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Abstract. Signed systems were introduced as a general, syntax-independent
framework for paraconsistent reasoning, that is, non-trivialised reasoning from
inconsistent information. In this paper, we show how the family of corresponding
paraconsistent consequence relations can be axiomatised by means of quantified
Boolean formulas. This approach has several benefits. First, it furnishes an ax-
iomatic specification of paraconsistent reasoning within the framework of signed
systems. Second, this axiomatisation allows us to identify upper bounds for the
complexity of the different signed consequence relations. We strengthen these
upper bounds by providing strict complexity results for the considered reasoning
tasks. Finally, we obtain an implementation of different forms of paraconsistent
reasoning by appeal to the existing systemQUIP.

1 Introduction

In view of today’s rapidly growing amount and distribution of information, it is in-
evitable to encounter inconsistent information. This is why methods for reasoning from
inconsistent data are becoming increasingly important. Unfortunately, there is no con-
sensus on which information should be derivable in the presence of a contradiction.
Nonetheless, there is a broad class of consistency-based approaches that reconstitute
information from inconsistent data by appeal to the notion of consistency. Our overall
goal is to provide a uniform basis for these approaches that makes them more transpar-
ent and easier to compare. To this end, we take advantage of the framework of quantified
Boolean formulas (QBFs). To be more precise, we concentrate here on axiomatising the
class of so-calledsigned systems[2] for paraconsistent reasoning; a second paper will
deal with maximal-consistent sets and related approaches (cf. [4, 5]).

Our general methodology offers several benefits: First, we obtain uniform axiomati-
sations of rather different approaches. Second, once such an axiomatisation is available,
existing QBF solvers can be used for implementation in a uniform setting. The avail-
ability of efficient QBF solvers, like the systems described in [3, 10, 9], makes such a
rapid prototyping approach practicably applicable. Third, these axiomatisations provide
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a direct access to the complexity of the original approach. Finally, we remark that this
approach allows us, in some sense, to express paraconsistent reasoning in (higher order)
classical propositional logic and so to harness classical reasoning mechanisms from (a
conservative extension of) propositional logic.

Our elaboration of paraconsistent reasoning is part of an encompassing research
program, analysing a large spectrum of reasoning mechanisms in Artificial Intelligence,
among them nonmonotonic reasoning [7], (nonmonotonic) modal logics [8], logic pro-
gramming [13], abductive reasoning [15], and belief revision [6].

In order to keep our paper self-contained, we must carefully introduce the respec-
tive techniques. Given the current space limitations, we have thus decided to reduce the
motivation and rather concentrate on a thorough formal elaboration. This brings us to
the following outline: Section 2 lays down the formal foundations of our work, intro-
ducing QBFs and Default Logic. Section 3 is devoted to signed systems as introduced
in [2]. Apart from reviewing the basic framework, we provide new unifying character-
isations that pave the way for the respective encodings in QBFs, which are the subject
of Section 4. That section comprises thus our major contribution: a family of basic
QBF axiomatisations that can be assembled in different ways in order to accommodate
the variety of paraconsistent inference relations within the framework of signed sys-
tems. We further elaborate upon these axiomatisations in Section 5 for analysing the
complexity of the respective reasoning tasks. Finally, our axiomatisations are also of
great practical value since they allow for a direct implementation in terms of existing
QBF-solvers. Such an implementation is described in Section 6, by appeal to the system
QUIP [7, 13, 8].

2 Foundations

We deal with propositional languages and use the logical symbols>,⊥,¬,∨,∧,→, and
≡ to construct formulas in the standard way. We writeLΣ to denote a language over an
alphabetΣ of propositional variablesor atoms. Formulas are denoted by Greek lower-
case letters (possibly with subscripts). Finite setsT = {φ1, . . . , φn} of formulas are
usually identified with the conjunction

∧n
i=1 φi of its elements. The set of all atoms

occurring in a formulaφ is denoted byvar(φ). Similarly, for a setS of formulas,
var(S) =

⋃
φ∈S var(φ). The classical derivability operator,̀, is defined in the usual

way. Thedeductive closureof a setS ⊆ LΣ of formulas is given byCnΣ(S) = {φ ∈
LΣ | S ` φ}. We say thatS is deductively closediff S = CnΣ(S). Furthermore,S is
consistentiff ⊥ /∈ CnΣ(S). If the language is clear from the context, we usually drop
the index “Σ” from CnΣ(·) and simply writeCn(·) for the deductive closure operator.
An occurrence of a formulaϕ is positive(resp.,negative) in a formulaψ iff the number
of implicit or explicit negation signs precedingϕ in ψ is even (resp., odd).

