For example, consider U = {x, y, z}
and rules x ← y, z, y ← x, z ← y: From Fx, we can de-
rive Fy and Fz. But generally, falsifying a single element
does not allow for falsifying the whole set U only via com-
pletion nogoods. If we add rule y ← z to the above example,
then Fy and Fz are no longer derivable. This is reflected in
line 7, where we remove false atoms from U . The shrunken
set U is still unfounded, and if it is non-empty, we can im-
mediately determine another loop nogood to falsify the next
element of U . Observe that no further unfounded atoms are
computed until the ones in U are expended. With changing
set U , the atom p (selected in line 10) and the bodies in loop
nogood λ(p, U) change in each iteration, aiming at a firmer
representation of the respective unfounded set.

All in all, our nogood propagation procedure interleaves
unit propagation on completion and accumulated nogoods

2Given that p is unfounded, we have λ(p, U) \ {Tp} ⊆ A.

Algorithm 2: CDNL-ASP
Input : A program Π.
Output: An answer set of Π.

A← ∅ // assignment over atom(Π) ∪ body(Π)1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← 0 // decision level3
loop4

(A,∇)← NOGOODPROPAGATION(Π,∇, A)5
if ε ⊆ A for some ε ∈ ∆Π ∪∇ then6

if dl = 0 then return no answer set7
(δ, σUIP , k)← CONFLICTANALYSIS(ε, Π,∇, A)8
∇ ← ∇∪ {δ}9
A← A \ {σ ∈ A | k < dl(σ)}10
dl ← k11
A← A ◦ (σUIP)12

else if AT ∪AF = atom(Π) ∪ body(Π) then13

return AT ∩ atom(Π)14
else15

σd ← SELECT(Π,∇, A)16
dl ← dl + 117
A← A ◦ (σd)18

with the recording and propagation of loop nogoods. The
latter is only done if the underlying program is non-tight and
the falsity of unfounded atoms cannot be determined via other
nogoods. Our approach favors local propagation over un-
founded set computations. This is motivated by the fact that
local propagation does not add any nogoods to ∇, hence, it
is more economical than unfounded set falsification. We fur-
ther discuss the relation between our propagation strategy and
other approaches in Section 7.

Conflict-Driven Nogood Learning. Our basic algorithm
for deciding whether a program has an answer set is similar
to Conflict-Driven Clause Learning (CDCL) with First-UIP
scheme [Mitchell, 2005]. Given a program Π, Algorithm 2
starts from an empty assignment A and an empty set ∇ of
learned nogoods. Via the decision level dl , we count decision
literals, i.e., the literals in A not derived by nogood propa-
gation. The initial value of dl is 0, it is incremented before
a decision literal is added to A. For a literal σ ∈ A, we ac-
cess via dl(σ) the decision level of σ, that is, the value dl had
when σ was added to A. After encountering a conflict, the
decision level is used to guide backjumping.

The loop of Algorithm 2 is similar to CDCL, so we here
only sketch the principal steps. First, function NOGOOD-
PROPAGATION deterministically extends A (and ∇) as de-
scribed above. If this yields a conflict (line 6), function CON-
FLICTANALYSIS (see below) determines a conflict nogood δ
to be recorded, a unique implication point (UIP) σUIP , and a
decision level k to jump back to. Backjumping and nogood
recording work as with CDCL, in particular, a conflict at deci-
sion level 0 indicates the non-existence of an answer set. If A
is a solution (line 13), the atoms of Π that are true in A form
an answer set of Π. Finally, if A is non-conflicting and partial,
a decision literal σd is selected according to some heuristics
(see Section 5 on further details) and added to A. Note that

Algorithm 3: CONFLICTANALYSIS

Input : A violated nogood δ, a program Π, a set ∇ of
nogoods, and an assignment A.

Output: A derived nogood, a UIP, and a decision level.

let σ ∈ δ st A = B ◦ (σ) ◦B′ and δ \ {σ} ⊆ B1
while {ρ ∈ δ | dl(ρ) = dl(σ)} 6= {σ} do2

let ε ∈ ∆Π ∪∇ st σ ∈ ε and ε \ {σ} ⊆ B3
δ ← (δ \ {σ}) ∪ (ε \ {σ})4
let σ ∈ δ st B = C ◦ (σ) ◦ C ′ and δ \ {σ} ⊆ C5
B ← C6

k ← max ({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})7
return (δ, σ, k)8

σd belongs to the new decision level dl + 1.
Our conflict analysis procedure determines an asserting

nogood δ. That is, after backjumping, δ yields a unit-resulting
literal, leading Algorithm 2 into a different part of the search
space than traversed before. This is similar to an asserting
clause, determined by conflict analysis in CDCL. In deriv-
ing δ, we follow the First-UIP scheme and stop conflict analy-
sis at the first UIP that is found; no further UIPs are explored.

