
Advanced Conflict-Driven Disjunctive Answer Set Solving

Martin Gebser and Benjamin Kaufmann and Torsten Schaub∗

Universität Potsdam, Germany

Abstract
We introduce a new approach to disjunctive ASP
solving that aims at an equitable interplay between
“generating” and “testing” solver units. To this end,
we develop novel characterizations of answer sets
and unfounded sets allowing for a bidirectional dy-
namic information exchange between solver units
for orthogonal tasks. This results in the new multi-
threaded disjunctive ASP solver claspD-2, greatly
improving the performance of existing systems.

1 Introduction
Answer Set Programming (ASP; [Baral, 2003]) has become
a popular tool for declarative problem solving. Its growing
range of applications has also increased the demand for the
elevated complexity of disjunctive logic programs (express-
ing ΣP2 -hard problems). Although recent advances facilitate
modeling such problems [Gebser et al., 2011a], existing dis-
junctive ASP solvers [Leone et al., 2006; Janhunen et al.,
2006; Lierler, 2005; Drescher et al., 2008] still lack some fea-
tures of non-disjunctive solvers. Also, the indispensable cou-
pling of a solver unit generating answer set candidates with
one checking their minimality was so far insufficiently ex-
ploited: while the “generator” is run continuously, a “tester”
is repeatedly re-invoked bearing significant redundancy.

We address these shortcomings by introducing a new ap-
proach to disjunctive ASP solving that aims at an equitable
interplay between generator(s) and tester(s). The idea is to
launch both types of solver units only once with their re-
spective Boolean constraint problems and to let them sub-
sequently communicate in a bidirectional way. This en-
ables both generators and testers to benefit from conflict-
driven learning over whole runs. We begin by developing
novel characterizations of answer sets and unfounded sets
in terms of Boolean constraints solvable with state-of-the-
art NP search procedures. Unlike existing encodings [Koch
et al., 2003; Drescher et al., 2008], our specification of un-
founded sets is comprehensive in applying to arbitrary (total
or partial) answer set candidates. We further present a solver
∗Affiliated with SFU, Canada, and Griffith University, Australia.

This work was partially funded by DFG grant SCHA 550/8-3. We
also thank Sebastian Böhne, Mikoláš Janota, and Roland Kaminski.

architecture featuring multi-threading and incremental solv-
ing techniques, along with its implementation in the new dis-
junctive ASP solver claspD-2, seamlessly passing dynamic
information between orthogonal solver units.

2 Background
A (ground disjunctive) rule r is of the form
p1 ∨ · · · ∨ pl ← pl+1, . . . , pm,∼pm+1, . . . ,∼pn

where p1, . . . , pl, pl+1, . . . , pm, pm+1, . . . , pn are proposi-
tional atoms for 0≤ l≤m≤n. By hd(r) = {p1, . . . , pl}
and bd(r) = {pl+1, . . . , pm,∼pm+1, . . . ,∼pn}, we denote
the head and the body of r, where ∼ stands for default nega-
tion. For any set L = {pl+1, . . . , pm,∼pm+1, . . . ,∼pn}, let
L+ = {pl+1, . . . , pm} and L− = {pm+1, . . . , pn}. We say
that r is applicable wrt. a set X of atoms if bd(r)

+ ⊆ X and
bd(r)

− ∩ X = ∅; r is satisfied wrt. X if hd(r) ∩ X 6= ∅
when r is applicable wrt. X . Any p ∈ hd(r) is supported
by r wrt. X if r is applicable wrt. X and hd(r) ∩X ⊆ {p}.

A (ground disjunctive) program P is a set of rules.
We denote atoms and bodies occurring in P by atP =⋃
r∈P (hd(r)∪bd(r)

+∪bd(r)
−

) and bdP = {bd(r) | r ∈ P}.
A set X of atoms is a model of P if every r ∈ P is satisfied
wrt. X; X is supported by P if every p ∈ X is supported by
some r ∈ P wrt. X . We write appP (X) to refer to the subset
of P including all applicable rules wrt. X . The reduct of P
wrt. X is PX = {hd(r) ← bd(r)

+ | bd(r)
− ∩ X = ∅}. A

model X of P is an answer set of P if there is no Y ⊂ X
such that Y is a model of PX .

The (directed) positive atom dependency graph of P is
GP = (atP , {(p, q) | r ∈ P, p ∈ hd(r), q ∈ bd(r)

+}). A
non-empty L ⊆ atP is a loop of P if its induced subgraph of
GP is strongly connected. We denote the set of all loops of P
by loopP . As the ⊆-maximal elements of loopP partition atP
and induce strongly connected components (SCCs) ofGP , we
write sccP to refer to the set of such loops. We call L ∈ sccP
a head cycle component (HCC) of P if |hd(r) ∩ L| > 1 for
some r ∈ P . By scchcP , we denote the subset of sccP includ-
ing all HCCs of P ; P is head-cycle-free (HCF; [Ben-Eliyahu
and Dechter, 1994]) if scchcP = ∅, and non-HCF otherwise.

As an example, consider the following program:

P1 =

{
r1 : a ∨ c ∨ e← r2 : a← b,∼d
r3 : b← a,∼e r4 : b← c, d
r5 : c ∨ d← b

}

P1 yields loopP1
= {{a}, {b}, {c}, {d}, {e}, {a, b}, {b, c},

{b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, b, c, d}} and sccP1 =
{{a, b, c, d}, {e}}. In view of rules r1 and r5, we have that
scchcP1

= {{a, b, c, d}}, so that P1 is non-HCF. One can check
that {a, b, d}, {c}, and {e} are the three answer sets of P1.