Given an alphabetΣ, we define a disjoint alphabetΣ± asΣ± = {p+, p− | p ∈ Σ}.
Forα ∈ LΣ , we defineα± as the formula obtained fromα by replacing each negative
occurrence ofp by¬p− and by replacing each positive occurrence ofp by p+, for each
propositional variablep in Σ. For example(p∧ (p→ q))± = p+ ∧ (¬p− → q+). This
is defined analogously for sets of formulas. Observe that for any setT ⊆ LΣ , T± is
consistent, even ifT is inconsistent.



Quantified Boolean Formulas.Quantified Boolean formulas (QBFs) generalise or-
dinary propositional formulas by the admission of quantifications over propositional
variables (QBFs are denoted by Greek upper-case letters). Informally, a QBF of form
∀p∃q Φ means that for all truth assignments ofp there is a truth assignment ofq such
thatΦ is true. The precise semantical meaning of QBFs is defined as follows.

First, some ancillary notation. An occurrence of a propositional variablep in a QBF
Φ is freeiff it does not appear in the scope of a quantifierQp (Q ∈ {∀,∃}), otherwise the
occurrence ofp is bound. If Φ contains no free variable occurrences, thenΦ is closed,
otherwiseΦ is open. Furthermore, we writeΦ[p1/φ1, . . . , pn/φn] to denote the result
of uniformly substituting each free occurrence of a variablepi in Φ by a formulaφi, for
1 ≤ i ≤ n.

By an interpretation, M , we understand a set of atoms. Informally, an atomp is
true underM iff p ∈ M . In general, the truth value,νM (Φ), of a QBFΦ under an
interpretationM is recursively defined as follows:

1. if Φ = >, thenνM (Φ) = 1;
2. if Φ = p is an atom, thenνM (Φ) = 1 if p ∈M , andνM (Φ) = 0 otherwise;
3. if Φ = ¬Ψ , thenνM (Φ) = 1− νM (Ψ);
4. if Φ = (Φ1 ∧ Φ2), thenνM (Φ) = min({νM (Φ1), νM (Φ2)});
5. if Φ = ∀pΨ , thenνM (Φ) = νM (Ψ [p/>] ∧ Ψ [p/⊥]);
6. if Φ = ∃pΨ , thenνM (Φ) = νM (Ψ [p/>] ∨ Ψ [p/⊥]).

The truth conditions for⊥,∨,→, and≡ follow from the above in the usual way. We say
thatΦ is true underM iff νM (Φ) = 1, otherwiseΦ is false underM . If νM (Φ) = 1,
thenM is amodelof Φ. If Φ has some model, thenΦ is said to besatisfiable. If Φ is true
under any interpretation, thenΦ is valid. As usual, we write|= Φ to express thatΦ is
valid. Observe that a closed QBF is either valid or unsatisfiable, because closed QBFs
are either true under each interpretation or false under each interpretation. Hence, for
closed QBFs, there is no need to refer to particular interpretations. Two sets of QBFs
(or ordinary formulas) arelogically equivalentiff they possess the same models.

In the sequel, we use the following abbreviations in the context of QBFs: For a
setP = {p1, . . . , pn} of propositional variables and a quantifierQ ∈ {∀,∃}, we let
QP Φ stand for the formulaQp1Qp2 · · ·Qpn Φ. Furthermore, for indexed setsS =
{φ1, . . . , φn} andT = {ψ1, . . . , ψn} of formulas,S ≤ T abbreviates

∧n
i=1(φi → ψi).