Though our conflict analysis procedure is similar to its
classical CDCL counterpart, we need subtle adjustments. The
reason is that unfounded set inference works in a directed
way: It only falsifies unfounded atoms, but does not “protect”
true atoms from becoming unfounded. For illustration, con-
sider Π = {x ← not y ; y ← not x ;u ← x ;u ← v ; v ←
u, y} along with assignment A = (Tu). Note that Tu is a de-
cision literal; its decision level is 1. Local propagation on ∆Π

and A yields no inferences (due to body(u) = {{x}, {v}}),
and there is no unfounded set. When we extend A by deci-
sion literal Ty at level 2, local propagation sets atom x and
body {x} to false (and v to true). But then, the set {u, v}
becomes unfounded, which makes us record the loop nogood
δ = λ(u, {u, v}) = {F{x},Tu}. Since A contains F{x}
and Tu, nogood δ is violated. Also, δ contains only one lit-
eral added to A at decision level 2: F{x}. Hence, F{x}
is a UIP. In this example, the violated nogood δ is immedi-
ately asserting. A situation like this cannot occur in classi-
cal CDCL, where the initial violated clause always contains
more than one literal from the current decision level. The dif-
ference to CDCL is caused by the directedness of unfounded
set inference in ASP, which is “partial”, in the sense that not
all logical consequences are derived. In terms of a loop no-
good {Fβ1, . . . ,Fβk,Tp}, unfounded set inference can only
derive Fp, but not Tβi for a body βi (1 ≤ i ≤ k), at least
as long as the loop nogood is not made explicit by record-
ing it. For δ = {F{x},Tu} as above, unfounded set infer-
ence would have derived Fu at decision level 1, if we had
selected F{x} as the decision literal. However, it does not
derive T{x} from assignment (Tu), which is inferred by
unit propagation once δ is available as an explicit constraint.
(Undirected unfounded set inference is not yet algorithmi-
cally solved. Current algorithms only determine unfounded
atoms, but not bodies that must be true according to an (im-
plicit) loop nogood.)

Algorithm 3 shows our conflict analysis procedure. It
works on an assignment A containing a violated nogood δ,
either from the program Π and so in ∆Π, or from the recorded
nogoods in∇. In line 1, we determine via σ the literal from δ
added last to A. As mentioned above, σ might already be a
UIP, that is, the single literal in δ from the current decision
level. If σ is a UIP, we do not enter the while-loop in line 2.
Otherwise, δ contains at least one literal other than σ from
the current decision level. Note that, in this case, σ is not a
decision literal. Hence, there is some nogood ε in ∆Π or ∇
for which σ has been unit-resulting. Such an ε is determined
in line 3, and in line 4 we resolve δ and ε into a new nogood δ.
In line 5, we determine as new σ the literal from the new δ
added last to A. In each iteration, σ moves closer to the front
of A. Hence, we finally derive a nogood δ that contains ex-
actly one literal σ from the current decision level; in the worst
case, it is the decision literal. In line 7, we determine the deci-
sion level to jump back to as the maximum level of any literal
in δ other than σ. Algorithm CONFLICTANALYSIS is very
similar to the First-UIP scheme for CDCL. The difference is
that conflict resolution might start from an asserting nogood.

5 The clasp System
Our new system clasp [2006] implements our approach to
ASP solving. It combines the high-level modeling capac-
ities of ASP with state-of-the-art techniques from the area
of Boolean constraint solving. Unlike existing ASP solvers,
clasp is originally designed and optimized for conflict-
driven ASP solving. Rather than applying a SAT solver
to a CNF conversion, clasp directly incorporates suitable
data structures, particularly fitting backjumping and learning.
This includes dedicated treatment of binary and ternary no-
goods [Ryan, 2004], and watched literals for unit propaga-
tion on “long” nogoods [Moskewicz et al., 2001]. Unlike
smodelscc [Ward and Schlipf, 2004], which builds a material
implication graph for keeping track of the multitude of in-
ference rules found in ASP solving, clasp uses the more eco-
nomical approach of SAT solvers: For a derived literal, it only
stores a pointer to the responsible constraint in ∆Π ∪∇.

