
A Comparative Study of Logic Programs with Preference

Torsten Schaub∗ and Kewen Wang
Institut für Informatik, Universiẗat Potsdam

Postfach 60 15 53, D–14415 Potsdam, Germany
{torsten,kewen}@cs.uni-potsdam.de

Abstract
We are interested in semantical underpinnings for
existing approaches to preference handling in ex-
tended logic programming (within the framework
of answer set programming). As a starting point,
we explore three different approaches that have
been recently proposed in the literature. Because
these approaches use rather different formal means,
we furnish a series of uniform characterizations
that allow us to gain insights into the relationships
among these approaches. To be more precise, we
provide different characterizations in terms of (i)
fixpoints, (ii) order preservation, and (iii) transla-
tions into standard logic programs. While the two
former provide semantics for logic programming
with preference information, the latter furnishes
implementation techniques for these approaches.

1 Introduction
Numerous approaches to logic programming with preference
information have been proposed in the literature. So far, how-
ever, there is no systematic account on their structural dif-
ferences, finally leading to solid semantical underpinnings.
We address this shortcoming by a comparative study of a dis-
tinguished class of approaches to preference handling. This
class consists ofselectiveapproaches remaining within the
complexity class of extended logic programming (under an-
swer sets semantics). These approaches are selective insofar
as they use preferences to distinguish certain “models” of the
original program.

We explore three different approaches that have been re-
cently proposed in the literature, namely the ones in[Brewka
and Eiter, 1999; Delgrandeet al., 2000; Wanget al., 2000].
Our investigation adopts characterization techniques found in
the same literature in order to shed light on the relationships
among these approaches. This provides us with different
characterizations in terms of (i) fixpoints, (ii) order preser-
vation, and (iii) translations into standard logic programs.
While the two former provide semantics for logic program-
ming with preference information, the latter furnishes im-
plementation techniques for these approaches. From another
∗ Affiliated with the School of Computing Science at Simon

Fraser University, Burnaby, Canada.

perspective, one can view (iii) as an axiomatization of the un-
derlying strategy within the object language, while (i) may
be regarded as a meta-level description of the corresponding
construction process. One may view (ii) as the most seman-
tical characterization because it tells us which “models” of
the original program are selected by the respective preference
handling strategy.

We limit (also in view of (iii)) our investigation to ap-
proaches to preference handling that remain within NP. This
excludes approach like the ones in[Rintanen, 1995; Zhang
and Foo, 1997] that step outside the complexity class of the
underlying reasoning method. This applies also to the ap-
proach in[Sakama and Inoue, 1996], where preferences on
literals are investigated. While the approach of[Gelfond
and Son, 1997] remains within NP, it advocates strategies
that are non-selective. Approaches that can be addressed
within this framework include[Baader and Hollunder, 1993;
Brewka, 1994] that were originally proposed for default logic.

2 Definitions and notation
We assume a basic familiarity with logic programming un-
deranswer set semantics[Gelfond and Lifschitz, 1991]. An
extended logic programis a finite set of rules of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (1)

wheren ≥ m ≥ 0, and eachLi (0 ≤ i ≤ n) is a literal, ie.
either an atomA or its negation¬A. The set of all literals is
denoted byLit . Given a ruler as in (1), we lethead(r) de-
note thehead, L0, of r andbody(r) thebody, {L1, . . . , Lm,
not Lm+1, . . . ,not Ln}, of r. Further, letbody+(r) =
{L1, , . . . , Lm} andbody−(r) = {Lm+1, . . . , Ln}. A pro-
gram is calledbasicif body−(r) = ∅ for all its rules.

We define the reduct of a ruler as r+ = head(r) ←
body+(r). Thereduct, ΠX , of a programΠ relative toa set
X of literals is defined by

ΠX = {r+ | r ∈ Π andbody−(r) ∩X = ∅}.

A set of literalsX is closed undera basic programΠ iff for
anyr ∈ Π, head(r) ∈ X wheneverbody+(r) ⊆ X. We say
thatX is logically closediff it is either consistent (ie. it does
not contain both a literalA and its negation¬A) or equals
Lit . The smallest set of literals which is both logically closed
and closed under a basic programΠ is denoted byCn(Π).