The following result is needed in the sequel:

Proposition 1. LetS = {φ1, . . . , φn} andT be finite sets of formulas, letP = var(S∪
T ), and letG = {g1, . . . , gn} be a set of new variables. Furthermore, for anyS′ ⊆ S,
define the interpretationMS′ ⊆ G such thatφi ∈ S′ iff gi ∈MS′ , for 1 ≤ i ≤ n. Then,

1. T ∪ S′ is consistent iffMS′ is a model of the QBFC[T, S] = ∃P (T ∧ (G ≤ S)).
2. S′ is a maximal subset ofS consistent withT iff MS′ is a model of the QBF

C[T, S] ∧
∧n

i=1(¬gi → ¬C[T ∪ {φi}, S \ {φi}]).

Default Logic. The primary technical means for dealing with “signed theories” isde-
fault logic [14], whose central concepts aredefault rulesalong with their inducedex-
tensionsof an initial set of premises. A default rule (ordefaultfor short) α : β

γ has two



types of antecedents: aprerequisiteα which is established ifα is derivable and ajustifi-
cationβ which is established ifβ is consistent. If both conditions hold, theconsequent
γ is concluded by default. For convenience, we denote the prerequisite of a default
δ by p(δ), its justification byj(δ), and its consequent byc(δ). Accordingly, for a set
of defaultsD, we definep(D) = {p(δ) | δ ∈ D}, j(D) = {j(δ) | δ ∈ D}, and
c(D) = {c(δ) | δ ∈ D}.

A default theoryis a pair(D,W ) whereD is a set of default rules andW a set
of formulas. A setE of formulas is anextensionof (D,W ) iff E =

⋃
n∈ω En, where

E1 = W and, forn ≥ 1, En+1 = Cn(En) ∪ {γ | α : β
γ ∈ D,α ∈ En,¬β 6∈ E}.

3 Signed Systems

The basic idea of signed systems is to transform an inconsistent theory into a consistent
one by renaming propositional variables and then to extend the resulting signed theory
by equivalences using default logic.

Starting with a possibly inconsistent finite theoryW ⊆ LΣ , we consider the default
theory obtained fromW± and a set of default rulesDΣ = {δp | p ∈ Σ} defined in the
following way. For each propositional letterp in Σ, we define

δp =
: p+ ≡ ¬p−

(p ≡ p+) ∧ (¬p ≡ p−)
. (1)

Using this definition, we define the first family of paraconsistent consequence relations:

Definition 1. LetW be a finite set of formulas inLΣ and letϕ be a formula inLΣ . Let
Ext be the set of all extensions of(DΣ ,W

±). For each set of formulasS ⊆ LΣ∪Σ± ,
letΠS = {c(δp) | p ∈ Σ,¬j(δp) 6∈ S}. Then, we define

W `c ϕ iff ϕ ∈
⋃

E∈Ext Cn(W± ∪ΠE) (credulous unsigned1 consequence)
W `s ϕ iff ϕ ∈

⋂
E∈Ext Cn(W± ∪ΠE) (skeptical unsigned consequence)

W `p ϕ iff ϕ ∈ Cn(W± ∪
⋂

E∈ExtΠE) (prudent unsigned consequence)

For illustration, consider the inconsistent theoryW = {p, q,¬p ∨ ¬q}. For obtain-
ing the above paraconsistent consequence relations,W is turned into the default the-
ory2 (DΣ ,W

±) =
(
{δp, δq}, {p+, q+, p− ∨ q−}

)
. We obtain two extensions, viz.

Cn(W± ∪ {c(δp)}) andCn(W± ∪ {c(δq)}). The following relations show how the
different consequence relations behave:W `c p, W 6`s p, W 6`p p, but, for instance,
W `c p ∨ q, W `s p ∨ q, W 6`p p ∨ q.

For a complement, the following “signed” counterparts are defined.