Unfounded set detection within clasp combines smodels’
source pointer technique [Simons, 2000] with the unfounded
set computation algorithm described in [Anger et al., 2006].
It aims at small and “loop-encompassing”, rather than great-
est unfounded sets, as determined by smodels [Simons et al.,
2002] and dlv [Leone et al., 2006]. Notably, clasp recognizes
violated loop nogoods that are immediately asserting (cf. Sec-
tion 4), so that the same nogood is not recorded twice.

The primary operation mode of clasp is conflict-driven
nogood learning. Beyond backjumping and learning, clasp
features a number of related techniques, typically found in
CDCL-based SAT solvers. clasp incorporates restarts, dele-
tion of recorded conflict and loop nogoods, and decision
heuristics favoring literals from conflict nogoods. All these
features are configurable via command line options. The de-
fault restart and nogood deletion policies are adopted from
MiniSat [Eén and Sörensson, 2003]; the standard heuristics
is an adjustment of BerkMin [Goldberg and Novikov, 2002].
Although Algorithm 2 details the search for one answer set,

clasp also allows for enumerating answer sets. This is accom-
plished by interleaving backjumping with (systematic) back-
tracking: After a solution has been found, its decision literals
can only be backtracked chronologically; backjumping is re-
stricted for not repeating already enumerated solutions. This
strategy avoids the generation of nogoods excluding entire
solutions, as done for instance by smodelscc and mchaff 3.

clasp’s second major operation mode runs (systematic)
backtracking without learning. This is similar to the strategy
of standard ASP solvers like smodels, using lookahead. Both
operation modes are implemented in a uniform framework,
which also allows us to evaluate the efficiency of advanced
SAT implementation techniques, such as watched literals, in
a standard ASP solver.

6 Experiments
We conducted experiments on a variety of problem classes.
Our comparison considers clasp (RC2) in its two major
modes: (a) the standard one using backjumping and learn-
ing, and (b) the systematic backtracking mode using looka-
head but no learning. We refer to these variants as claspa

and claspb. As “traditional” ASP solver, we include smod-
els (2.31). Beyond some variations, smodels’ strategy is sim-
ilar to claspb. We also incorporate assat (2.02) and cmod-
els (2.12), both using mchaff (spelt3), and smodelscc (1.08).
Among all compared solvers, smodelscc is closest to claspa.
SAT-based solvers assat and cmodels convert a logic program
into CNF and delegate the search for a supported model to
mchaff. For tight programs, this approach amounts to clasp
in mode (a). In the non-tight case, assat and cmodels delay
checking loop nogoods until an assignment is total, while all
other solvers integrate it into their propagation.

All experiments were run on a 2.2GHz PC on Linux. We
report results in seconds, taking the average of 3 runs, each
restricted to 900s time and 1GB RAM. A timeout is indi-
cated by “—”. All solvers were run with their default settings
except for smodelscc, for which we used option “nolooka-
head” as recommended by the developers. The instances used
in our experiments as well as extended results (e.g. for dlv
and nomore++, being excluded here due to lack of space)
are available at [clasp, 2006]. In brief, the instances in Ta-
ble 1 and 2 are from the areas of bounded model checking
(1-5;31-35), DES cryptanalysis (6-10), blocksworld planning
(11-12;42-45), Hamiltonian cycles in clumpy graphs (13-20),
Hamiltonian paths for the Gryzzles game (21-25), Sokoban
(26-30;46-55), and machine code superoptimization (36-41).
The instances numbered 1-10 and 31-41 are tight, all others
are non-tight.