3 Boolean Constraints
Deciding whether a (ground disjunctive) program has an an-
swer set is ΣP2 -complete [Eiter and Gottlob, 1995]. In fact,
generating candidate models X of a program P and check-
ing ⊆-minimality wrt. PX can both be viewed as Boolean
constraint solving tasks, which can be specified as follows.

A nogood {σ1, . . . , σn} is a set of literals σi of the form
Tυi or Fυi for 1≤ i≤n, where υi is a (propositional) vari-
able. We refer to the complement of a literal by Tυ = Fυ
and Fυ = Tυ. For any set δ of literals, let δT = {υ |
Tυ ∈ δ} and δF = {υ | Fυ ∈ δ}. Given a set ∆ of no-
goods, we denote the variables occurring in ∆ by var(∆) =⋃
δ∈∆(δT ∪ δF). Any subset A of {Tυ,Fυ | υ ∈ var(∆)}

such that AT ∩AF = ∅ is an assignment for ∆; A is a solu-
tion for ∆ if AT ∪AF = var(∆) and δ 6⊆ A for any δ ∈ ∆.

Answer Sets. In order to compute answer sets by means of
Boolean constraint solving procedures, we specify nogoods
whose solutions match answer sets. In fact, the nogoods cap-
ture particular properties of answer sets, viz. satisfaction of
rules, support of atoms, and minimality wrt. the reduct.

For expressing that some atom in hd(r) must be true when
a rule r is applicable, we map bd(r) to literals making it true:

β(r) = {T p | p ∈ bd(r)
+} ∪ {F p | p ∈ bd(r)

−}
Eg., for r2 from P1, bd(r2) = {b,∼d} yields β(r2) =
{T b,F d}. We use such sets of literals to refer to (composite)
variables with an intrinsic meaning (cf. Definition 3) in the
following nogoods stipulating rules to be satisfied.
Definition 1. Let P be a program. We define the rule nogood
for any r ∈ P by

φ(r) = {F p1, . . . ,F pl,Tβ(r) | hd(r) = {p1, . . . , pl}}.
The rule nogoods of P are ΦP = {φ(r) | r ∈ P}.

For instance, the nogoods for rules in P1 are as follows:

ΦP1
=

φ(r1) = {F a,F c,F e,T ∅},
φ(r2) = {F a,T {T b,F d}},
φ(r3) = {F b,T {T a,F e}},
φ(r4) = {F b,T {T c,T d}},
φ(r5) = {F c,F d,T {T b}}

Given that any answer set X of a program P is supported

by P , for every p ∈ X , there must be some applicable rule
r ∈ P such that no q ∈ hd(r)\{p} belongs toX . Support can
be captured by atom-wise shifting [Ben-Eliyahu and Dechter,
1994], mapping a rule r to ~r(p) and identifying bd(~r(p)) with
an extended set β(r, p) of literals:

~r(p) = p← bd(r) ∪ {∼q | q ∈ hd(r) \ {p}}
β(r, p) = {Tβ(r)} ∪ {F q | q ∈ hd(r) \ {p}}

For instance, atom-wise shifting of r5 = c ∨ d ← b yields
~r5(c) = c ← b,∼d and ~r5(d) = d ← b,∼c. Respective

extensions of bd(r5) = {b} are reflected by the literals in
β(r5, c) = {T {T b},F d} and β(r5, d) = {T {T b},F c}.
Note that the original body representation, as included in a
rule nogood, is reused, rather than repeatedly unfolding the
body for each head atom. On the other hand, atom-wise shift-
ing may reproduce the body of another program rule; eg., we
have that bd(~r5(c)) = {b,∼d} = bd(r2).

In view of the previous observation, we introduce the fol-
lowing concept to switch between the reuse of an existing rule
body or the introduction of a new set of literals for represent-
ing a body stemming from atom-wise shifting:

βP (r, p) =

{
β(~r(p)) if bd(~r(p)) ∈ bdP
β(r, p) if bd(~r(p)) /∈ bdP

Since bd(~r5(c)) = {b,∼d} = bd(r2), while bd(~r5(d)) =
{b,∼c} /∈ bdP1 , the representations βP1(r5, c) = {T b,F d}
and βP1(r5, d) = {T {T b},F c} are selected for bodies ob-
tained through atom-wise shifting of r5. In general, βP (r, p)
picks the original body representation β(r) if hd(r) = {p},
so that rules without proper disjunctive head do not lead to
new variables for bodies in the support nogoods given next.
Definition 2. Let P be a program. We define the support
nogood for any p ∈ atP by

ψP (p) = {T p} ∪ {FβP (r, p) | r ∈ P, p ∈ hd(r)}.
The support nogoods of P are ΨP = {ψP (p) | p ∈ atP }.

A nogood of the form ψP (p) expresses that p must not be
true if it is not supported by any rule in P , as indicated by
FβP (r, p) for all rules with p in the head. For instance, we
obtain the following support nogoods for the atoms of P1:

ΨP1 =

ψP1

(a) = {T a,F {T ∅,F c,F e},F {T b,F d}},
ψP1

(b) = {T b,F {T a,F e},F {T c,T d}},
ψP1(c) = {T c,F {T ∅,F a,F e},F {T b,F d}},
ψP1(d) = {T d,F {T {T b},F c}},
ψP1(e) = {T e,F {T ∅,F a,F c}}

Rule and support nogoods define the atoms of a program

in terms of rule bodies, possibly obtained through atom-wise
shifting. Bodies in turn represent the conjunction of their con-
tained literals, which is captured by defining the correspond-
ing variables by means of the following nogoods.
Definition 3. Let P be a program and β a set of literals. We
define the conjunction nogoods for β by

γ(β) = {{Fβ} ∪ β} ∪ {{Tβ, σ} | σ ∈ β}.
The conjunction nogoods of P are

ΓP =
⋃

β∈{β(r)|r∈P}∪{βP (r,p)|r∈P,p∈hd(r)}
γ(β).

