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Abstract

We propose an approach to approximate reason-

ing based on well-known theorem-proving tech-

niques. Unlike other approaches, our approach

takes into account the interplay of knowledge bases

and queries and thus allows for query-sensitive ap-

proximate reasoning. We demonstrate that our

approach deals extremely well with the examples

found in the literature. This reveals that conven-

tional theorem-proving techniques can account for

approximate reasoning.

1 Introduction

Reasoning processes are usually formalized in logi-

cal systems like �rst-order logic. But even though

this logical approach o�ers several indispensable

bene�ts, problem solving in logical systems is usu-

ally intractable. For instance, query-answering in

propositional logic is co-NP-complete [5].

Recently, a couple of approaches to approximate

reasoning in logical systems have been proposed in

order to overcome this gap. In [12] a method for

knowledge compilation is proposed. The idea is to

compile a knowledge base (KB) represented as a

propositional formula into a logically stronger and

a logically weaker Horn-formula for which query-

answering is polynomial [4]. [2] extend the idea

of limited inference found in [7] by proposing a

stronger and a weaker version of propositional en-

tailment. The idea is to restrict classical satis�-

ability to a certain subset of the language. This

leads to an extended notion of interpretations in

which some propositions and their negation may

be both true or both false. Both approaches o�er

a complete and a sound approximation of proposi-

tional entailment. However, both methods cannot

be directly mapped onto existing automated theo-

rem provers. In the �rst case, one needs special-

purpose algorithms for compilation. Moreover, this

approach might be to rigid whenever we are faced

with rapidly changing KBs. In the second case, one

has to deal with non-classical entailment relations

requiring non-standard proof procedures. In addi-

tion, it is still unclear how one has to partition the

language for determining the non-classical entail-

ment relations.

In what follows, we introduce an approach

to approximate reasoning that relies on existing

theorem-proving techniques. The idea is to take

an existing calculus for propositional (or even �rst-

order) logic which can be decomposed into a \fast"

and a \slower" part; thereby the \fast" (and pos-

sibly incomplete) submethod is enriched by the

\slower" one such that the entire method is com-

plete. This enrichment should allow for a step-

wise approximation that �nally meets the entire

(and complete) method. A prime candidate for this

purpose is the combination of unit-resulting resolu-

tion (URR) [13] and reasoning by cases (CASE). To-

gether, both methods provide a sound and complete

calculus for propositional and �rst-order logic. The

\fast" part is taken up by URR. Roughly speaking,

URR is a restriction of hyper-resolutions to those

yielding unit clauses only [11]. Notably, URR al-

lows for polynomial query-answering beyond the

class of Horn-formulas. Moreover, URR constitutes

a special purpose but high-speed reasoning mode

in high-performance theorem provers like otter

[9]. The \slower" part is played by CASE. As re-

gards approximate reasoning, our intended purpose

of CASE is (roughly) to enable URR whenever the

latter is inapplicable. In such a case, CASE splits

clauses into several ones that then allow for URR.

In our approach, the control of such CASE-steps

is accomplished by so-called reachability relations,

which also constitute a well-known concept in au-

tomated theorem proving. These relations provide

means for accessing the part of a KB relevant to a

given query. This approach takes into account the



interplay of KBs and queries and thus allows for

query-sensitive approximate reasoning.

2 Background

We consider propositional formulas in conjunctive

normal form. In this case, a KB can be represented

as a set of clauses, where a clause is a disjunction

of literals. We verify whether a query q is entailed

by a KB � by checking whether the set of clauses

representing � ^ :q is unsatis�able.