Table 1 gives results for computing one answer set. On the
tight instances 1-10, claspa performs comparable to assat and
cmodels. Sometimes it is even slightly faster, showing that the
low-level implementation of clasp is competitive with state-
of-the-art SAT solvers, doing most of the work for assat and
cmodels. Regarding smodels, we see that its systematic back-
tracking approach does not scale very well; the same applies
to clasp in mode (b). Instances 11 and 12 are tight on their
supported models, that is, every supported model is also an

3http://www.princeton.edu/∼chaff/

nr benchmark assat cmodels smodelscc claspa claspb smodels
1 dp 10.formula1-i-O2-b12 0.54 11.17 9.33 0.51 299.15 228.93
2 dp 8.fsa-D-i-O2-b8 0.21 0.09 0.16 0.15 1.1 0.17
3 elevator 4-D-s-O2-b10 0.83 1.48 16.62 1.15 168 78.96
4 mmgt 3.fsa-D-i-O2-b10 3.28 5.65 45.5 3.21 66.85 331.89
5 mmgt 4.fsa-D-s-O2-b8 0.49 0.98 3.37 0.3 343.72 142.24
6 des-r3-p6-t1 1.82 1.79 1.28 0.93 — 821.1
7 des-r3-p7-t1 2 2.01 1.9 1.04 — —
8 des-r3-p8-t1 2.28 2.69 3.54 1.26 — —
9 des-r3-p9-t1 2.2 2.64 1.82 1.44 — 280.34
10des-r3-p10-t1 3.3 2.96 2.4 1.62 — —
11p3 time8 0.91 0.99 17.43 2.81 15.63 30.87
12p3 time9 1.03 1.18 23.75 3.2 21.38 18.23
13clumpyhc12 12 08 4.3 3.73 0.29 0.2 — 53.69
14clumpyhc12 12 10 3.66 4.48 0.26 0.22 — 0.74
15clumpyhc14 14 08 10.73 8.86 1.59 0.25 — —
16clumpyhc14 14 10 27.08 43.18 0.95 0.32 — —
17clumpyhc16 16 08 203.05 25.87 6.23 0.46 — —
18clumpyhc16 16 10 23.99 18.99 1.42 1.62 — —
19clumpyhc18 18 08 — — 3.13 23.73 — —
20clumpyhc18 18 10 — — 1.61 1.23 — —
21gryzzles.6 2.16 117.69 0.23 0.11 23.02 15.46
22gryzzles.32 2.85 3.63 0.25 0.14 106.24 11.09
23gryzzles.36 145.74 19.31 0.72 0.55 — —
24gryzzles.41 3.57 2.23 0.18 0.11 10.05 25.75
25gryzzles.47 7.76 46.87 1.23 0.33 — —
26yorick.51.n11.len11 36.53 104.98 36.26 6.17 107.02 211.44
27yoshio.11.n15.len15 — 330.93 64.1 13.34 — —
28yoshio.16.n13.len13 84.57 111.11 52.74 8.04 126.18 303.94
29yoshio.33.n12.len12 15.4 16 9.32 9.06 — —
30yoshio.50.n10.len10 22.21 13.57 14.78 1.05 2.69 94.52

Table 1: Experiments computing one answer set.

answer set. As unfounded set checks produce unnecessary
overhead here, assat and cmodels are a bit faster than claspa.
Looking at the Hamiltonian problems in 13-25, we see that
smodelscc and claspa scale best. They outperform assat and
cmodels by some orders of magnitude; on two clumpy graphs,
assat and cmodels even time out (viz. 19 and 20). Both smod-
els and claspb are ineffective on Hamiltonian problems and
time out on most of the instances. On Sokoban problems in
26-30, claspa outperforms the other solvers. Only cmodels
and smodelscc never time out, but they are much slower.

Table 2 shows results for computing all answer sets, or for
determining that no answer sets exist (0 #sol). Given that as-
sat cannot enumerate answer sets, we only include it on un-
satisfiable programs. On satisfiable instances 31-35, we see
that claspa is relatively fast enumerating all answer sets. The
superoptimization instances in 36-41 are easily determined
unsatisfiable by assat, cmodels, and claspa. Both smodels and
claspb show a clear exponential behavior and finally time out.
Surprisingly, smodelscc scales worst, that is, several orders of
magnitude behind other learning solvers and timing out even
before non-learning ones. We conjecture that this is because
smodelscc does, differently from other learning solvers, not
include rule bodies in conflict nogoods. Looking at the sat-
isfiable instances among 42-55, we see that claspa is faster
enumerating all answer sets than any other solver we tested.
Unsatisfiable blocksworld problems 42 and 45 are most ef-
fectively solved by assat and cmodels. (Note that instances
42-45 are tight on their supported models.) Like with com-
puting one answer set on (satisfiable) Sokoban problems in
26-30, claspa is fastest on both satisfiable and unsatisfiable
problems in 46-55.