Observe that ΓP includes defining nogoods for literal sets
β(r) representing elements of bdP in ΦP as well as for ex-
tensions β(r, p), selected via βP (r, p), that occur in ΨP .
Eg., β(r1) = ∅, β(r2) = {T b,F d}, and βP1(r1, a) =
{T ∅,F c,F e} are defined via the following subsets of ΓP1 :

γ(∅) = {{F ∅}}

γ({T b,F d}) =

{{F {T b,F d},T b,F d},
{T {T b,F d},F b},
{T {T b,F d},T d}

}

γ({T ∅,F c,F e}) =

{F {T ∅,F c,F e},T ∅,F c,F e},
{T {T ∅,F c,F e},F ∅},
{T {T ∅,F c,F e},T c},
{T {T ∅,F c,F e},T e}

In particular, {F ∅} requires T ∅, which occurs in a nogood
defining {T ∅,F c,F e}, to belong to any solution for ΓP1 .

Although the combined set ΦP ∪ΨP ∪ ΓP of nogoods suf-
fices to characterize models of P that are supported by P ,
we rely on component-wise shifting [Drescher et al., 2008]
as an a priori simplification, particularly for (complex) min-
imality checking detailed below. To this end, we refer to the
SCCs of head atoms in a rule r by sccP (r) = {L ∈ sccP |
hd(r) ∩ L 6= ∅}. Component-wise shifting then decomposes
rules (with proper disjunctive heads) on the basis of SCCs.

Definition 4. Let P be a program. We define the component-
shifted version of P by

~P = {hd(r) ∩ L← bd(r) ∪ {∼p | p ∈ hd(r) \ L} |
r ∈ P,L ∈ sccP (r)} ∪ {r ∈ P | hd(r) = ∅}.

For P1, component-wise shifting yields the following:

~P1 =

{
r0 : e← ∼a,∼c
r1 : a ∨ c← ∼e

}
∪ {r2, r3, r4, r5}

Note that the heads of rules in ~P1 are confined to SCCs, viz.
hd(r) ⊆ {a, b, c, d} or hd(r) ⊆ {e} holds for all r ∈ ~P1. In
general, a program P is non-HCF iff its component-shifted
version ~P includes some rule with proper disjunctive head.

Unlike atom-wise shifting, component-wise shifting pre-
serves the (classical) semantics of loop formulas [Lee and
Lifschitz, 2003]. Hence, a program P and its component-
shifted version ~P are equivalent.

Proposition 1. Let P be a program andX a set of atoms. We
have that X is an answer set of P iff X is an answer set of ~P .

The previous result tells us that nogoods aiming at answer
sets of P may safely concentrate on ~P . In fact, we define
the nogoods capturing completion [Lee and Lifschitz, 2003]
relative to the component-shifted version ~P of P .

Definition 5. Let P be a program. We define the completion
nogoods of P by ∆P = Φ~P ∪Ψ~P ∪ Γ~P .

For instance, the rule nogood {F a,F c,F e,T ∅} from ΦP1

turns into φ(r0) = {F e,T {F a,F c}} and φ(r1) = {F a,
F c,T {F e}} in Φ~P1

and ∆P1 . Observe that φ(r0) and φ(r1)

(in view of the conjunction nogood {F ∅} from ΓP1
) ex-

clude the same combination of literals over a, c, and e as
{F a,F c,F e,T ∅}, yet relying on different variables (sets
of literals) standing for rule bodies. As we describe below,
the bodies obtained through component-wise shifting can be
readily reused in the context of (complex) minimality check-
ing for signaling the (non-)applicability of rules.

In order to establish correspondences between models of a
program and solutions for nogoods, we map any set of atoms
to an induced assignment as follows.

Definition 6. Let P be a program and X a set of atoms. We
define the induced assignment of X for P by
AXP = {T p | p ∈ X} ∪ {F p | p ∈ atP \X}
∪ {Tβ(r) | r ∈ app~P (X)} ∪ {Fβ(r) | r ∈ ~P \ app~P (X)}
∪ {Tβ~P (r, p) | r ∈ app~P (X), hd(r) ∩ (X ∪ {p}) = {p}}
∪ {Fβ~P (r, p) | r ∈ ~P \ app~P (X), p ∈ hd(r)}
∪ {Fβ~P (r, p) | r ∈ ~P , p ∈ hd(r), hd(r) ∩X 6⊆ {p}}.

Beyond literals over atoms, an induced assignment AXP in-
cludes either Tβ(r) or Fβ(r) for each r ∈ ~P along with ei-
ther Tβ(r, p) or Fβ(r, p) for any extension β(r, p) obtained
through atom-wise shifting and selected via β~P (r, p). For in-
stance, the induced assignment A{a,b,d}P1

contains T a, T b, F c,
T d, F e, Tβ(r5) = T {T b}, Tβ~P1

(r5, d) = T {T {T b},F c},
and further literals over rule bodies.

