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Abstract

We are interested in semantical underpinnings for
existing approaches to preference handling in ex-
tended logic programming (within the framework
of answer set programming). As a starting point,
we explore three different approaches that have
been recently proposed in the literature. Because
these approaches use rather different formal means,
we furnish a series of uniform characterizations
that allow us to gain insights into the relationships
among these approaches. To be more precise, we
provide different characterizations in terms of (i)
fixpoints, (i) order preservation, and (iii) transla-
tions into standard logic programs. While the two
former provide semantics for logic programming
with preference information, the latter furnishes
implementation techniques for these approaches.

1 Introduction

perspective, one can view (iii) as an axiomatization of the un-
derlying strategy within the object language, while (i) may
be regarded as a meta-level description of the corresponding
construction process. One may view (ii) as the most seman-
tical characterization because it tells us which “models” of
the original program are selected by the respective preference
handling strategy.

We limit (also in view of (iii)) our investigation to ap-
proaches to preference handling that remain within NP. This
excludes approach like the ones[Rintanen, 1995; Zhang
and Foo, 199[7that step outside the complexity class of the
underlying reasoning method. This applies also to the ap-
proach in[Sakama and Inoue, 1986wvhere preferences on
literals are investigated. While the approach|6Gfelfond
and Son, 1997remains within NP, it advocates strategies
that are non-selective. Approaches that can be addressed
within this framework includ¢Baader and Hollunder, 1993;
Brewka, 1994that were originally proposed for default logic.

2 Definitions and notation

Numerous approaches to logic programming with preferencye assume a basic familiarity with logic programming un-
information have been proposed in the literature. So far, hoWger answer set semanti¢&elfond and Lifschitz, 1991 An

ever, there is no systematic account on their structural difaytended logic prograris a finite set of rules of the form
ferences, finally leading to solid semantical underpinnings.

We address this shortcoming by a comparative study of a dis- Lo« Ly,..., Ly, not Lyt1,...,n0t Ly, 1)

tinguished class of approaches to preference handling. Th
class consists o$electiveapproaches remaining within the

complexity class of extended logic programming (under an
swer sets semantics). These approaches are selective inso
as they use preferences to distinguish certain “models” of the

original program.

Wheren > m > 0, and eachL (0 <i < n)is aliteral, ie.
either an aton! or its negation-A. The set of all literals is
enoted byLit. Given a ruler as in (1), we lethead(r) de-
Bte thehead Lo, of r and body(r) thebody, {L1, ..., L,

not Lyi1,...,n0t Ly}, of . Further, letbody™ (r) =

We explore three different approaches that have been rdL1ss- -, L} @andbody™ (r) = {Lmy1, ..., Ln}. A pro-

cently proposed in the literature, namely the ong8irwka
and Eiter, 1999; Delgrandet al, 2000; Wanget al., 2004.

gram is calledasicif body~ (r) = 0 for all its rules.
We define the reduct of a rule asr* = head(r) «

Our investigation adopts characterization techniques found ihody ™ (r). Thereduct IT¥, of a programil relative toa set
the same literature in order to shed light on the relationshipsX of literals is defined by

among these approaches. This provides us with different
characterizations in terms of (i) fixpoints, (ii) order preser-

X = {r* | r € Mandbody™ (r) N X = 0}.

vation, and (iii) translations into standard logic programs. set of literalsX is closed under basic progranil iff for
While the two former provide semantics for logic program- anyr ¢ 11, head(r) € X wheneverbody™ (r) C X. We say
ming with preference information, the latter furnishes im-that X is logically closediff it is either consistent (ie. it does
plementation techniques for these approaches. From anothggt contain both a literall and its negation-A) or equals

* Affiliated with the School of Computing Science at Simon Lit. The smallest set of literals which is both logically closed

Fraser University, Burnaby, Canada.

and closed under a basic progrdinis denoted byCn (II).



Finally, a setX of literals is ananswer sebf a programill body~ (r) N X; # 0, orr’ or another rule with the same head
iff Cn(IIX) = X. In what follows, we deal witltonsistent have already applied, Vizead(r') € X;.

answer sets only. As its original C, the operatoC iy, ) is anti-monotonic.
The sef’'¥ of all generating rule®f an answer seX from  Accordingly, we may define for any set C Lit, the
IT is given by alternating transformationof (II, <) as Aq,«)(X) =

x _ n _ B Ci,<)(Car,<)(X)). A fixpoint of Ay - is called amalter-
it = {r €I body™ (r) € X andbody™ (r) N X = 0}. nfating)] fi>(<poi?1tof (I, <). Note thav(l(n,i) is monotonic.