Finally, a setX of literals is ananswer setof a programΠ
iff Cn(ΠX) = X. In what follows, we deal withconsistent
answer sets only.

The setΓXΠ of all generating rulesof an answer setX from
Π is given by

ΓXΠ = {r ∈ Π | body+(r) ⊆ X andbody−(r) ∩X = ∅}.

As van Gelder in[1993], we defineCΠ(X) = Cn(ΠX).
Note that the operatorCΠ is anti-monotonic, which implies
that the operatorAΠ(X) = CΠ(CΠ(X)) is monotonic. A
fixpoint ofAΠ is called analternating fixpointfor Π. Differ-
ent semantics are captured by distinguishing different groups
of fixpoints ofAΠ.

A (statically) ordered logic program1 is a pair (Π, <),
whereΠ is an extended logic program and< ⊆ Π×Π is
an irreflexive and transitive relation. Given,r1, r2 ∈ Π, the
relationr1 < r2 expresses thatr2 has higher priority thanr1.2

3 Preferred alternating fixpoints
The notion of answer sets (without preference) is based on
a reduction of extended logic programs to basic programs
(without default negation). Such a reduction is inapplicable
when addressing conflicts by means of preference informa-
tion since all conflicts between rules are simultaneously re-
solved when turningΠ into ΠX . Rather conflict resolution
must be characterized among the original rules in order to
account for blockage between rules. That is, once the neg-
ative bodybody−(r) is eliminated there is no way to detect
whetherhead(r′) ∈ body−(r) holds in case ofr < r′.

Such an approach is pursued in[Wang et al., 2000] for
characterizing “preferred” answer sets. Following earlier ap-
proaches based on default logic[Baader and Hollunder, 1993;
Brewka, 1994], this approach is based on the concept ofac-
tiveness: LetX,Y ⊆ Lit be two sets of literals in an ordered
logic program(Π, <). A rule r in Π is activewrt the pair
(X,Y ), if body+(r) ⊆ X andbody−(r) ∩ Y = ∅.
Definition 1 (Wang et al.,2000) Let (Π, <) be an ordered
logic program and letX be a set of literals. We define

X0 = ∅ and fori ≥ 0
Xi+1 = Xi ∪ {head(r) |

I . r ∈ Π is active wrt(Xi, X) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(X,Xi) and
(b) head(r′) 6∈ Xi


Then,C(Π,<)(X) =

⋃
i≥0Xi if

⋃
i≥0Xi is consistent.

Otherwise,C(Π,<)(X) = Lit.

The idea is to apply a ruler only if the question of application
has been settled for all higher-ranked rulesr′. That is, if either
its prerequisites will never be derivable, viz.body+(r′) 6⊆
X, or r′ is defeated by what has been derived so far, viz.

1Also calledprioritized logic program by some authors, as eg. in
[Brewka and Eiter, 1999].

2Some authors, among them[Brewka and Eiter, 1999], attribute
relation< the inverse meaning.

body−(r) ∩Xi 6= ∅, or r′ or another rule with the same head
have already applied, viz.head(r′) ∈ Xi.

As its originalCΠ, the operatorC(Π,<) is anti-monotonic.
Accordingly, we may define for any setX ⊆ Lit , the
alternating transformationof (Π, <) as A(Π,<)(X) =
C(Π,<)(C(Π,<)(X)). A fixpoint of A(Π,<) is called analter-
nating fixpointof (Π, <). Note thatA(Π,<) is monotonic.

Now, in analogy to Van Gelder[1993], a semantical frame-
work for ordered logic programs in terms of sets of alternating
fixpoints can be defined. Three different types of semantics
are investigated in[Wanget al., 2000]: (i) Preferred3 answer
sets, viz. alternating fixpoints being also fixpoints ofC(Π,<).
(ii) Preferred regular extensions, viz. maximal normal4 al-
ternating fixpoints of(Π, <). (iii) Preferred well-founded
model, viz. the least alternating fixpoint of(Π, <).