Definition 2. Given the prerequisites of Definition 1, we define

W `±c ϕ iff ϕ± ∈
⋃

E∈Ext Cn(W± ∪ΠE) (credulous signed consequence)
W `±s ϕ iff ϕ± ∈

⋂
E∈Ext Cn(W± ∪ΠE) (skeptical signed consequence)

W `±p ϕ iff ϕ± ∈ Cn(W± ∪
⋂

E∈ExtΠE) (prudent signed consequence)

1 The term “unsigned” indicates that only unsigned formulas are taken into account.
2 For simplicity, we omitted allδx for x ∈ Σ \ {p, q}.



As shown in [2], these relations compare to each other in the following way.

Theorem 1. LetCi be the operator corresponding toCi(W ) = {ϕ | W `i ϕ} where
i ranges over{p, s, c}, and similarly forC±i . Then, we have

1. Ci(W ) ⊆ C±i (W );
2. Cp(W ) ⊆ Cs(W ) ⊆ Cc(W ) andC±p (W ) ⊆ C±s (W ) ⊆ C±c (W ).

That is, signed derivability gives more conclusions than unsigned derivability and
within each series of consequence relations the strength of the relation is increasing.

Moreover, they enjoy the following logical properties:

Theorem 2. LetCi be the operator corresponding toCi(W ) = {ϕ | W `i ϕ} where
i ranges over{p, s, c}, and similarly forC±i . Then, we have

3. W ⊆ C±i (W );
4. Cp(W ) = Cn(Cp(W )) andCs(W ) = Cn(Cs(W ));
5. C±i (W ) = C±i (C±i (W ));
6. Cn(W ) 6= LΣ only if Cn(W ) = Ci(W ) = C±i (W );
7. Ci(W ) 6= LΣ and C±i (W ) 6= LΣ ;
8. W ⊆ W ′ does not implyCi(W ) ⊆ Ci(W ′), andW ⊆ W ′ does not imply
C±i (W ) ⊆ C±i (W ′).

The last item simply says that all of our consequence relations are nonmonotonic. For
instance, we haveCi({A,A → B}) = C±i ({A,A → B}) = Cn({A,B}), while
neitherCi({A,¬A,A→ B}) norC±i ({A,¬A,A→ B}) containsB.

Refinements.The previous relations embody a somewhat global approach in restoring
semantic links between positive and negative literals. In fact, the application of a ruleδp
re-establishes the semantic link between all occurrences of propositionp and its nega-
tion ¬p at once. A more fine-grained approach is to establish the connections between
complementary occurrences of an atom individually.

Formally, for a givenW and an index setI assigning different indices to all occur-
rences of all atoms inW , define

δi,j
p =

: (p ≡ p+
i ) ∧ (¬p ≡ p−j )

(p ≡ p+
i ) ∧ (¬p ≡ p−j )

(2)

for all p ∈ Σ and alli, j ∈ I, provided thati andj refer to complementary occurrences
of p in W , otherwise setδi,j

p = δp. Denote byD1
Σ this set of defaults and byW±I the

result of replacing eachp+ ∈ W± (resp.,p− ∈ W±) by p+
i (resp.,p−i ) wherei is the

index assigned to the corresponding occurrence, provided that there are complementary
occurrences ofp in W .

Finally, abandoning the restoration of semantical links and foremost restoring orig-
inal (unsigned) literals leads to the most adventurous approach to signed inferences.
Consider the following set of defaults, defined for allp ∈ Σ andi, j ∈ I,

δi+
p =

: (p ≡ p+
i )

(p ≡ p+
i )

δj−
p =

: (¬p ≡ p−j )

(¬p ≡ p−j )
(3)



for all positive and negative occurrences ofp, respectively. As above, we use these
defaults provided that there are complementary occurrences ofp in W , otherwise use
δp. A set of defaults of form (3) with respect toW is denoted byD2

Σ .
Thus, further consequence relations are defined when(DΣ ,W

±) in Definition 1 is
replaced by(D1

Σ ,W
±
I ) or by (D2

Σ ,W
±
I ). Similar results to Theorem 1 and 2 can be

shown for these families of consequence relations.
In the following, we identify all introduced default theories as follows. Given a

finite setW ⊆ LΣ , the classDT(W ) contains(DΣ ,W ), as well as(D1
Σ ,W

±
I ) and

(D2
Σ ,W

±
I ) for any index setI. Furthermore,DT =

⋃
W⊆LΣ

DT(W ) denotes the class
of all possible default theories under consideration.