URR restricts derivable clauses to unit clauses (ie.

clauses with a single literal) and the empty clause
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d

denote the negation of the literal L.
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A query q is entailed by a KB � if 2 is derivable by

URR from the clauses representing �^:q. Consider

the KB consisting of clauses (1) to (4) along with

the query D resulting in clause (5):

(1) f:A;Bg; (2) fA;B;:Cg;

(3) f:B;:C;Dg; (4) fCg; (5) f:Dg

The sole possibility to start with is to perform URR

with clauses (3), (4), and (5), resulting in the new

unit clause (6) f:Bg. Further URR involving clause

(1) and (6) yields (7) f:Ag. Now, the empty clause

is derivable via (2), (4), (6), and (7). Hence, clauses

(1) to (5) are unsatis�able and so D is entailed by

clauses (1) to (4).

A set of clauses can be shown to be unsatis�able

by URR i� it contains an unsatis�able subset of

clauses which is renamable-Horn (ie. switching signs

of literals in a suitable way yields a Horn-clause set

[8]). In the propositional case, the satis�ability of

such a set S can be decided in O(n

2

) time and O(n)

space, where n is the number of literals occurring

in S.

But URR relies on the existence of unit-clauses.

So, we might sometimes be enforced to reason by

cases before applying URR. In fact, we obtain a

complete inference mechanism by adding the con-

cept of case-analysis [3]:

De�nition 2.2 Let S = fC
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m

g be a clause
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for 1 � j � n and i 2 I. Then, S is

satis�able if S

i

is satis�able for some i 2 I.

Observe that each case S

i

is strictly smaller (in the

number of occurring literals) than S. In fact, this

de�nition is a very general one and thus admits var-

ious instantiations (see Section 3 and 4).

Consider the clause set obtained by replacing

clause (4) by (4

0

)fC;Eg in the above example.

Now, URR is not applicable. However, we may

generate two cases by splitting clause (4

0

). In the

�rst case, we delete literal E in (4

0

), which allows

for deriving the empty clause by URR, as shown

above. The second case, obtained by deleting C

in (4

0

), however yields a satis�able set of clauses

which is perceivable after further CASE-steps. This

implies that the original set of clauses is satis�able.

Hence D is not entailed by the KB consisting of

(1); (2); (3); and (4

0

).

The task of approximation can also be seen as

identifying the relevant information for (dis)proving

queries. The notion of relevance relies on the inter-

play between KBs and queries. In our approach this

is accomplished by means of a reachability relation

1

that allows for measuring the inferential distance

between queries and clauses in the KB.

De�nition 2.3 (Reachability) Let S be a clause

set and let L be a literal occurring in a clause C of

S. The set of literals reachable from L is de�ned

inductively as follows:

2

1. Any complementary literal L

d

in a clause

C

0

2 S is reachable from L if C 6= C

0

.

2. If E = fK;L

1

; : : : ; L

n

g is a clause of S and

K is reachable from L, then any literal L

d

i

contained in a clause E

0

2 S is reachable from

L if E 6= E

0

, where 1 � i � n. We call K an

ancestor of each L

d

i

.

Roughly, a literal K is reachable from a literal L if

the derivation of K might contribute to a (resolu-

tion based) derivation of L.

For approximate reasoning, we proceed by de�n-

ing two concepts for measuring the relevance of lit-

erals occurring in a KB to putative queries. That

is, we de�ne the notions of distance and weight of

a literal K to another literal L. Both measures are

1

Reachability was introduced in [10] in a modi�ed way.

2

Recall that L

d

denotes the negation of the literal L.



incrementally computed for each literal while pars-

ing a KB. In this way, we can easily compute both

measures for each query in turn.

De�nition 2.4 Let S be a clause set and let L

and K be distinct literals occurring in S such that

K is reachable from L.

The distance of K to L, d(L;K), is de�ned as the

minimal length of a sequence K

1

; : : : ; K

n

of literals

such that K

d

1

= L, K

n

= K and K

i

is an ancestor

of K

i+1

for 1 � i < n. We set d(L; L) = 0 and

d(L;K) =1 if K is not reachable from L.

The weight of K to L, w(L;K), is de�ned

as the number of sequences of di�erent

3

literals

K

1

; : : : ; K

n

such that K

d

1

= L, K

n

= K and K

i

is an ancestor of K

i+1

for 1 � i < n. We set

w(L; L) = 1 and w(L;K) = 0 if K is not reach-

able from L.