We put the prefix ‘W-’ whenever a distinction to other ap-
proaches is necessary.

For illustration, consider the following ordered logic pro-
gram(Π2, <) due to[Baader and Hollunder, 1993]:

r1 : ¬f ← p,not f
r2 : w ← b,not ¬w
r3 : f ← w,not ¬f
r4 : b ← p
r5 : p ←

r2 < r1 (2)

Observe thatΠ2 admits two answer sets:X = {p, b,¬f, w}
andX ′ = {p, b, f, w}. As argued in[Baader and Hollunder,
1993], X is the uniqueW-preferred answer set. To see this,
observe that

X0 = ∅ X ′0 = ∅
X1 = {p} X ′1 = {p}
X2 = {p, b,¬f} X ′2 = {p, b}
X3 = {p, b,¬f, w} X ′3 = X ′2 6= X ′

X4 = X3 = X

Note thatw cannot be included intoX ′3 becauser1 is active
wrt (X ′, X ′2) andr1 is preferred tor2.

4 Compiling order preservation
A translation of ordered logic programs(Π, <) to standard
onesΠ′ is developed in[Delgrandeet al., 2000]. The specific
strategy used there ensures that the resulting programΠ′ ad-
mits only those answer sets of the original programΠ that are
order preserving:

Definition 2 Let (Π, <) be a statically ordered program and
letX be an answer set ofΠ.

Then,X is called<-preserving, if there exists an enumer-
ation 〈ri〉i∈I of ΓXΠ such that for everyi, j ∈ I we have that:

0. body+(ri) ⊆ {head(rj) | j < i}; and

1. if ri < rj , thenj < i; and

2. if ri < r′ andr′ ∈ Π \ ΓXΠ , then

(a) body+(r′) 6⊆ X or

(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅.
3Originally calledprioritized.
4An alternating fixpointX is normal ifX ⊆ C(Π,<)(X).



Condition 0 makes the property ofgroundedness5 explicit.
Although any standard answer set is generated by a grounded
sequence of rules, we will see in the sequel that this property
is weakened when preferences are at issue. Condition 1 stip-
ulates that〈ri〉i∈I is compatiblewith <, a property invariant
to all of the considered approaches. Lastly, Condition 2 is
comparable with Condition II in Definition 1; it guarantees
that rules can never be blocked by lower-ranked rules.

As above,X = {p, b,¬f, w} is the only<-preserving
answer set ofΠ2; it can be generated by the grounded se-
quences〈r5, r4, r1, r2〉 and〈r5, r1, r4, r2〉 both of which sat-
isfy conditions 1 and 2. The only grounded sequence gener-
atingX ′ = {p, b, f, w}, namely〈r5, r4, r2, r3〉, violates 2b.

The corresponding translation integrates ordering informa-
tion into the logic program via a special-purpose predicate
symbol≺. This allows also for treating ordering information
in a dynamic fashion. A logic program over a propositional
languageL is said to bedynamicallyordered iffL contains
the following pairwise disjoint categories: (i) a setN of terms
serving asnamesfor rules; (ii) a setAt of (propositional)
atoms of a program; and (iii) a setAt≺ of preference atoms
s ≺ t, wheres, t ∈ N are names. For each such program
Π, we assume furthermore a bijective functionn(·) assigning
to each ruler ∈ Π a namen(r) ∈ N . To simplify nota-
tion, we usually writenr instead ofn(r) (and we sometimes
abbreviatenri by ni).

An atom nr ≺ nr′ ∈ At≺ amounts to asserting that
r < r′ holds. A statically ordered program(Π, <) can
thus be captured by programs containing preference atoms
only among their facts; it is then expressed by the program
Π ∪ {(nr ≺ nr′)← | r < r′}.