Whenever a problem instance may give rise to several solutions, it is useful to pro-
vide a preference criterion for selecting a subset of preferred solutions. This is accom-
plished in [2] by means of aranking function% : Σ → IN on the alphabetΣ for
inducing a hierarchy on the default rules inDΣ :

Definition 3. Let% : Σ → IN be some ranking function on alphabetΣ, and(D,V ) ∈
DT. We define the hierarchy ofD with respect to% as the partition〈Dn〉n∈ω ofD such
that for eachδ ∈ D with δ of formδp, δ

i,j
p , δi+

p , δi−
p , for p ∈ Σ andi, j ∈ I, δ ∈ Dn iff

%(p) = n holds.

Strictly speaking,〈Dn〉n∈ω is not always a genuine partition, sinceDn may be the
empty set for some values ofn.

Definition 4. LetW be a finite set of formulas inLΣ , (D,V ) ∈ DT(W ), andE a set of
formulas. Let〈Dn〉n∈ω be the hierarchy ofD with respect to some ranking function%.

Then,E =
⋃

n∈ω En is a hierarchic extension of(D,V ) relative to% if E1 = V
andEn+1 is an extension of(Dn, En) for all n ≥ 1.

Let 〈Dn〉n∈ω be the hierarchy ofD with respect to some ranking function%, and
let Exth be the set of all hierarchic extensions of a default theory(D,V ) ∈ DT in
Definition 1. Then, we immediately get corresponding consequence relations`ch, `sh,
and`ph. Furthermore, applying hierarchic extensions on default theories(DΣ ,W ) in
accordance to Definition 2 yields new relations`±ch, `±sh, and`±ph.

In concluding this section, let us briefly recapitulate all paraconsistent consequence
relations introduced so far. As a basic classification, we have credulous, skeptical
and prudent consequence. For each of these relations, we defined unsigned operators,
which are invokable on three different classes of default theories (viz. on(DΣ ,W

±),
(D1

Σ ,W
±
I ), and(D2

Σ ,W
±
I )), either on ordinary extensions (`i) or on hierarchic exten-

sions (̀ ih), and, on the other hand, signed operators also relying on ordinary extensions
(`±i ) or hierarchic extensions (`±ih) of the default theory(DΣ ,W

±). This gives in to-
tal 18 unsigned and 6 signed paraconsistent consequence relations, which shall all be
considered in the following two sections.

4 Reductions

In this section, we show how the above introduced consequence relations can be mapped
into quantified Boolean formulas in polynomial time.



Recall the setDT(W ) for finite W ⊆ LΣ . In what follows, we use finite default
theoriesDT∗(W ) = {(DW , V ) | (D,V ) ∈ DT(W )}whereDW = {δ ∈ D | var(δ)∩
var(W ) 6= ∅}. Hence,DW contains each default fromD having an unsigned atom
which also occurs inW .

We first show the adequacy of these default theories, and afterwards we develop our
QBF-reductions based on these finite default theories.

Lemma 1. LetW ⊆ LΣ be a finite set of formulas and(D,V ) ∈ DT(W ) a default
theory. Moreover, letC ⊆ D andCW = {δ ∈ C | var(δ) ∩ var(W ) 6= ∅}. Then,

1. Cn(V ∪ c(CW )) ∩ LΣ = Cn(V ∪ c(C)) ∩ LΣ ; and
2. for eachϕ± ∈ LΣ± , ϕ± ∈ Cn(V ∪ c(C)) iff ϕ± ∈ Cn(V ∪ c(CW ) ∪ c(Dϕ))

whereDϕ = {δp | p ∈ var(ϕ) \ var(W )}.

Both results show that having computed a (possibly hierarchic) extension, one has
a finite set of generating defaults sufficient for deciding whether a paraconsistent con-
sequence relation holds. The following result shows that these sets are also sufficient to
compute the underlying extensions themselves.