As stated next, variables standing for rule bodies are de-
fined via conjunction nogoods in Γ~P and do thus not introduce
additional combinatorics regarding solutions for ∆P .
Proposition 2. Let P be a program andX a set of atoms. We
have that AatP∩X

P is the unique solution for
{{F p} | p ∈ atP ∩X} ∪ {{T p} | p ∈ atP \X} ∪ Γ~P .

In view of the above result, the following yields a one-to-
one correspondence between models of P that are supported
by P and solutions for the completion nogoods ∆P .
Theorem 1. Let P be a program and X a set of atoms. We
have that X is a model of P that is supported by P iff AXP is
a solution for ∆P .

For instance, {a, b, c} is a model of P1 that is supported
by P1, and the support nogoods ψ~P1

(a), ψ~P1
(b), and ψ~P1

(c)

are not contained in the induced assignment A{a,b,c}P1
, which

includes Tβ~P1
(r2, a) = Tβ~P1

(r5, c) = T {T b,F d} and
Tβ~P1

(r3, b) = T {T a,F e}. However, {a, b, c} is not an an-

swer set of P1 because {c} is a model of P {a,b,c}1 .
In order to make sure that solutions match answer sets, we

still need to guarantee that true atoms are non-circularly sup-
ported. To this end, we denote the external supports of a
set L of atoms for a program P by εP (L) = {r ∈ P |
hd(r) ∩ L 6= ∅, bd(r)

+ ∩ L = ∅}. Moreover, ρ(r, L) =
{Fβ(r)}∪{T p | p ∈ hd(r)\L} collects all literals satisfying
a rule r regardless of whether any atom from L is true. Eg.,
ε~P1

({a, b}) consists of r1 = a ∨ c← ∼e and r4 = b← c, d,
whose associated literal sets are ρ(r1, {a, b}) = {F {F e},
T c} and ρ(r4, {a, b}) = {F {T c,T d}}.

We say that a set L of atoms is unfounded [Leone et al.,
1997] for a program P wrt. an assignment A if ρ(r, L)∩A 6=
∅ holds for any r ∈ εP (L). For instance, {a, b} is unfounded
for ~P1 wrt. A{a,b,c}P1

, which includes T c ∈ ρ(r1, {a, b}) and
F {T c,T d} ∈ ρ(r4, {a, b}). Unfounded sets are addressed
by loop nogoods as follows.
Definition 7. Let P be a program. We define the loop no-
goods for any L ⊆ atP by

λP (L) = {{T p, σ1, . . . , σk} | εP (L) = {r1, . . . , rk},
p ∈ L, σ1 ∈ ρ(r1, L), . . . , σk ∈ ρ(rk, L)}.

The loop nogoods of P are ΛP =
⋃
L⊆atP λ~P (L).

Loop nogoods in λP (L) express that every atom from L
must be false if all external supports of L for P are satisfied
independently of L, as indicated by some literal from ρ(r, L)
for each r ∈ εP (L). Also note that ΛP collects loop no-
goods constructed from ~P to align literals over bodies of ex-
ternal supports with variables defined via the conjunction no-
goods Γ~P . Eg., ΛP1

includes λ~P1
({a, b}) = {{T p,F {F e},

F {T c,T d}}, {T p,T c,F {T c,T d}} | p ∈ {a, b}}, among
which {T a,T c,F {T c,T d}} and {T b,T c,F {T c,T d}} are
contained in A

{a,b,c}
P1

.
Augmenting completion with loop nogoods yields a one-

to-one correspondence between solutions and answer sets.
Theorem 2. Let P be a program and X a set of atoms.
We have that X is an answer set of P iff AXP is a solution
for ∆P ∪ ΛP .

The above result characterizes answer sets in terms of (in-
duced) assignments encapsulating “unfounded-free” models
in the sense of Leone et al. (1997), who show that unfounded
set checks can be localized to SCCs of GP . Local checks are
tractable for elements of sccP \scchcP , but not for the HCCs in
scchcP , so that evaluating loop nogoods for the (exponentially
many) subsets of HCCs is computationally complex.

Unfounded Sets. Given the complexity of identifying un-
founded sets contained in HCCs, we specify nogoods having
such unfounded sets as solutions. The nogoods require some
true atom not belonging to the unfounded set to be present
in the head of any external support whose body is not false.
We thus refer to atoms that occur together with members of a
set L of atoms in a proper disjunctive head for a program P
by LhcP = {p ∈ hd(r) | r ∈ P, |hd(r) ∩ L| > 1}. Given this,
unfounded set nogoods for atoms L of SCCs are as follows.
Definition 8. Let P be a program. We define the unfounded
set nogoods for any L ∈ sccP by

ΩP (L) = {{T up,F fβ(r)} ∪ {F uq | q ∈ bd(r)
+ ∩ L} ∪

{F hq | q ∈ hd(r) \ {p}} | r ∈ ~P , p ∈ hd(r) ∩ L}
∪ {{T hp,T up}, {T hp,F tp}, {F hp,F up,T tp} | p ∈ Lhc~P }
∪ {{F up | p ∈ L}}.

The basic idea of ΩP (L) is to represent the atoms p in an
unfounded subset L′ of L by literals of the form T up in a
solution. Additional variables are used to encode unfounded-
ness wrt. an underlying assignment A for ∆P . That is, for
any r ∈ ~P such that hd(r) ∩ L 6= ∅, the literal T fβ(r) signals
that β(r) ∈ AF , so that r is inapplicable. For atoms p ∈ L
occurring in a proper disjunction in ~P , T hp expresses that
p ∈ AT \ L′, where p ∈ AT is reflected by the literal T tp,
while F up indicates that p /∈ L′. Then, for any r ∈ ~P such
that hd(r) ∩ L′ 6= ∅, the unfoundedness of L′ is witnessed
by inapplicability of r, some true atom q ∈ hd(r) \ L′, or an
atom p ∈ bd(r)

+ ∩ L′, as represented by literals of the form
T fβ(r), T hq , or T up, respectively. Finally, L′ must not be the
(trivial) empty unfounded set.