Givenr < r′, one wants to ensure thatr′ is considered be-
fore r, in the sense that, for a given answer setX, rule r′ is
known to be applied or defeatedahead ofr (cf. Condition II
or 2 above, respectively). This is done by translating rules so
that the order of rule application can be explicitly controlled.
For this purpose, one needs to be able to detect when a rule
has been applied or when a rule is defeated. For a ruler, there
are two cases for it not to be applied: it may be that some lit-
eral inbody+(r) does not appear in the answer set, or it may
be that a literal inbody−(r) is in the answer set. For detecting
non-applicability (i.e., blockage), for each ruler in the given
programΠ, a new, special-purpose atombl(nr) is introduced.
Similarly, a special-purpose atomap(nr) is introduced to de-
tect the case where a rule has been applied. For controlling
application of ruler the atomok(nr) is introduced. Infor-
mally, one concludes that it isok to apply a rule just if it isok
with respect to every<-greater rule; for such a<-greater rule
r′, this will be the case just whenr′ is known to be blocked
or applied.

More formally, given a dynamically ordered programΠ
overL, let L+ be the language obtained fromL by adding,
for eachr, r′ ∈ Π, new pairwise distinct propositional atoms
ap(nr), bl(nr), ok(nr), andok′(nr,nr′). Then, the transla-
tion T maps an ordered programΠ overL into a standard
programT (Π) overL+ in the following way.

5This term is borrowed from the literature on default logic.

Definition 3 (Delgrandeet al.,2000) Let Π = {r1, . . . , rk}
be a dynamically ordered logic program overL.

Then, the logic programT (Π) over L+ is defined as
T (Π) =

⋃
r∈Πτ(r) , whereτ(r) consists of the following

rules, forL+ ∈ body+(r), L− ∈ body−(r), andr′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)
a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L+) : bl(nr) ← ok(nr),not L+

b2(r, L−) : bl(nr) ← ok(nr), L−

c1(r) : ok(nr) ← ok′(nr,nr1), ..., ok′(nr,nrk)
c2(r, r′) : ok′(nr,nr′) ← not (nr ≺ nr′)
c3(r, r′) : ok′(nr,nr′) ← (nr ≺ nr′), ap(nr′)
c4(r, r′) : ok′(nr,nr′) ← (nr ≺ nr′), bl(nr′)

t(r, r′, r′′) : nr ≺ nr′′ ← nr ≺ nr′ ,nr′ ≺ nr′′
as(r, r′) : ¬(nr′ ≺ nr) ← nr ≺ nr′

We writeT (Π, <) rather thanT (Π′), wheneverΠ′ is the dy-
namically ordered program capturing(Π, <).

The first four rules ofτ(r) express applicability and block-
ing conditions of the original rules. The second group of rules
encodes the strategy for handling preferences. The first of
these rules,c1(r), “quantifies” over the rules inΠ. This is
necessary when dealing with dynamic preferences since pref-
erences may vary depending on the corresponding answer set.
The three rulesc2(r, r′), c3(r, r′), andc4(r, r′) specify the
pairwise dependency of rules in view of the given preference
ordering: For any pair of rulesr, r′ with nr ≺ nr′ , we de-
rive ok′(nr,nr′) whenevernr ≺ nr′ fails to hold, or when-
ever eitherap(nr′) or bl(nr′) is true. This allows us to derive
ok(nr), indicating thatr may potentially be applied when-
ever we have for allr′ with nr ≺ nr′ thatr′ has been applied
or cannot be applied. It is important to note that this is only
one of many strategies for dealing with preferences: differ-
ent strategies are obtainable by changing the specification of
ok(·) andok′(·, ·), as we will see below.

As shown in[Delgrandeet al., 2000], a set of literalsX is a
<-preserving answer set ofΠ iff X = Y ∩L for some answer
setY of T (Π, <). In the sequel, we refer to such answer sets
as beingD-preferred.

5 Synthesis

The last two sections have exposed three rather different ways
of characterizing preferred answer sets. Despite their differ-
ent characterizations, however, it turns out that the two ap-
proaches prefer similar answer sets.