In the above example, we obtain d(:D;C) = 2 from

the minimal sequence D;C. Accordingly, we know

that while proving :D, we might have to use clause

(4) after 2 derivation steps. Thus, if the distance

of a literal K to a literal L is small, K is likely to

constitute an important part of a proof of L. We

have w(:D;C) = 3 in the above example. This

tells us that there are three di�erent derivations

starting with the goal :D using clause (4). Thus,

if the weight of K to L is high, the chance of using

K in a proof of L is also high.

Given two clauses c

1

and c

2

, the weight of c

2

to

c

1

is de�ned as the maximal weight of a literal in c

2

to a literal in c

1

. Similarly, the distance of c

2

to c

1

is de�ned as the minimal distance of a literal in c

2

to a literal in c

1

.

3 Correct approximate reasoning

We introduce a correct but incomplete method for

approximate reasoning. That is, if a query can be

answered approximately, then it is also entailed by

the given KB but not vice versa. The idea is to

process a set of clauses representing the KB and the

negated query by URR as long as possible. If the re-

sulting set of clauses contains the empty clause, it is

unsatis�able, and we are done. If not, we perform

reasoning by cases via CASE and then return to

URR. The (possibly exponential) number of CASE-

inferences is bound and thus serves as a parame-

ter for an approximation. This leads to an overall

complexity of O(n

2

� p); where n is the number of

3

Note that we do not have to consider sequences contain-

ing multiple occurrences of a literal. A derivation correspond-

ing to such a sequence can always be pruned.

literals in the KB and p is the number of permissi-

ble CASE-inferences. Since p is �xed, our method

in polynomial in n.

Clearly, we have to make precise how cases are

generated. For the purpose of correct (but in-

complete) approximate reasoning, it is su�cient

to select a clause C = fL

1

; : : : ; L

n

g from the ac-

tual clause set S and to generate the cases S

i

=

(S n C) [ fL

i

g. The unsatis�ability of S then fol-

lows from the unsatis�ability of the S

i

.

While testing this approach on the examples in

the literature, the most striking observation is that

they can be solved without reasoning by cases. This

substantiates the use of URR as the fundamental

inference mechanism. Its power helps to minimize

the need for reasoning by cases for many practi-

cal problems. As a �rst example, consider the KB

� represented by clauses (1) to (7). In [6], � is

used to demonstrate that the compiled Horn-KB

for correct approximate reasoning may be of ex-

ponential size, which in turn leads to exponential

query-answering relative to the original KB. In our

approach, however, any query q to � is solvable in

polynomial time provided the clausal representation

of � ^ :q is renamable-Horn (note, that � itself is

renamable-Horn). In this case, we can answer any

query by pure URR without any case-analysis. Con-

sider how the query (CompSci ^ ReadsDennet ^

ReadsKosslyn ! CogSci) represented by clause (5)

to (8) (labeled by Q) is answered in our approach

by means of the URR-steps (9) to (12):

(1) KB f:CompSci;:Phil;:Psych;CogScig

(2) KB f:ReadsMcCarthy;CompSci;CogScig

(3) KB f:ReadsDennet;Phil;CogScig

(4) KB f:ReadsKosslyn;Psych;CogScig

(5) Q fCompScig

(6) Q fReadsDennetg

(7) Q fReadsKosslyng

(8) Q f:CogScig

(9) URR(4; 7; 8) fPsychg

(10) URR(3; 6; 8) fPhilg

(11) URR(1; 8; 9; 10) f:CompScig

(12) URR(5; 11) 2

The next KB given by clause (1) to (8) along with

the query (cow ! molar-teeth) given in (9) and

(10) are taken from [2]. Again, this clause set can

be decided employing URR only even though it is

non-Horn:

(1) KB f:cow; grass-eaterg

(2) KB f:dog; carnivoreg

(3) KB f:grass-eater;:canine-teethg

(4) KB f:grass-eater;mammalg

(5) KB f:carnivore;mammalg

(6) KB f:mammal; canine-teeth;molar-teethg

(7) KB f:mammal; vertebrateg

(8) KB f:vertebrate; animalg



(9) Q fcowg

(10) Q f:molar-teethg

(11) URR(1; 9) fgrass-eaterg

(12) URR(3; 11) f:canine-teethg

(13) URR(4; 11) fmammalg

(14) URR(6; 12; 13) fmolar-teethg

(15) URR(10; 14) 2

In [2], a certain subset of the language,

namely fcow, grass-eater, mammal, canine-teeth,

molar-teethg, has to be determined (in a non-

obvious manner) in order to yield the same result.

In general, the selection of a clause for reason-

ing by cases is the point where we have to look for

relevant information. In fact, we pick clauses for

case-analysis in a \query-oriented manner". That

is, we select clauses which seem to be relevant for

solving a query by choosing clauses that probably

contribute to a successful derivation. This is accom-

plished by means of distance and weight: A clause

is selected for case-analysis if its distance to a clause

of the query is low and its corresponding weight is

high.

Consider for instance the following KB containing

train connections. An implication A ! B means

that there is a train connection from A to B.

(1) KB f:Rome;Pisag

(2) KB f:Paris;Romeg

(3) KB f:Berlin;Parisg

(4) KB f:Warsaw;Berling

(5) KB f:Warsaw;Moskowg

Suppose that we have the query

ffParis;Berling; f:Rome;:Pisagg

asking whether there is a train connection from

Paris or Berlin to Rome and Pisa. This query is

derivable from the �rst three clauses whereas the

two last clauses are of no importance. Initially,

URR is not applicable and therefore case-analysis

has to be performed. Now we may split any of the

above clauses. But splitting clause (5) is totally

useless since it does not contribute to a successful

derivation. This is recognized by the concept of

reachability. No literal in clause (5) is reachable.

Thus the distance of clause (5) to a clause of the

query is 1. Correspondingly the weight of clause

(5) to a query-clause is 0. Since the clauses most

relevant to a query are the clauses encoding the

query (the distance of such clauses is equal to 0, and

the weight equals 1), the clause fParis;Berling is

(besides f:Rome;:Pisag) the best choice for case-

analysis. This yields two clause sets, one containing

the clause fParisg and another containing fBerling.

Both sets can be shown to be unsatis�able by URR.

Thus, the original clause set is unsatis�able and the

query is provable by means of a single case-analysis.

4 Complete approximate reasoning

We describe a complete but incorrect method for

approximate reasoning. That is, if a query can-

not be answered approximately, then it is neither

entailed by the given KB. Here, we are thus inter-

ested in disproving queries in an approximate way.

The basic idea is as follows. First, case-analysis is

performed on a set of clauses representing the KB

and the negated query. This yields a set of cases.

Afterwards the satis�ability of one (or several) such

cases is tested. If one of these cases is satis�able,

the original clause set is satis�able and the query

is disproved. Again, our method is parameterized

by the number of CASE-inferences p, which in turn

leads to a complexity of O(n

2

�p) being polynomial

in the number of literals in the KB, n.

First of all, let us make precise how such cases are

generated. For complete approximate reasoning, it

su�ces to turn sets of clauses into certain sets of

Horn-clauses. This o�ers several advantages. First,

Horn-clauses are a prime candidate for fast URR.

Second, we can decide the satis�ability of a set

of Horn-clauses purely by URR, without any case-

analysis. We generate Horn-cases by deleting all

but one positive literal from each non-Horn-clause.

In this way, a Horn-case consists of maximal non-

empty Horn-clauses. Since the disjunction of all

such Horn-cases is equivalent

4

to the original set

of clauses, our approach meets propositional entail-

ment whenever we consider the entire set of Horn-

cases.