For instance, we obtain the following unfounded set no-
goods for the HCC L1 = {a, b, c, d} of P1:

ΩP1
(L1) =

{T ua,F hc,F f{F e}},
{T uc,F ha,F f{F e}},
{T ua,F f{T b,Fd},F ub},
{T ub,F f{Ta,F e},F ua},
{T ub,F f{T c,Td},F uc,F ud},
{T uc,F hd,F f{T b},F ub},
{T ud,F hc,F f{T b},F ub}

∪

{{T ha,T ua}, {T ha,F ta}, {F ha,F ua,T ta},
{T hc,T uc}, {T hc,F tc}, {F hc,F uc,T tc},
{T hd,T ud}, {T hd,F td}, {F hd,F ud,T td}

}
∪ {{F ua,F ub,F uc,F ud}}

Eg., r5 = c ∨ d← b yields the nogoods {T uc,F hd,F f{T b},
F ub} and {T ud,F hc,F f{T b},F ub} to prohibit assignments
representing a subset L′ of L such that {c, d} ∩ L′ 6= ∅ and
b /∈ L′, while {c, d} ∩AT ⊆ L′ and {T b} /∈ AF hold wrt.
an underlying assignment A for ∆P1 .

The nogoods in ΩP (L) encode (non-empty) unfounded
subsets of L wrt. arbitrary assignments for ∆P . Upon com-
puting answer sets, however, one is interested in unfounded
sets wrt. an assignment A at hand. Hence, we extract nogoods
from A that restrict solutions for ΩP (L) accordingly.
Definition 9. Let P be a program and A an assignment for
∆P . We define the assignment nogoods for any L ∈ sccP by

ΘA
P (L) = {{F fβ(r)} | r ∈ ~P , hd(r) ∩ L 6= ∅, β(r) ∈ AF }

∪ {{T fβ(r)} | r ∈ ~P , hd(r) ∩ L 6= ∅, β(r) /∈ AF }
∪ {{F tp} | p ∈ Lhc~P ∩AT } ∪ {{T tp} | p ∈ Lhc~P \A

T }

∪ {{T up} | p ∈ L ∩AF }.

As every nogood in ΘA
P (L) is of the form {σ}, it imme-

diately implies the complement σ of its literal σ. In particu-
lar, variables fβ(r) and tp, expressing whether bodies β(r) are
false or atoms p ∈ Lhc~P are true wrt. A, are partitioned via A

into (necessarily) true and false literals. That is, the variables
representing an assignment A in ΩP (L) are fixed through the
assignment nogoods ΘA

P (L). Moreover, false members of L
are excluded from unfounded sets obtainable as solutions.

For example, consider an assignment for ∆P1 as follows:

A1 =

{
T c,F {F a,F c},F {T c,T d},T {F e},
F d,F e,F {T {T b},F c},F {T {F e},F c}

}
In view of β(r4) = {T c,T d} ∈ AF

1 , c ∈ Lhc1~P1

∩ AT
1 , and

d ∈ L ∩AF
1 , we obtain the following assignment nogoods:

ΘA1

P1
(L1) =

{T f{F e}}, {T f{T b,Fd}}, {T f{Ta,F e}},
{F f{T c,Td}}, {T f{T b}},
{T ta}, {F tc}, {T td}, {T ud}

That is, unfounded sets admitted as solutions for ΩP1

(L1) ∪
ΘA1

P1
(L1) must neither include d (or T ud, respectively) nor

rely on literals of the form T hp or T fβ(r) for p 6= c or r 6= r4.
In fact, ΩP1(L1)∪ΘA1

P1
(L1) has a single solution as follows:

B1 = {T ua,T ub,F uc,F ud,F ha,T hc,F hd}
∪ {σ | {σ} ∈ ΘA1

P1
(L1)}

Preprocessing

Shared
Data

HCC1
Data

HCCk
Data

Solver1 Solver1 Solver1

Solvern Solvern Solvern

Generator Tester1 Testerk

Non-HCF SCCs

Generator
Configuration

Tester Configuration

...

...

. .
 .

. .
 .

. .
 .

Figure 1: System architecture of claspD-2

This solution yields the unfounded set {a, b} for ~P1 wrt. A1,
where the members of ε~P1

({a, b}) = {r1, r4} are satisfied
independently of a and b in view of T c ∈ ρ(r1, {a, b}) ∩A1

and F {T c,T d} ∈ ρ(r4, {a, b}) ∩A1.
In general, we have the following one-to-one correspon-

dence between (particular) unfounded sets and solutions.
Proposition 3. Let P be a program, A an assignment for
∆P , L ∈ sccP , and ∅ ⊂ L′ ⊆ L \ AF . We have that L′ is
unfounded for ~P wrt. A iff

B = {T up | p ∈ L′} ∪ {F up | p ∈ L \ L′}
∪ {T hp | p ∈ Lhc~P ∩ (AT \ L′)}

∪ {F hp | p ∈ Lhc~P \ (AT \ L′)} ∪ {σ | {σ} ∈ ΘA
P (L)}

is the unique solution for ΩP (L)∪ΘA
P (L) such that {p ∈ L |

up ∈ BT } = L′.
The confinement to non-empty unfounded subsetsL′ ofL\

AF for some L ∈ sccP is sufficient for minimality checking
because circular positive dependencies cannot spread across
multiple SCCs ofGP . Moreover, for any rule r ∈ ~P such that
bd(r)

+∩AF 6= ∅, the conjunction nogoods Γ~P require Fβ(r)
to belong to any solution for ∆P , so that false atoms can be
subtracted from unfounded sets. In view of Theorem 2, the
correctness of minimality checking via unfounded sets within
SCCs can be stated as follows.
Theorem 3. Let P be a program and A a solution for ∆P .
We have that A is a solution for ΛP iff ΩP (L) ∪ ΘA

P (L) is
unsatisfiable for any L ∈ sccP .