5.1 Characterizing D-preference

We start by providing a fixpoint definition forD-preference.
For this purpose, we assume a bijective mappingrule(·) from
rule heads to rules, that is,rule(head(r)) = r; accordingly,
rule({head(r) | r ∈ R}) = R. Such mappings can be
defined in a bijective way by distinguishing different occur-
rences of literals.

Definition 4 Let (Π, <) be a statically ordered logic pro-



gram and letX be a set of literals. We define

X0 = ∅ and fori ≥ 0
Xi+1 = Xi ∪ {head(r) |

I . r ∈ Π is active wrt(Xi, X) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(X,Xi) and
(b) r′ 6∈ rule(Xi)


Then,CD

(Π,<)(X) =
⋃
i≥0Xi if

⋃
i≥0Xi is consistent.

Otherwise,CD
(Π,<)(X) = Lit.

The difference between this definition and Definition 1 man-
ifests itself in IIb. WhileD-preference requires that a higher-
ranked rule has effectively applied,W-preference contents
itself with the presence of the head of the rule, no matter
whether this was supplied by the rule itself.

This difference is nicely illustrated by program(Π3, <):

r1 : a ← not b
r2 : b ←
r3 : a ←

r2 < r1 (3)

While the only answer set{a, b} is W-preferred set, there is
no D-preferred answer set. This is the same with program
(Π′3, <) obtained by replacingr1 with r′1 : a← b.

We have the following result providing three alternative
characterizations ofD-preferred answer sets.

Theorem 1 Let (Π, <) be a statically ordered logic program
overL and letX be a consistent set of literals.

Then, the following propositions are equivalent.

1. CD
(Π,<)(X) = X;

2. X = Y ∩ L for some answer setY of T (Π, <);
3. X is a<-preserving answer set ofΠ.

While the last result dealt with effective answer sets, the next
one shows that applying operatorCD

(Π,<) is equivalent to the
application of van Gelder’s operatorCΠ′ to the translated pro-
gramT (Π, <) .

Theorem 2 Let (Π, <) be a statically ordered logic program
overL and letX be a consistent set of literals overL.

Then, we have thatCD
(Π,<)(X) = CT (Π,<)(Y )∩L for some

set of literalsY overL+ such thatX = Y ∩ L.

This result is important because it allows us to use the trans-
lationT (Π, <) for implementing further semantics by appeal
to the alternating fixpoint idea.

5.2 Characterizing W-preference
We start by showing howW-preference can be characterized
in terms of order preservation.

Definition 5 Let (Π, <) be a statically ordered program and
letX be an answer set ofΠ.

Then,X is called<W-preserving, if there exists an enu-
meration〈ri〉i∈I of ΓXΠ such that for everyi, j ∈ I we have
that:

0. (a) body+(ri) ⊆ {head(rj) | j < i} or

(b) head(ri) ∈ {head(rj) | j < i}; and

1. if ri < rj , thenj < i; and

2. if ri < r′ andr′ ∈ Π \ ΓXΠ , then

(a) body+(r′) 6⊆ X or

(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r′) ∈ {head(rj) | j < i}.

The primary difference of this concept of order preservation
to the original one is clearly the weaker notion of grounded-
ness. This involves the rules inΓXΠ (via Condition 0b) as well
as those inΠ \ ΓXΠ (via Condition 2c). The rest of the defini-
tion is the same as in Definition 2. For instance, answer set
{a, b} of Π3 is generated by the<W-preserving rule sequence
〈r3, r2〉. Note thatr1 satisfies 2c but neither 2a nor 2b. For a
complement, in(Π′3, <), r′1 is dealt with via Condition 0b.

Interestingly, this weaker notion of groundedness can be
easily integrated into the translation given in the last section.

Definition 6 Given the same prerequisites as in Definition 3.
Then, the logic programT W(Π) over L+ is defined as
T W(Π) =

⋃
r∈Πτ(r) ∪ {c5(r, r′) | r, r′ ∈ Π}, where

c5(r, r′) : ok′(nr,nr′) ← (nr ≺ nr′), head(r′)

The purpose ofc5(r, r′) is to eliminate rules from the prefer-
ence handling process once their head has been derived.