The possibly exponential number of Horn-cases

in the worst case is controlled by the parameter p

limiting the number of CASE-inferences. The ma-

jor problem is to identify the Horn-cases most rel-

evant for disproving the given query. We address

this problem by means of the notion of reachability

and its induced measures. Recall that we are look-

ing for satis�able cases. We thus try to turn the

KB into a case not entailing the query. Candidates

for such cases are generated by removing positive

literals from non-Horn-clauses which are (possibly)

relevant for deriving the query.

5

In terms of our

measures, we select literals with either a minimal

distance or a maximal weight.

4

This is a corollary to Theorem 3 in [6].

5

Without loss of generality, we assume that a query is a

set of unit clauses.



Consider the following KB taken from [2]:

(1) KB f:person; child; youngster; adult; seniorg

(2) KB f:youngster; student;workerg

(3) KB f:adult; student;worker; unemployedg

(4) KB f:senior; pensioner;workerg

(5) KB f:student; child; youngster; adultg

(6) KB f:pensioner; seniorg

(7) KB f:pensioner;:studentg

(8) KB f:pensioner;:workerg

The goal is to show that the query (child !

pensioner) is not derivable from this set of clauses.

Accordingly, we have to show that the clause set S

containing (1) to (8) and fchildg and f:pensionerg

is satis�able. To this end, we have to generate a

set of Horn-clauses by deleting positive literals rel-

evant to the query. We proceed again in a \query-

oriented manner". First, consider the query-clause

fchildg. Since no literal in S is reachable from child,

no literal in S is relevant to this part of the query.

Therefore, fchildg does not in
uence the deletion of

literals in S. This is di�erent for the second query-

clause, f:pensionerg. The literal most relevant to

this part of the query is obviously pensioner in (4);

its distance to :pensioner is 1 rendering it a prime

candidate for deletion. Then, turning (4) into a

Horn-clause by removing the literal pensioner yields

f:senior;workerg. Now, there is no way left for de-

riving pensioner. Since no clause apart from (4)

allows for deriving pensioner, we thus may remove

positive literals (to a single one) from the remain-

ing clauses in an arbitrary way. In any case, the

resulting set of Horn-clauses will be satis�able and

so the query is disproved.

5 Discussion

In [12], a KB � is translated into two Horn-KBs

�

glb

and �

lub

guaranteeing correct but incomplete

and complete but incorrect inferences wrt �. �

glb

is referred to as the greatest lower bound (GLB) of

� since it is required to be a Horn-formula with

a maximum set of models M(�

glb

) � M(�): Ac-

cordingly, the lowest upper bound (LUB) of �, �

lub

,

is a Horn-formula with a minimum set of models

M(�

lub

) �M(�): The computation of such Horn-

approximations is NP-hard. Hence the idea is to

compute them \o�-line" in order to allow for poly-

nomial \on-line" approximations wrt �

glb

and �

lub

.

In general, there are many GLBs whereas there is

only one LUB of �. Also, in general, the size of

�

glb

is linear whereas the size of �

lub

is exponential

in the size of �.

Let us �rst deal with the correct (but incom-

plete) case. The exponential size of LUBs is a seri-

ous drawback: First, it leads to exponential query-

answering relative to the original KB. Second, it

may even be impossible to store the resulting LUB.

This di�culty applies even to genuine examples like

the one given in Section 3 on a person's reading

habits. In this example, the LUB is of exponential

size as shown in [6]. In contrast, we have seen that

our methods behaves polynomially in this exam-

ple if the clausal representation of the KB and the

negation of the query is renamable-Horn. In gen-

eral, we control the exponential factor by limiting

the number of CASE-inferences. So in the unlimited

case, our method corresponds to propositional en-

tailment, which in turn may require exponentially

many CASE-inferences. Finally, �nding a LUB is a

problem that cannot be parallelized [1] while case-

analysis is (in general) perfectly suited for paral-

lelization.