As noted above, unfounded set checks are tractable for
SCCs whose atoms do not occur jointly in any proper dis-
junction (trivially including singletons like {e} ∈ sccP1

).
Hence, solving ΩP (L) ∪ ΘA

P (L) to compute unfounded sets
is appropriate for HCCs only. In the course of this, however,
component-wise shifting reduces the amount of assignment
specifics passed through ΘA

P (L), since only atoms from L
are considered in addition to variables for rule bodies.

4 The claspD-2 System
Our approaches to model generation and minimality checking
are implemented in the new conflict-driven disjunctive ASP

solver claspD-2. Its generating and testing solver units rely
on Conflict-Driven Constraint Learning (CDCL; [Marques-
Silva and Sakallah, 1999; Zhang et al., 2001]), as originally
devised for SAT. CDCL incorporates deterministic (unit)
propagation, heuristic decisions, conflict resolution to derive
and record a new nogood from any assignment containing
some nogood, and backjumping to recover after a conflict.

The generator(s) in claspD-2 combine propagation via
completion nogoods with unfounded set checks. The latter
concentrate on (non-trivial) SCCs, and complex checks by
solving ΩP (L) ∪ ΘA

P (L) are limited to HCCs L ∈ scchcP .1
For scheduling such checks, claspD-2 distinguishes whether
an assignment A is total, viz. AT ∪ AF = var(∆P), or
not. Before some total A is accepted, the unsatisfiability of
ΩP (L) ∪ ΘA

P (L) needs to be verified for all L ∈ scchcP , and
thus a total check investigating each HCC is performed. Un-
like this, partial checks are not mandatory for soundness and
can be customized in claspD-2. The ad hoc strategy applied
by default relies on two thresholds: low is initialized with 0
and updated to the (greater) level of a decision where partial
checking yields unsatisfiability of ΩP (L) ∪ ΘA

P (L) for all
L ∈ scchcP ; high is initially∞ and then updated to the level
of a decision where a solution B for ΩP (L) ∪ ΘA

P (L) such
that λ ⊆ A for some λ ∈ λ~P ({p ∈ L | up ∈ BT }) exhibits a
conflict. Given this, a partial check is scheduled for decision
level dhigh−low2 e, assuming that roughly half the number of
variables unassigned by backjumping from a previous con-
flict due to an unfounded set will be reassigned.

Figure 1 displays the system architecture of claspD-2. Pre-
processing a (ground disjunctive) input program P includes
the calculation of SCCs along with the component-shifted
version ~P of P . This provides the basis for internal data rep-
resentations of ∆P and ΩP (L1), . . . ,ΩP (Lk) for scchcP =
{L1, . . . , Lk}. Such data representations are further handled
by dedicated solver objects, one generating candidate models
and k testers performing unfounded set checks for individual
HCCs. Building on the multi-threaded design of the clasp 2
series [Gebser et al., 2012b], the assembly of a generator
along with testers may be reproduced to obtain n (currently
up to n = 64) threads running in parallel. The n generating
and k×n testing solvers can be separately configured, eg.,
to specify portfolios of search strategies for model generation
and/or minimality checking. Notably, different generators as
well as the n testers working on the same HCC share common
data, rather than copying it n times.

In addition to multi-threading support, the interplay be-
tween generator(s) and tester(s) has been a prime target of
enhancements in claspD-2. To this end, the unfounded set
nogoods ΩP (L) are formulated in such a way that they re-
main invariant under dynamic assignment information passed
through ΘA

P (L). Since all nogoods in ΘA
P (L) are singletons

fixing truth values for some variables, their effect can be im-
plemented via assumptions [Eén and Sörensson, 2003]. In
fact, claspD-2 utilizes the interface of clasp [Gebser et al.,

1The (linear-time) unfounded set detection algorithm of clasp
(cf. [Gebser et al., 2012a]) allows for identifying sets L′ such that
β(r) ∈ AF applies to all external supports r ∈ ε~P (L

′). This is
sufficient to detect any unfounded subset of a non-disjunctive SCC.