We have the following result, showing in particular, how
W-preference is implementable via off-the-shelf logic pro-
gramming systems.

Theorem 3 Let (Π, <) be a statically ordered logic program
overL and letX be a consistent set of literals. Then, the
following propositions are equivalent.

1. C(Π,<)(X) = X;

2. X = Y ∩ L for some answer setY of T W(Π, <);
3. X is a<W-preserving answer set ofΠ.

In analogy to what we have shown above, we have the fol-
lowing stronger result, opening the avenue for implementing
more semantics based onW-preference:.

Theorem 4 Let (Π, <) be a statically ordered logic program
overL and letX be a consistent set of literals overL.

Then, we have thatC(Π,<)(X) = CT W(Π,<)(Y ) ∩ L for
some set of literalsY overL+ such thatX = Y ∩ L.

6 Brewka and Eiter’s concept of preference
Another approach to preference was proposed by Brewka and
Eiter in [1999]. For brevity, we omit technical details and
simply say that an answer set isB-preferred; the reader is
referred to[Brewka and Eiter, 1999; 2000] for details.

This approach differs in two significant ways from the two
approaches given above. First, the construction of answer sets
is separated from verifying whether they respect the given
preferences. Interestingly, this verification is done on the ba-
sis of the prerequisite-free program obtained from the orig-
inal one by “evaluating”body+(r) for each ruler wrt the
separately constructed (standard) answer set. Second, rules
that putatively lead to counter-intuitive results are explicitly



removed from the inference process. This is made explicit
in [Brewka and Eiter, 2000], where the following filtering
transformation is defined:6

ZX(Π) = Π \ {r ∈ Π | head(r) ∈ X, body−(r) ∩X 6= ∅}
(4)

Then, by definition, an answer set ofΠ is B-preferred iff it is
a B-preferred answer set ofZX(Π).

The distinguishing example of this approach is given by
program(Π5, <):

r1 : b ← a,not ¬b
r2 : ¬b ← not b
r3 : a ← not ¬a

r3 < r2 < r1 (5)

ProgramΠ5 has two standard answer sets,{a, b} and{a,¬b}.
While the former isB-preferred, neither of them isW- or D-
preferred (see below). Also, we note that both answer sets of
program(Π2, <) areB-preferred, while only{p, b,¬f, w} is
W- andD-preferred.

In order to shed some light on these differences, we start
by providing a fixpoint characterization ofB-preference:

Definition 7 Let (Π, <) be an ordered logic program and let
X be a set of literals. We define

X0 = ∅ and fori ≥ 0
Xi+1 = Xi ∪ {head(r) |

I . r ∈ Π is active wrt(X,X) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(X,Xi) and
(b) head(r′) 6∈ Xi


Then,CB

(Π,<)(X) =
⋃
i≥0Xi if

⋃
i≥0Xi is consistent.

Otherwise,C(Π,<)(X) = Lit.

The difference between this definition7 and its predecessors
manifests itself in Condition I, where activeness is tested wrt
(X,X) instead of(Xi, X) as in Definition 1 and 4. In fact,
in Example (5) it is the (unprovability of the) prerequisitea
of the highest-ranked ruler1 that makes the construction of
W- or D-preferred answer sets break down (cf. Definition 1
and 4). This is avoided withB-preference because once an-
swer set{a, b} is provided, its preference-compatibility is
tested wrt the program obtained by replacingr1 with b ←
not ¬b.

B-preference can be captured by means of the following
notion of order preservation:

Definition 8 Let (Π, <) be a statically ordered program and
letX be an answer set ofΠ.

Then,X is called<B-preserving, if there exists an enu-
meration〈ri〉i∈I of ΓXΠ such that, for everyi, j ∈ I, we have
that:

6While this is integrated into[Brewka and Eiter, 1999, Def. 4.4],
it is made explicit in[Brewka and Eiter, 2000, Def. 6].

7We have refrained from integrating (4) in order to keep the fix-
point operator comparable to its predecessors, given in the previous
sections. This is taken care of in the second proposition of Theo-
rem 5.