nr benchmark #sol assat cmodels smodelscc claspa claspb smodels
31dp 10.formula1-i-O2-b12 12600 n/a 22.38 179.74 76.21 — —
32dp 8.fsa-D-i-O2-b8 40320 n/a 39.8 78 13.06 40.12 16.53
33elevator 4-D-s-O2-b10 6240 n/a 14.32 40.48 6.53 171.42 97.58
34mmgt 3.fsa-D-i-O2-b10 288 n/a 97.26 199.43 28.1 98.77 395.99
35mmgt 4.fsa-D-s-O2-b8 1344 n/a 28.67 62.15 12.56 417.76 248
36test12 0 0.09 0.09 0.57 0.08 2.01 0.9
37test14 0 0.12 0.1 10.96 0.1 10.8 4.21
38test16 0 0.16 0.12 200.4 0.14 53.56 18.56
39test18 0 0.19 0.15 — 0.18 260.38 86.57
40test20 0 0.23 0.18 — 0.23 — 407.35
41test22 0 0.29 0.21 — 0.27 — —
42p3 time7 0 0.75 0.92 12.23 2.29 10.61 14.06
43p3 time8 28 n/a 16.54 18.43 2.93 25.15 53.38
44p3 time9 3374 n/a — 56.69 14.75 163.68 417.61
45p4 time5 0 1.74 1.62 4.41 8.03 8.46 4.1
46yorick.51.n11.len10 0 22.81 27.08 11.48 2.08 410.46 836.24
47yorick.51.n11.len11 512 n/a — 41.01 11.12 — —
48yoshio.11.n15.len14 0 185.47 162.14 38.18 12.11 — —
49yoshio.11.n15.len15 512 n/a — 87.95 19.57 — —
50yoshio.16.n13.len12 0 57.94 38.18 30.04 3.82 — 882.44
51yoshio.16.n13.len13 32 n/a — 50.81 8.51 — —
52yoshio.33.n12.len11 0 16.21 23.69 33.43 8.81 860.09 688.21
53yoshio.33.n12.len12 114176 n/a — — 622.93 — —
54yoshio.50.n10.len9 0 33.98 23.25 8.66 2.13 42.38 27.99
55yoshio.50.n10.len10 384 n/a — 17.29 4.82 172.11 94.57

Table 2: Experiments computing all answer sets.

Overall, we notice a huge gap between learning and non-
learning solvers: The latter frequently time out, while the
best among the former solve the same instances within sec-
onds (cf. Table 1). The short run-times of learning solvers do
sometimes not permit a reliable comparison between them.
We however see a clear distinction between different con-
cepts: Problems that are intractable for systematic backtrack-
ing methods are often easily dealt with using backjumping
and learning. Note that all our benchmarks are structured
to some extent. This is useful for learning solvers, as struc-
ture can be explicated via learned constraints. The picture
might be different on unstructured random problems as, e.g.,
reported in the SAT literature.

7 Discussion
We have provided a uniform approach to ASP solving, allow-
ing for a transparent technology transfer from CSP and SAT.
The idea is to view ASP inferences as unit propagation on no-
goods, reflecting constraints from program rules, unfounded
sets, and conflicts. We have seen that SAT translations are
unnecessary for applying techniques found in SAT solvers.

In contrast to SAT, ASP induces further implicit constraints
given by loop nogoods. Though inherently present, these no-
goods need only be explicated when used for propagation and
conflict analysis. Thus, sophisticated unfounded set checks
still work on the logical fundament of CSP and SAT. Based
on this perception, we have provided a conflict-driven al-
gorithm for ASP solving, using state-of-the-art SAT solving
techniques. Notably, our approach favors local propagation
on explicit nogoods over unfounded set checks, which expli-
cate inherent loop nogoods that give rise to unit propagation.
In fact, many of the combinatorially constructable loop no-
goods might be redundant, that is, entailed by completion and
other loop nogoods. (For tight programs, the loop nogoods
of all non-singletons are redundant.) In this respect, our ap-

proach guarantees that only non-redundant loop nogoods are
used for propagation and, particularly, for conflict analysis.