As van Gelder i11993, we defineCr(X) = Cn(I1¥). Now, in analogy to Van Geldd1993, a semantical frame-
Note that the operatafy; is anti-monotonic, which implies work for ordered logic programs in terms of sets of alternating
that the operatord;(X) = Cn(Cn(X)) is monotonic. A fixpoints can be defined. Three different types of semantics
fixpoint of Ay is called aralternating fixpointfor II. Differ-  are investigated ifiWanget al., 200Q: (i) Preferred answer
ent semantics are captured by distinguishing different groupsets, viz. alternating fixpoints being also fixpointCef, ).
of fixpoints of Ayy. (i) Preferred regular extensions, viz. maximal norfal-

A (statically) ordered logic prograrh is a pair (II, <),  ternating fixpoints of(II, <). (iii) Preferred well-founded
wherell is an extended logic program ard C II x ITis  model, viz. the least alternating fixpoint (i, <).
an irreflexive and transitive relation. Given,, ro € II, the We put the prefixW-’ whenever a distinction to other ap-
relationr; < r, expresses that has higher priority than; .2 proaches is necessary.

For illustration, consider the following ordered logic pro-

3 Preferred alternating fixpoints gram(Il,, <) due to[Baader and Hollunder, 1983

The notion of answer sets (without preference) is based on r: —f «— p,notf ro<r  (2)
a reduction of extended logic programs to basic programs ro:  w — b,not-w

(without default negation). Such a reduction is inapplicable rs: f — w,not—f

when addressing conflicts by means of preference informa- ry b — p

tion since all conflicts between rules are simultaneously re- rs: o op e

solved when turningl into IIX. Rather conflict resolution

must be characterized among the original rules in order tébserve thatl, admits two answer setst = {p, b, = f, w}
account for blockage between rules. That is, once the ne@ndX’ = {p,b, f,w}. As argued i{Baader and Hollunder,
ative bodybody ™ (r) is eliminated there is no way to detect 1993, X is the uniquew-preferred answer set. To see this,

whetherhead(r’) € body™ (r) holds in case of < 7. observe that
Such an approach is pursued[Wanget al, 2004 for Xy = 0 X, =0
characterizing “preferred” answer sets. Following earlierap-  x; = {p} X, = {p}
proaches based on default lofigaader and Hollunder, 1993; Xy = {p,b,~f} Xy = {p,b}
Brewka, 1994 this approach is based on the concepaof X3 = {p,b,~f,w} X = X,#£X'
tivenessLet X, Y C Lit be two sets of literals in an ordered X, = X3=X
logic program(II, <). A rule r in II is activewrt the pair ) N ] )
(X,Y), if body™ () C X andbody™(r) N'Y = 0. Note thatw cannot be included int&3 because; is active
) wrt (X', X4) andr; is preferred to-.
Definition 1 (Wang et al,2000) Let (II, <) be an ordered
logic program and letX be a set of literals. We define 4 Compiling order preservation
Xo = 0 and fori > 0 A translation of ordered logic prograntsl, <) to standard
Xiy1 = X;U{head(r)| onesll’ is developed inDelgrandeet al, 2000. The specific
I. rellisactive wrt(X;, X) and strategy used there ensures that the resulting progfaaa-

mits only those answer sets of the original progiidriat are

II. thereisnorule’ € II withr < 7/ .
order preserving

such that
(a) v’ is active wrt(X, X;) and Definition 2 Let(II, <) be a statically ordered program and
(b) head(r') & X; let X be an answer set di.
. . . Then, X is called <-preserving, if there exists an enumer-
ThenCi,<)(X) = Uj»o X if U;»o X is consistent. ation (r;);c; of I'¥ such that for every, j € I we have that:

Otherwise (11, «)(X) = Lit.

The ideais to apply a ruteonly if the question of application

has been settled for all higher-ranked rulesThat is, if either

its prerequisites will never be derivable, vidy ™ (') ¢ 2. ifr; <r"andr’ € IT\ T, then
o ) .