1. if ri < rj , thenj < i; and

2. if ri < r′ andr′ ∈ Π \ ΓXΠ , then

(a) body+(r′) 6⊆ X or

(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r′) ∈ X.

This definition differs in two ways from its predecessors.
First, it drops any requirement on groundedness, expressed by
Condition 0 above. This corresponds to using(X,X) instead
of (Xi, X) in Definition 7. Hence, groundedness is fully dis-
connected from order preservation. In fact, observe that the
B-preferred answer set{a, b} of (Π5, <) is associated with
the<B-preserving sequence〈r1, r2〉, while the standard an-
swer set itself is generated by the grounded sequence〈r2, r1〉.

Second, Condition 2c is more relaxed than in Definition 5.
That is, any ruler′ whose head is inX (as opposed toXi)
is taken as “applied”. Apart from this, Condition 2c also in-
tegrates the filter-conditions from (4).8 For illustration, con-
sider Example (3) extended byr3 < r2:

r1 : a ← not b
r2 : b ←
r3 : a ←

r3 < r2 < r1 (6)

While this program has noD- or W-preferred answer set, it has
a B-preferred one:{a, b} generated by〈r2, r3〉. The critical
ruler1 is handled by 2c. As a net result, Condition 2 is weaker
than its counterpart in Definition 5.

We have the following results.

Theorem 5 Let (Π, <) be a statically ordered logic program
overL and letX be a consistent answer set ofΠ.

Then, the following propositions are equivalent.

1. X is B-preferred;

2. CB
(ZX(Π),<)(X) = X;

3. X = Y ∩ L for some answer setY of T B(Π, <)
(whereT B is defined in[Delgrandeet al., 2000]);

4. X is a<B-preserving answer set ofΠ.

Unlike theorems 1 and 3, the last result stipulates thatX must
be an answer set ofΠ. This requirement can only be dropped
in case 3, while all other cases rely on this property.

7 Relationships
Up to now, we have tried to clarify the structural differences
between the respective approaches. This has led to homoge-
neous characterizations that allow us to compare the exam-
ined approaches in a uniform way. As a result, we obtain
insights into the relationships among these approaches.

First of all, we observe that all three approaches treat the
blockage of (higher-ranked) rules in the same way. That
is, a ruler′ is found to be blocked if either its prerequi-
sites in body+(r′) are never derivable or if some member
of body−(r′) has been derived by higher-ranked or unrelated
rules. This is reflected by the identity of conditions IIa and
2a/b in all three approaches, respectively. Although this is

8Conditionbody−(r′) ∩X 6= ∅ in (4) is obsolete sincer′ 6∈ ΓXΠ .



arguably a sensible strategy, it leads to the loss of preferred
answer sets on programs like

r1 : a ← not b
r2 : b ← .

r2 < r1

Let us now discuss the differences among the approaches.
The difference betweenD- andW-preference can be directly
read off Definition 1 and 4; it manifests itself in Condition IIb
and leads to the following relationship.

Theorem 6 EveryD-preferred answer set isW-preferred.

Example (3) shows that the converse does not hold.
Interestingly, a similar relationship is obtained betweenW-

andB-preference. In fact, Definition 8 can be interpreted as
a weakening of Definition 5 by dropping Condition 0 and
weakening Condition 2 (via 2c). We thus obtain the following
result.

Theorem 7 EveryW-preferred answer set isB-preferred.

Example (5) shows that the converse does not hold.
We obtain the following summarizing result by letting
AS(Π) = {X | CΠ(X) = X} andASP (Π, <) = {X ∈
AS(Π) | X is P -preferred} for P = W, D, B.

Theorem 8 Let(Π, <) be a statically ordered logic program.
Then, we have:

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)

In principle, this hierarchy is induced by a decreasing in-
teraction between groundedness and preference. WhileD-
preference requires the full compatibility of both concepts,
this interaction is already weakened inW-preference, before
it is fully abandoned inB-preference. This is nicely reflected
by the evolution of Condition 0 in definitions 2, 5, and 8.