Theorem 3. LetW , (D,V ), C, andCW be as in Lemma 1, and letDW = {δ ∈ D |
var(δ) ∩ var(W ) 6= ∅}.

Then, there is a one-to-one correspondence between the extensions of(D,V ) and
the extensions of(DW , V ). In particular, Cn(V ∪ c(C)) is an extension of(D,V )
iff Cn(V ∪ c(CW )) is an extension of(DW , V ). Similar relations hold for hierarchic
extensions as well.

The next result gives a uniform characterisation for all default theories under consid-
eration. It follows from the fact that, for eachδp, the consequent(p ≡ p+)∧ (¬p ≡ p−)
is actually equivalent to(p+ ≡ ¬p−) ∧ (p ≡ p+), and, furthermore, that defaults of
form (2) and (3) share the property that their justifications and consequents are identi-
cal. Hence, givenW andI as usual, it holds thatc(δ) |= j(δ), for eachδ ∈ D, with
(D,V ) ∈ DT∗(W ).

Theorem 4. Let W ⊆ LΣ be a finite set of formulas, let(D,V ) ∈ DT∗(W ) be a
default theory, and letC ⊆ D.

Then,Cn(V ∪ c(C)) is an extension of(D,V ) iff j(C) is a maximal subset ofj(D)
consistent withV .

Note that the subsequent QBF reductions, obtained on the basis of the above re-
sult, represent a more compact axiomatics than the encodings given in [7] for arbitrary
default theories.

We derive an analogous characterisation for hierarchic extensions. In fact, each hi-
erarchic extension is also an extension (but not vice versa) [2]. Thus, we can charac-
terise hierarchic extensions of a default theory(D,V ) as ordinary extensions, viz. by
Cn(W ∪ c(C)) with C ⊆ D suitably chosen. The following result generalises Theo-
rem 4 with respect to a given partition on the defaults. In particular, if〈Dn〉n∈ω = 〈D〉,
Theorem 5 corresponds to Theorem 4.



Theorem 5. LetW , (D,V ), andC be given as in Theorem 4.
Then,Cn(V ∪ c(C)) is a hierarchic extension of(D,V ) with respect to partition

〈Dn〉n∈ω onD iff for eachi ∈ ω, j(Di ∩ C) is a maximal subset of j(Di) consistent
with V ∪

⋃
j<i c(Dj ∩ C).

Finally, in order to relate extensions of default theories to paraconsistent conse-
quence operators, we note the following straightforward observations.

Let ΠS be as in Definition 1. Then, for each extensionE of (D,V ) ∈ DT(W ),
there exists aC ⊆ D such thatc(C) = ΠE . However, since we have to check whether
a given formula is contained in someCn(V ∪ΠE), by Lemma 1 it is obviously suf-
ficient to consider just the generating defaults of an extension of the corresponding
restricted default theory fromDT∗(W ). In view of Theorems 4 and 5, this immediately
implies that all paraconsistent consequence relations introduced so far can be char-
acterised by maximal subsets of the consequencesc(D) of the corresponding default
theory(D,V ) ∈ DT∗(W ). More specifically, credulous and skeptical paraconsistent
consequence reduces to checking whether a given formula is contained in at least one
or respectively all such maximal subsets. Additionally, prudent consequence enjoys the
following property.

Lemma 2. LetW ⊆ LΣ be a finite set of formulas, and(D,V ) ∈ DT∗(W ).
Then, for eachϕ ∈ LΣ , we have thatW 6`p ϕ (resp.,W 6`ph ϕ) iff there exists

a setC ⊆ D such thatϕ /∈ Cn(V ∪ c(C)) and, for eachδ ∈ D \ C, there is some
extension(resp., hierarchic extension) E of (D,V ) such that c(δ) /∈ E. An analogous
result holds for relations̀ ±p and`±ph.

Main Construction. We start with some basic QBF-modules. To this end, recall the
schemaC[·, ·] from Proposition 1.