X, or v’ is defeated by what has been derived so far, viz. @) body* (') Z X or

0. body™ (r;) C {head(r;) | j <i}; and
1. ifr; <r;, thenj < 4; and

1 T . . _ ) )
[Brerdsg gﬁlcljegirt)groritlgzg%d logic program by some authors, as eg. in (b) body~ (r') N {head(rj) |j < i} #0.
2Some authors, among thdiBrewka and Eiter, 1999attribute S0riginally calledprioritized.

relation< the inverse meaning. “An alternating fixpointX is normal if X C C, <) (X).



Condition 0 makes the property gfoundednessexplicit. Definition 3 (Delgrandeet al,2000) LetTT = {rq,...,r;}
Although any standard answer set is generated by a groundds a dynamically ordered logic program ovér

sequence of rules, we will see in the sequel that this property Then, the logic progrant (II) over £* is defined as
is weakened when preferences are at issue. Condition 1 stig=(1T) = U,cn7(r) , wherer(r) consists of the following
ulates that’r; )< is compatiblewith <, a property invariant rules, for L+ € body™ (r), L~ € body™ (r), andr’, 7" € 11 :
to all of the considered approaches. Lastly, Condition 2 is ’
comparable with Condition Il in Definition 1; it guarantees ar (r) : head(r
that rules can never be blocked by lower-ranked rules. as(r) :

As above, X = {p,b,—f,w} is the only <-preserving bi(r, LT):
answer set ofl,; it can be generated by the grounded se- bo(r,L7) :
quencesrs, 14,71, 72) and(rs, r1, r4, r2) both of which sat-
isfy conditions 1 and 2. The only grounded sequence gener-

) (nr)

) «— ok(n,), body(r)

) < ok(n,.), not L™
) — ok(n), L™

)

)

)

cr(r) : — ok (ny, ),y ooy OK (0, 1y,
r

. /
ating X’ = {p, b, f,w}, namely(rs, r4, 7, 73), violates 2b. co(r, ') = oK (nr, myr) = not (ny < )
The corresponding translation integrates ordering informa- ca(r " ,
tion into the logic program via a special-purpose predicate  ¢4(7:7") : oK (np, npr) — (ny < mpr), bl(ny)

symbol=. This allows also for treating ordering information ¢(r v/ r"):  n. < nu — np < Npr, Ny < Ny

in a dynamic fashion. A logic program over a propositional  as(r,r’) : =(n. < n,.) « n,. < N

languagel is said to bedynamicallyordered iff £ contains

the following pairwise disjoint categories: (i) a sétofterms  We write 7 (11, <) rather thar (IT'), whenevei' is the dy-

serving asnamesfor rules; (ii) a setAt of (propositional)  namically ordered program capturifg, <).

atoms of a program; and (iii) a seltt - of preference atoms  The first four rules of(r) express applicability and block-

s < t, wheres,t € N are names. For each such programing conditions of the original rules. The second group of rules

IT, we assume furthermore a bijective functiefi) assigning  encodes the strategy for handling preferences. The first of

to each ruler € II a namen(r) € N. To simplify nota-  these rules¢; (r), “quantifies” over the rules il. This is

tion, we usually writen, instead ofn(r) (and we sometimes pecessary when dealing with dynamic preferences since pref-

abbreviaten,, by n;). erences may vary depending on the corresponding answer set.
An atomn,. < n € At amounts to asserting that The three rules,(r,r’), cs(r,7'), andcy(r,7') specify the

r < 7' holds. A statically ordered progratil, <) can  pairwise dependency of rules in view of the given preference

thus be captured by programs containing preference atomsydering: For any pair of rules, r’ with n, < n,, we de-

only among their facts; it is then expressed by the progranive ok’ (n,., n,») whenever, < n,. fails to hold, or when-

MU {(n < np) — [r<r'}, ever eithemp(n,) or bl(n,) is true. This allows us to derive
Givenr < r’, one wants to ensure thetis considered be- ok(n,.), indicating thatr may potentially be applied when-

fore r, in the sense that, for a given answer Xetruler’ is  ever we have for alt’ with n,. < n,~ thatr’ has been applied

known to be applied or defeatethead ofr (cf. Condition Il or cannot be applied. It is important to note that this is only

or 2 above, respectively). This is done by translating rules sane of many strategies for dealing with preferences: differ-

that the order of rule application can be explicitly controlled. ent strategies are obtainable by changing the specification of

For this purpose, one needs to be able to detect when a ruté(-) andok’(-, -), as we will see below.

has been applied or when a rule is defeated. For adkere As shown in[Delgrandeet al, 2004, a set of literalsX is a

are two cases for it not to be applied: it may be that some lit<-preserving answer set &ffiff X = Y N £ for some answer

eral inbody ™ (r) does not appear in the answer set, or it maysetY” of 7(II, <). In the sequel, we refer to such answer sets

be that a literal irbody ™ (r) is in the answer set. For detecting as beingp-preferred

non-applicability (i.e., blockage), for each rulén the given

programll, a new, special-purpose atdstin,.) is introduced. .