Benchmark # basic partial pfolio[4] pfolio[8] claspD-1 cmodels
ConformantPlanning 23 49 (1) 50 (1) 21 (0) 15 (0) 92 (0) 395 (10)

MaximalSatisfiableSet 86 51 (3) 46 (2) 23 (0) 5 (0) 230 (12) 619 (57)
MinimalDiagnosis 58 28 (1) 4 (0) 4 (0) 4 (0) 11 (0) 900 (58)

2QBF 53 276 (14) 278 (15) 190 (7) 148 (4) 568 (32) 577 (32)
Repair 60 79 (4) 44 (2) 11 (0) 8 (0) 354 (20) 900 (60)

StrategicCompanies 32 489 (6) 473 (6) 528 (10) 521 (8) 773 (23) 862 (30)
Average Time (Timeouts) 312 162 (29) 149 (26) 129 (17) 117 (12) 338 (87) 709 (247)

Table 1: Experimental results comparing different configurations of claspD-2 with claspD-1 and cmodels

2008] for solving under assumptions to handle unfounded set
checks via queries to testers in charge. Importantly, the same
tester processes all queries from a generator (likewise at total
and partial checks) for some HCC, so that conflict nogoods
recorded when solving a query can persist and constrain fu-
ture queries. In turn, an unfounded set L′ from a tester always
yields some loop nogood λ ∈ λ~P (L′) such that λ ⊆ A for
the querying generator’s assignment A (thus indicating a con-
flict) or that λ can be propagated wrt. A. In either case, λ is
recorded on the generator side, which may make analogous
queries (from any generator) obsolete in the sequel.

5 Experiments
We compare two single- and two multi-threaded configura-
tions of claspD-2 (R65822) with its predecessor claspD-1
(1.1.4) and cmodels (3.8.2). All these systems accept (ground
disjunctive) input programs in lparse format [Syrjänen] and
utilize CDCL technology for model generation and minimal-
ity checking. The experiments were run on a Linux machine
with two Quad-Core Xeon E5520 2.27GHz processors, lim-
iting each run to 900 seconds wall-clock time.

Table 1 shows average runtimes in seconds on 312 in-
stances2 from six classes: ConformantPlanning [Tu et al.,
2011], MaximalSatisfiableSet [Janota and Marques-Silva,
2011], MinimalDiagnosis [Gebser et al., 2011b], 2QBF
[Peschiera et al., 2010], Repair [Gebser et al., 2010], and
StrategicCompanies [Calimeri et al., 2013]. Each instance
was solved within the time limit by at least one system,
while timeouts, given in parentheses, account for 900 sec-
onds. The last row displays average runtimes over all six
classes (weighted equally) along with sums of timeouts.

The difference between the single-threaded claspD-2 con-
figurations “basic” and “partial” is that only the latter per-
forms partial checks for HCCs. We observe some yet mod-
erate performance gains due to partial checks according to
our ad hoc strategy sketched above. Parallel portfolios, vary-
ing the search strategies of generators along with their testers,
with n = 4 or n = 8 threads in “pfolio[n]” turn out to be quite
effective (except for StrategicCompanies, where nogood ex-
change distracts search), especially on 2QBF. However, these
benchmark results can give a first impression only, as neither
the scheduling of partial checks nor multi-threaded operation
modes of claspD-2 are fine-tuned at present.

Although claspD-2 still lacks fine-tuning, the comparison
with claspD-1 and cmodels clearly shows advantages of our

2http://www.cs.uni-potsdam.de/claspD

new system. For one, they are owed to using state-of-the-
art solver units from the clasp 2 series for model generation
and minimality checking. For another, claspD-2 is the first
disjunctive ASP solver in which generators and testers coexist
over whole runs, whereas prior approaches rely on rebuilding
Boolean constraints to check different assignments.

For a complement, we also ran the backtracking-based
solver dlv (Dec12) on the instances of MinimalDiagnosis and
StrategicCompanies, whose encodings from [Calimeri et al.,
2013] are compatible with dlv’s (first-order) input language.
Like cmodels, dlv could not finish any MinimalDiagnosis in-
stance within 900 seconds. However, with 7 timeouts and
about 522 seconds average runtime, dlv was competitive on
StrategicCompanies, whose instances are randomly gener-
ated and not very amenable to conflict-driven learning.

6 Discussion

We introduced an approach to disjunctive ASP solving along
with the claspD-2 system equitably interleaving model gen-
eration and minimality checking. Unlike previous unfounded
set encodings, our new formulation includes variables to rep-
resent relevant parts of candidate assignments to check. By
means of assumptions, the truth values of such variables can
be fixed to query for unfounded sets wrt. a particular assign-
ment at hand. This enables the reuse of Boolean constraints
characterizing unfounded sets, both static ones as well as
those recorded from conflicts, in a sequence of queries.

While multi-threaded parallelism has already been ex-
ploited to instantiate (disjunctive) programs [Perri et al.,
2010], claspD-2 is the first solver offering shared memory
multi-threading in the search for answer sets of disjunctive
programs. In this work, we presented the initial version of
claspD-2, whose fine-tuning for ΣP2 -hard problem solving is
still progressing. For instance, we aim at more elaborate ap-
proaches to schedule partial checks than our current ad hoc
strategy or the one of dlv [Pfeifer, 2004]. A second issue to
future work is exploring in how far the search for unfounded
sets can be geared towards effectiveness in pruning the space
of candidate models. As a side effect of its decision heuristic,
the tester of dlv [Maratea et al., 2010] identifies ⊆-minimal
unfounded sets, but a systematic investigation of unfounded
set “optimization” is yet missing. Finally, we envisage a na-
tive treatment (without compiling to simpler constructs) of
recursive aggregates (cf. [Alviano et al., 2011]) involved in
HCCs as a means to increase expressiveness in the future.

References
[Alviano et al., 2011] M. Alviano, F. Calimeri, W. Faber,

N. Leone, and S. Perri. Unfounded sets and well-founded
semantics of answer set programs with aggregates. Jour-
nal of Artificial Intelligence Research, 42:487–527, 2011.

[Baral, 2003] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving. Cambridge, 2003.

[Ben-Eliyahu and Dechter, 1994] R. Ben-Eliyahu and
R. Dechter. Propositional semantics for disjunctive
logic programs. Annals of Mathematics and Artificial
Intelligence, 12(1-2):53–87, 1994.