In the complete (but incorrect) case, our approach

resembles the one taken in [6]. In both approaches,

the original KB is approximated by regarding some

of its Horn-variants. That is, a case of the KB corre-

sponds to one of its lower bounds. So the di�erence

rests on how these Horn-variants are chosen. In

[6], all approximations are compared in an anytime

manner. Initially, an arbitrary lower bound LB

1

is

selected. Then, it is tested whether another lower

bound LB

2

is entailed by LB

1

. If LB

1

j= LB

2

, then

LB

1

is replaced by LB

2

. This continues as long as

no weaker lower bound can be found. Apart from

the fact that comparing two lower bounds is NP-

hard, this approach su�ers from the problem that

many lower bounds are not even comparable, ie.

neither LB

1

j= LB

2

nor LB

2

j= LB

1

holds. Recall

that this results in multiple GLBs. Moreover, it

is then extremely di�cult to select the right GLB

being appropriately \weak" for each query in turn.

Since we pursue an \on-line" approach, we cannot

a�ord the aforementioned di�culties. Therefore,

we leave it to our reachability measures to select

the Horn-cases most relevant to the given query.

The price we pay for avoiding computationally ex-

pensive comparisons of approximations is that the

number of Horn-cases may exceed the number of

GLBs. However, our approach is (in general) ex-

tremely 
exible in adjusting the selection of approx-

imations wrt to the given query.

Now, let us turn to the approach proposed in [2]

which relies on two extended notions of interpre-



tations (on literals

6

), S-1- and S-3-interpretations.

For a subset S of the underlying alphabet L, an S-

1-interpretation maps every letter in L n S and its

negation into false; and an S-3-interpretation does

not map both a letter in L nS and its negation into

false. The letters in S are treated in the standard

way. The two notions of entailment, j=

1

S

and j=

3

S

;

are de�ned in the usual way. It is instructive to

verify that j=

1

S

is complete but incorrect and that

j=

3

S

is correct but incomplete. Both entailment re-

lations are parameterized by S and coincide with

standard entailment in the case of S = L. For a

KB �, this approach has in both cases an overall

complexity of O(j�j � jSj � 2

jSj

) [2].

As in our approach, the exponential factor in the

approximation is controlled by the parameter of

the approximation. In both approaches, this allows

for a stepwise convergence to standard entailment.

Apart from its appealing duality, we note that the

approach of [2] is semantically well-founded. The

extremely problematic point is the choice of S, the

letters treated in the standard way. In fact, there

are no means for determining an S appropriate for

answering a particular query. In our approach, we

solve a similar problem by reachability relations

providing means for accessing the part of a KB

relevant for answering a given query. This tech-

nique should also be applicable for choosing S. But

even without reachability relations, we can identify

classes of formulas for which our method is polyno-

mial, which is not the case in [2]. This is due to

the fact that our basic inference mechanism, URR

is much more powerful than the ones corresponding

to j=

1

S

and j=

3

S

; in the case of S = ;.

6 Conclusion

We have proposed an approach to approximate rea-

soning which relies on the combination of unit-

resulting resolution and reasoning by cases; thereby

taking advantage of well-known theorem-proving

techniques. This has revealed that conventional

theorem-proving techniques can indeed account for

approximate reasoning. We have shown how ap-

proximate reasoning can be controlled by means

of reachability relations | another well-known

theorem-proving technique | and their induced

measures. This approach takes into account the

interplay of KBs and queries and thus allows

for query-sensitive approximate reasoning. Our

6

That is, a standard interpretation maps each letter and

its negation into opposite truth-values.

method is orthogonal to the ones found in the litera-

ture inasmuch it is neither compiling KBs as [12] nor

restricting satis�ability to certain subsets of the lan-

guage as [2]. In particular, we have demonstrated

that our method performs very well on the exam-

ples found in the literature. However, it remains

future work to test ours as well as other approaches

on large-scaled KBs.
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