We have implemented our approach in the clasp system.
Our empirical results show that clasp is competitive with ex-
isting ASP solvers. The clasp system directly incorporates
state-of-the-art techniques from Boolean constraint solving,
avoiding a SAT translation as it is done by assat, cmodels,
and sag [Lin et al., 2006]. Also, clasp records loop no-
goods only when ultimately needed for unit propagation; this
is different from assat and sag, which determine loop formu-
las for all “terminating” loops. Unlike genuine ASP solvers
smodels and dlv, clasp does not determine greatest unfounded
sets. Rather, it applies local propagation directly after an un-
founded set has been found. Different from dlv with back-
jumping [Ricca et al., 2006] and smodelscc, the inclusion of
rule bodies in nogoods allows for a straightforward extension
of unit propagation to ASP, abolishing the need for multiple
inference rules. Notably, clasp can enumerate answer sets
of a program without explicitly prohibiting already computed
solutions by nogoods, as done by cmodels and smodelscc.

Acknowledgments
The authors are grateful to Wolfgang Faber, Yuliya Lierler,
and Ilkka Niemelä for helpful comments on previous drafts
of this paper.

References
[Anger et al., 2006] C. Anger, M. Gebser, and T. Schaub.

Approaching the core of unfounded sets. In Proceedings
of the 11th International Workshop on Nonmonotonic Rea-
soning, pages 58–66. Clausthal University of Technology,
2006.

[Apt et al., 1987] K. Apt, H. Blair, and A. Walker. Towards a
theory of declarative knowledge. In Foundations of Deduc-
tive Databases and Logic Programming, pages 89–148.
Morgan Kaufmann Publishers, 1987.

[Baral, 2003] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving. Cambridge Univer-
sity Press, 2003.

[Clark, 1978] K. Clark. Negation as failure. In Logic and
Data Bases, pages 293–322. Plenum Press, 1978.

[clasp, 2006] http://www.cs.uni-potsdam.de/clasp.
[Dechter, 2003] R. Dechter. Constraint Processing. Morgan

Kaufmann Publishers, 2003.
[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-

tensible SAT-solver. In Proceedings of the 6th Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing, pages 502–518, 2003.

[Fages, 1994] F. Fages. Consistency of Clark’s completion
and the existence of stable models. Journal of Methods of
Logic in Computer Science, 1:51–60, 1994.

[Gebser and Schaub, 2006] M. Gebser and T. Schaub.
Tableau calculi for answer set programming. In Pro-
ceedings of the 22nd International Conference on Logic
Programming, pages 11–25. Springer, 2006.

[Giunchiglia et al., 2006] E. Giunchiglia, Y. Lierler, and
M. Maratea. Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning,
2006. To appear.

[Goldberg and Novikov, 2002] E. Goldberg and Y. Novikov.
BerkMin: A fast and robust SAT-solver. In Proceedings
of the 5th Conference on Design, Automation and Test in
Europe, pages 142–149, 2002.

[Lee, 2005] J. Lee. A model-theoretic counterpart of loop
formulas. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, pages 503–508. Pro-
fessional Book Center, 2005.

[Leone et al., 2006] N. Leone, W. Faber, G. Pfeifer, T. Eiter,
G. Gottlob, C. Koch, C. Mateis, S. Perri, and F. Scar-
cello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[Lifschitz and Razborov, 2006] V. Lifschitz and A. Razbo-
rov. Why are there so many loop formulas? ACM Trans-
actions on Computational Logic, 7(2):261–268, 2006.

[Lin and Zhao, 2004] F. Lin and Y. Zhao. ASSAT: comput-
ing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence, 157(1-2):115–137, 2004.

[Lin et al., 2006] Z. Lin, Y. Zhang, and H. Hernandez. Fast
SAT-based answer set solver. In Proceedings of the
21st National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, 2006.

[Mitchell, 2005] D. Mitchell. A SAT solver primer. Bulletin
of the European Association for Theoretical Computer Sci-
ence, 85:112–133, 2005.

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th
Conference on Design Automation, pages 530–535, 2001.

[Ricca et al., 2006] F. Ricca, W. Faber, and N. Leone. A
backjumping technique for disjunctive logic program-
ming. AI Communications, 19(2):155–172, 2006.

[Ryan, 2004] L. Ryan. Efficient algorithms for clause-
learning SAT solvers. MSc, Sim. Fraser University, 2004.

[Simons et al., 2002] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[Simons, 2000] P. Simons. Extending and Implementing the
Stable Model Semantics. Dissertation, Helsinki UT, 2000.

[van Gelder et al., 1991] A. van Gelder, K. Ross, and
J. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

[Ward and Schlipf, 2004] J. Ward and J. Schlipf. Answer
set programming with clause learning. In Proceedings of
the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 302–313. Springer,
2004.