Similarly, a special-purpose atom(n,.) is introduced to de- 5 Synthesis

tect the case where a rule has been applied. For controllingpe |ast two sections have exposed three rather different ways
application of ruler the atomok(n,) is introduced. Infor- ¢ characterizing preferred answer sets. Despite their differ-

mally, one concludes that it & to apply a rule justif itiok gt characterizations, however, it tumns out that the two ap-
with respect to every:-greater rule; for such &-greater rule proaches prefer similar answer sets.

r’, this will be the case just wheri is known to be blocked
or applied.

More formally, given a dynamically ordered progrdin
over L, let LT be the language obtained frofhby adding, We start by providing a fixpoint definition far-preference
for eachr, v’ € II, new pairwise distinct propositional atoms For this purpose, we assume a bijective mappixlg(-) from
ap(n,), bl(n,.), ok(n,.), andok’(n,, n,»). Then, the transla- rule heads to rules, that isyle(head(r)) = r; accordingly,
tion 7 maps an ordered prograhh over £ into a standard rule({head(r) | r € R}) = R. Such mappings can be
program7 (IT) over L™ in the following way. defined in a bijective way by distinguishing different occur-

rences of literals.

)

,7)

, ’g o ok (ny, np) — (np < npr),ap(ng)
)
)

5.1 Characterizing D-preference

®This term is borrowed from the literature on default logic. Definition 4 Let (II, <) be a statically ordered logic pro-



gram and letX be a set of literals. We define (b) head(r;) € {head(r;) | j < i}; and

X, = 0 and fori > 0 1. ifr; <r;, thenj <4; and
Xit1 = X;U{head(r)| 2. ifr; <r’andr’ € IT\ T, then
I. relIlisactive wrt(X;, X) and (@) body™(r') € X or
1 !/ i /
II. ;Tje(:rﬁ;rs]zirlo rule’’ € I withr < r (b) body™ (') N {head(r;) | j < i} % 0 or
(a) ' is active wrt(X, X;) and (©) head(r') € {head(r;) | j <i}.
(b) v & rule(X;) The primary difference of this concept of order preservation
5 ) ) ) to the original one is clearly the weaker notion of grounded-
Then Ciy ) (X) = Uiz &i if Ui X Is consistent. ness. This involves the rulesiif (via Condition Ob) as well
OtherwiseC(y; .\ (X) = Lit. as those iffl \ T'¥ (via Condition 2c). The rest of the defini-

The difference between this definition and Definition 1 man-tion is the same as in Definition 2. For instance, answer set

ifests itself in Ib. Whilep-preference requires that a higher- 10} f 113 is generated by the™-preserving rule sequence
ranked rule has effectively appliedy-preference contents (73:72)- Note thatr, satisfies 2c but neither 2a nor 2b. For a
itself with the presence of the head of the rule, no mattefOmplement, ifll;, <), 1 is dealt with via Condition Ob.

whether this was supplied by the rule itself. Interestingly, this weaker notion of groundedness can be
This difference is nicely illustrated by progra(is, <): easily integrated into the translation given in the last section.
Definition 6 Given the same prerequisites as in Definition 3.
riioa «— motb T2 <71 (3) Then, the logic progran? " (II) over £+ is defined as
ri b T(1) = U, en7(r) U {es(r.7”) | r,r' € I}, where
3 -

N . / , , /
While the only answer sefta, b} is w-preferred set, there is es(r, 1) oK (i, mye) = (- < ), head (1)

no D-preferred answer set. This is the same with progranThe purpose of;(r, ') is to eliminate rules from the prefer-

(II3, <) obtained by replacing; with 7 : a < b. ence handling process once their head has been derived.
We have the following result providing three alternative We have the following result, showing in particular, how

characterizations af-preferred answer sets. w-preference is implementable via off-the-shelf logic pro-

Theorem 1 Let (I, <) be a statically ordered logic program 9gramming systems.

overL and letX be a consistent set of literals. Theorem 3 Let (11, <) be a statically ordered logic program
Then, the following propositions are equivalent. over £ and let X be a consistent set of literals. Then, the
1. CI()H <)(X) - X: following propositions are equivalent.