[Calimeri et al., 2013] F. Calimeri, G. Ianni, and F. Ricca.
The third open answer set programming competition. The-
ory and Practice of Logic Programming, 2013. To appear.

[Drescher et al., 2008] C. Drescher, M. Gebser, T. Grote,
B. Kaufmann, A. König, M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving. In Proc. In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’08), pages 422–432. AAAI
Press, 2008.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. Tem-
poral induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4), 2003.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. On the
computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial
Intelligence, 15(3-4):289–323, 1995.

[Gebser et al., 2008] M. Gebser, R. Kaminski, B. Kaufmann,
M. Ostrowski, T. Schaub, and S. Thiele. Engineering an
incremental ASP solver. In Proc. International Confer-
ence on Logic Programming (ICLP’08), pages 190–205.
Springer, 2008.

[Gebser et al., 2010] M. Gebser, C. Guziolowski,
M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and
P. Veber. Repair and prediction (under inconsistency)
in large biological networks with answer set program-
ming. In Proc. International Conference on Principles of
Knowledge Representation and Reasoning (KR’10), pages
497–507. AAAI Press, 2010.

[Gebser et al., 2011a] M. Gebser, R. Kaminski, and
T. Schaub. Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming,
11(4-5):821–839, 2011.

[Gebser et al., 2011b] M. Gebser, T. Schaub, S. Thiele, and
P. Veber. Detecting inconsistencies in large biological net-
works with answer set programming. Theory and Practice
of Logic Programming, 11(2-3):323–360, 2011.

[Gebser et al., 2012a] M. Gebser, B. Kaufmann, and
T. Schaub. Conflict-driven answer set solving: From
theory to practice. AI Journal, 187-188:52–89, 2012.

[Gebser et al., 2012b] M. Gebser, B. Kaufmann, and
T. Schaub. Multi-threaded ASP solving with clasp.
Theory and Practice of Logic Programming, 12(4-5):525–
545, 2012.

[Janhunen et al., 2006] T. Janhunen, I. Niemelä, D. Seipel,
P. Simons, and J. You. Unfolding partiality and disjunc-

tions in stable model semantics. ACM Transactions on
Computational Logic, 7(1):1–37, 2006.

[Janota and Marques-Silva, 2011] M. Janota and
J. Marques-Silva. On deciding MUS membership
with QBF. In Proc. International Conference on Princi-
ples and Practice of Constraint Programming (CP’11),
pages 414–428. Springer, 2011.

[Koch et al., 2003] C. Koch, N. Leone, and G. Pfeifer. En-
hancing disjunctive logic programming systems by SAT
checkers. AI Journal, 151(1-2):177–212, 2003.

[Lee and Lifschitz, 2003] J. Lee and V. Lifschitz. Loop for-
mulas for disjunctive logic programs. In Proc. Inter-
national Conference on Logic Programming (ICLP’03),
pages 451–465. Springer, 2003.

[Leone et al., 1997] N. Leone, P. Rullo, and F. Scarcello.
Disjunctive stable models: Unfounded sets, fixpoint se-
mantics, and computation. Information and Computation,
135(2):69–112, 1997.

[Leone et al., 2006] N. Leone, G. Pfeifer, W. Faber, T. Eiter,
G. Gottlob, S. Perri, and F. Scarcello. The DLV system for
knowledge representation and reasoning. ACM Transac-
tions on Computational Logic, 7(3):499–562, 2006.

[Lierler, 2005] Y. Lierler. Cmodels: SAT-based disjunctive
answer set solver. In Proc. International Conference on
Logic Programming and Nonmonotonic Reasoning (LP-
NMR’05), pages 447–451. Springer, 2005.

[Maratea et al., 2010] M. Maratea, F. Ricca, and P. Veltri.
DLVMC: Enhanced model checking in DLV. In Proc.
European Conference on Logics in Artificial Intelligence
(JELIA’10), pages 365–368. Springer, 2010.

[Marques-Silva and Sakallah, 1999] J. Marques-Silva and
K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

[Perri et al., 2010] S. Perri, F. Ricca, and M. Sirianni. A
parallel ASP instantiator based on DLV. In Proc. Work-
shop on Declarative Aspects of Multicore Programming
(DAMP’10), pages 73–82. ACM Press, 2010.

[Peschiera et al., 2010] C. Peschiera, L. Pulina, A. Tac-
chella, U. Bubeck, O. Kullmann, and I. Lynce. The seventh
QBF solvers evaluation (QBFEVAL’10). In Proc. Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing (SAT’10), pages 237–250. Springer, 2010.

[Pfeifer, 2004] G. Pfeifer. Improving the model genera-
tion/checking interplay to enhance the evaluation of dis-
junctive programs. In Proc. International Conference on
Logic Programming and Nonmonotonic Reasoning (LP-
NMR’04), pages 220–233. Springer, 2004.

[Syrjänen,] T. Syrjänen. Lparse 1.0 user’s manual.
[Tu et al., 2011] P. Tu, T. Son, M. Gelfond, and A. Morales.

Approximation of action theories and its application to
conformant planning. AI Journal, 175(1):79–119, 2011.

[Zhang et al., 2001] L. Zhang, C. Madigan, M. Moskewicz,
and S. Malik. Efficient conflict driven learning in a
Boolean satisfiability solver. In Proc. International Con-
ference on Computer-Aided Design (ICCAD’01), pages
279–285. ACM Press, 2001.