Notably, groundedness as such is not the ultimate distin-
guishing factor, as demonstrated by the fact that prerequisite-
free programs do not necessarily lead to the same preferred
answer sets, as witnessed in (3) and (6). Rather it is the
degree of interaction between groundedness and preferences
that makes the difference.

8 Conclusion
The notion of preference seems to be pervasive in logic pro-
gramming when it comes to knowledge representation. This
is reflected by numerous approaches that aim at enhanc-
ing logic programming with preferences in order to improve
knowledge representation capacities. Despite the large vari-
ety of approaches, however, only very little attention has been
paid to their structural differences and sameness, finally lead-
ing to solid semantical underpinnings.

This work is a first step towards a systematic account to
logic programming with preferences. We elaborated upon
three different approaches that were originally defined in
rather heterogenous ways. We obtained three alternative
yet uniform ways of characterizing preferred answer sets (in
terms of fixpoints, order preservation, and an axiomatic ac-
count). The underlying uniformity provided us with a deeper
understanding of how and which answer sets are preferred in
each approach. This has led to a clarification of their rela-
tionships and subtle differences. In particular, we revealed

that the investigated approaches yield an increasing number
of answer sets depending on how tight they connect prefer-
ence to groundedness.

An interesting technical result of this paper is given by the
equivalences between the fixpoint operators and the standard
logic programming operators applied to the correspondingly
transformed programs (cf. Theorem 2 and 4). This opens the
avenue for further concepts of preference handling on the ba-
sis of the alternating fixpoint theory and its issuing semantics.
Further research includes dynamic preferences and more ef-
ficient algorithms for different semantics in a unifying way.

Acknowledgements. This work was supported by DFG un-
der grant FOR 375/1-1, TP C.

References
[Baader and Hollunder, 1993] F. Baader and B. Hollunder.

How to prefer more specific defaults in terminological de-
fault logic. InProc. IJCAI’93, p 669–674, 1993.

[Brewka and Eiter, 1999] G. Brewka and T. Eiter. Preferred
answer sets for extended logic programs.Artificial Intelli-
gence, 109(1-2):297–356, 1999.

[Brewka and Eiter, 2000] G. Brewka and T. Eiter. Prioritiz-
ing default logic. In St. Ḧolldobler, ed,Intellectics and
Computational Logic. Kluwer, 2000. To appear.

[Brewka, 1994] G. Brewka. Adding priorities and specificity
to default logic. In L. Pereira and D. Pearce, eds,Proc.
JELIA’94, p 247–260. Springer, 1994.

[Delgrandeet al., 2000] J. Delgrande, T. Schaub, and
H. Tompits. Logic programs with compiled preferences.
In Proc. ECAI 2000, p 392–398. IOS Press, 2000.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and deductive
databases.New Generation Computing, 9:365–385, 1991.

[Gelfond and Son, 1997] M. Gelfond and T. Son. Reasoning
with prioritized defaults. In J. Dix, L. Pereira, and T. Przy-
musinski, eds,Workshop on Logic Programming and
Knowledge Representation, p 164–223. Springer, 1997.

[Rintanen, 1995] J. Rintanen. On specificity in default logic.
In Proc. IJCAI’95, p 1474–1479. Morgan Kaufmann,
1995.

[Sakama and Inoue, 1996] C. Sakama and K. Inoue. Rep-
resenting priorities in logic programs. In M. Maher, ed,
Proc. JCSLP’96, p 82–96. MIT Press, 1996.

[van Gelder, 1993] A. van Gelder. The alternating fixpoint
of logic programs with negation.J. Computer and System
Science, 47:185–120, 1993.

[Wanget al., 2000] K. Wang, L. Zhou, and F. Lin. Al-
ternating fixpoint theory for logic programs with prior-
ity. In Proc. Int’l Conf. Computational Logic, p 164-178.
Springer, 2000.

[Zhang and Foo, 1997] Y. Zhang and N. Foo. Answer sets
for prioritized logic programs. In J. Maluszynski, ed,Proc.
ISLP’97, p 69–84. MIT Press, 1997.