1. C(H’<)(X) = X;
2. X =Y n L for some answer séf of 7"(II, <);
3. X is a<"-preserving answer set df.

2. X =Y n L for some answer séf of 7 (II, <);
3. X is a<-preserving answer set di.
While the last result dealt with effective answer sets, the next

one shows that applying operamgl‘H 9 is equivalent to the In analogy to what we have shown above, we have the fol-
application of van Gelder’s operat6fy. to the translated pro- lowing stronger result, opening the avenue for implementing
gram7 (I1, <) . more semantics based wnpreference:.
Theorem 2 Let(I1, <) be a statically ordered logic program Theorem 4 Let (1L, <) be a statically ordered logic program
over £ and letX be a consistent set of literals ovér over£ and letX be a consistent set of literals ovér

Then, we have thal, _,(X) = Crq,<)(Y)NL for some Then, we have that(;;,<)(X) = Crw,<)(Y) N L for
set of literalsY over £+ such thatX = ¥ N L. some set of literal¥” over £* such thatX =Y N L.

This result is important because it allows us to use the tran

lation7 (II, <) for implementing further semantics by appeal% Brewka and Eiter's concept of preference

to the alternating fixpoint idea. Another approach to preference was proposed by Brewka and
o Eiter in [1999. For brevity, we omit technical details and

5.2 Characterizingw-preference simply say that an answer set gspreferred the reader is

We start by showing howv-preference can be characterized referred tBrewka and Eiter, 1999; 200or details.

in terms of order preservation. This approach differs in two significant ways from the two

approaches given above. First, the construction of answer sets
is separated from verifying whether they respect the given
preferences. Interestingly, this verification is done on the ba-
sis of the prerequisite-free program obtained from the orig-

Definition 5 Let(II, <) be a statically ordered program and
let X be an answer set dfl.
Then, X is called <"-preserving, if there exists an enu-
merf"‘t'°“<7’i>i€1 of I'ff such that for every, j € I we have {31 one by “evaluating”body " (r) for each ruler wrt the
that: separately constructed (standard) answer set. Second, rules
0. (a) body™ (r;) C {head(r;) | j < i} or that putatively lead to counter-intuitive results are explicitly



removed from the inference process. This is made explicit 1. ifr; < r;, thenj < 4; and

in [Brewka and Eiter, 2040 where the following filtering o , x

transformation is define®: 2. ifr; <r"andr’ € I\ I'yy, then
(@) body™ (') Z X or

Zx(Il) =T\ {r € IT | head(r) € X, body™ (r) N X ?é(])z}l (b) body™ (') N {head(r;) | j < i} # 0 or

Then, by definition, an answer setldfis B-preferred iff it is (€) head(r') € X.

aB-preferred answer set éfx (II). o This definition differs in two ways from its predecessors.
The distinguishing example of this approach is given byFirst, it drops any requirement on groundedness, expressed by

program(Ils, <): Condition 0 above. This corresponds to us{idg X ) instead

5) of (X;, X) in Definition 7. Hence, groundedness is fully dis-

S b «— a,not b T3 <T2 <M connected from order preservation. In fact, observe that the
ro: —b «— notb f f . - ith
rst a4 — not—a B-preferred answer sdt, b} of (IT5, <) is associated wit

the <B-preserving sequenade, ), while the standard an-

Programil; has two standard answer sefis, b} and{a, ~b}. ~ SWer setitselfis generated by the grounded sequence, ).
While the former iss-preferred, neither of them is- or D- Second, Condition 2c is more relaxed than in Definition 5.
preferred (see below). Also, we note that both answer sets dihat is, any rule~’ whose head is iX" (as opposed td;)
program(Il,, <) areB-preferred, while only{p, b, ~f, w} is is taken as a_pplled . Apart from this, andmon_ZC also in-
w- andp-preferred. tegrates the filter-conditions from (&)For illustration, con-

In order to shed some light on these differences, we stagider Example (3) extended by < ro:
by providing a fixpoint characterization efpreference:

r: a <« notb r3 <rg <r (6)
Definition 7 Let(II, <) be an ordered logic program and let ro: b o«
X be a set of literals. We define r3: o oa —
Xo = 0 and fori > 0 While this program has np- or w-preferred answer set, it has
Xiy1 = XiU{head(r)| aB-preferred oneqa, b} generated byro, r3). The critical

ruler is handled by 2c. As a netresult, Condition 2 is weaker
than its counterpart in Definition 5.
We have the following results.

I. rellisactive wrt(X, X) and
II. thereisnorule’ € II withr < 7/

such that
(a) r' is active wrt(X, X;) and Theorem 5 Let(II, <) be a statically ordered logic program
(b) head(r'") & X; over L and letX be a consistent answer set Ot

Then, the following propositions are equivalent.
5 B r r .
Then,C(H7<)(X) =Uiso X; if | >0 X is consistent. 1. X is B-preferred:

Otherwise (11, «)(X) = Lit.

2. Clp(my,)(X) =X,
The difference between this definitiband its predecessors ’ .
manifests itself in Condition |, where activeness is tested wrt 3- X =Y QBE. for some answer s&f of 7 °(I, <),
(X, X) instead of(X;, X) as in Definition 1 and 4. In fact, (where7™ is defined i Delgrandeet al, 200Q);
in Example (5) it is the (unprovability of the) prerequisite 4. X is a<®-preserving answer set di.
of the highest-ranked rule, that makes the construction of ;e theorems 1 and 3, the last result stipulates #atust

w- or D-preferred answer sets break down (cf. Definition 1o on answer set df. This requirement can only be dropped
and 4). This is avoided witB-preference because once an-; case 3, while all other cases rely on this property.

swer set{a,b} is provided, its preference-compatibility is
tested wrt the program obtained by replacingwith o . .
not b, prog y replacing 7 Relationships

B-preference can be captured by means of the followindJp to now, we have tried to clarify the structural differences
notion of order preservation: between the respective approaches. This has led to homoge-
Definition 8 Let (II, <) be a statically ordered program and N€OUS characterizations that allow us to compare the exam-
let X be an answeF set ol ined approaches in a uniform way. As a result, we obtain

Then, X is called <®-preserving, if there exists an enu- insights into the relationships among these approaches.

i Ay X e First of all, we observe that all three approaches treat the
tmh:{?tlon<r’>’d of I'iy such that, for every, j € I, we have blockage of (higher-ranked) rules in the same way. That

is, a ruler’ is found to be blocked if either its prerequi-
S\While this is integrated intbBrewka and Eiter, 1999, Def. 44  sites inbody ™ (r’) are neverderivable or if some member

it is made explicit inBrewka and Eiter, 2000, Def] 6 of body ™~ (r') has been derived by higher-ranked or unrelated
"We have refrained from integrating (4) in order to keep the fix-rules. This is reflected by the identity of conditions Ila and

point operator comparable to its predecessors, given in the previousa/h in all three approaches, respectively. Although this is
sections. This is taken care of in the second proposition of Theo-—

rem 5. 8Conditionbody ™~ (') N X # (in (4) is obsolete since ¢ I'%s.



arguably a sensible strategy, it leads to the loss of preferrethat the investigated approaches yield an increasing number
answer sets on programs like of answer sets depending on how tight they connect prefer-
ence to groundedness.

An interesting technical result of this paper is given by the
equivalences between the fixpoint operators and the standard

Let us now discuss the differences among the approachegic programming operators applied to the correspondingly
The difference between- andw-preference can be directly transformed programs (cf. Theorem 2 and 4). This opens the
read off Definition 1 and 4; it manifests itself in Condition Ilb avenue for further concepts of preference handling on the ba-
and leads to the following relationship. sis of the alternating fixpoint theory and its issuing semantics.
Further research includes dynamic preferences and more ef-
ficient algorithms for different semantics in a unifying way.

ri: a <« notb ro < 11
ro: b

Theorem 6 EveryD-preferred answer set iw-preferred.

Example (3) shows that the converse does not hold.
Interestingly, a similar relationship is obtained between
andB-preference. In fact, Definition 8 can be interpreted a
a weakening of Definition 5 by dropping Condition 0 and
weakening Condition 2 (via 2c). We thus obtain the following
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