Definition 5. LetW ⊆ LΣ be a finite set of formulas andϕ ∈ LΣ . For each finite
default theoryT = (D,V ) ∈ DT∗(W ), letD = {δ1, . . . , δn}, and define

E [T ] = C[V, j(D)] ∧
n∧

i=1

(
¬gi → ¬C[V ∪ {j(δi)}, j(D \ {δi})]

)
;

D[T, ϕ] = ∀P
(
V ∧ (G ≤ c(D)) → ϕ

)
,

whereP denotes the set of atoms occurring inT or ϕ, andG = {gi | δi ∈ D} is an
indexed set of globally new variables corresponding toD.

Lemma 3. Let W , T = (D,V ), andG be as in Definition 5. Furthermore, for any
setC ⊆ D, define the interpretationMC ⊆ G such thatgi ∈ MC iff δi ∈ C, for
1 ≤ i ≤ n.

Then, the following relations hold:

1. Cn(V ∪ c(C)) is an extension ofT iff E [T ] is true underMC ; and
2. ϕ ∈ Cn(V ∪ c(C)) iff D[T, ϕ] is true underMC , for any formulaϕ in LΣ .



Observe that the correctness of Condition 1 follows directly from Proposition 1(2),
since we have thatE [T ] is true underMC iff j(C) is a maximal subset ofj(D) con-
sistent withV , and, in view of Theorem 4, the latter holds iffCn(V ∪ c(C)) is an ex-
tension ofT . Moreover, Condition 2 is reducible to Proposition 1(1). Combining these
two QBF-modules, we obtain encodings for the basic inference tasks as follows:

Theorem 6. LetW ⊆ LΣ be a finite set of formulas,T = (D,V ) a default theory
from DT∗(W ) withD = {δ1, . . . , δn}, ϕ a formula inLΣ , andG = {g1, . . . , gn} the
indexed set of variables occurring inE [T ] andD[T, ϕ].

Then, paraconsistent credulous and skeptical consequence relations can be axioma-
tised by means of QBFs as follows:

1. W `c ϕ iff |= ∃G(E [T ] ∧ D[T, ϕ]); and
2. W `s ϕ iff |= ¬∃G(E [T ] ∧ ¬D[T, ϕ]).

Moreover, for prudent consequence, letG′ = {g′i | gi ∈ G} be an additional set of
globally new variables andΨ =

∧n
i=1(¬g′i → ∃G(E [T ] ∧ ¬D[T, c(δi)])). Then,

3. W `p ϕ iff |= ¬∃G′(¬DG←G′ [T, ϕ] ∧ Ψ),

whereDG←G′ [T, ϕ] denotes the QBF obtained fromD[T, ϕ] by replacing each occur-
rence of an atomg ∈ G in D[T, ϕ] byg′.

In what follows, we discuss the remaining consequence relations under consid-
eration. We start with signed consequence. Here, we just have to adopt the calls to
D[(D,V ), ϕ] with respect to Lemma 2, by adding those defaultsδp to W± such that
p ∈ var(ϕ) \ var(W ). Observe that in the following theorem this addition isnot nec-
essary for the moduleΨ . Furthermore, recall that signed consequence is applied only to
default theories(DΣ ,W

±).

Theorem 7. LetW ⊆ LΣ be a finite set of formulas andϕ a formula inLΣ . Moreover,
let DW = {δp | p ∈ var(W )} andDϕ = {δp | p ∈ var(ϕ) \ var(W )}, with the
corresponding default theoriesT = (DW ,W±) andT ′ = (DW ,W± ∪ c(Dϕ)), and
letG,G′, andΨ be as in Theorem 6.

Then, paraconsistent signed consequence relations can be axiomatised by means of
QBFs as follows:

1. W `±c ϕ iff |= ∃G(E [T ] ∧ D[T ′, ϕ±]);
2. W `±s ϕ iff |= ¬∃G(E [T ] ∧ ¬D[T ′, ϕ±]); and
3. W `±p ϕ iff |= ¬∃G′(Ψ ∧ ¬DG←G′ [T ′, ϕ±]),

where, as above,DG←G′ [·, ·] replaces eachg byg′.

It remains to consider the consequence relations based on hierarchical extensions.
To this end, we exploit the characterisation of Theorem 5.

Definition 6. LetW ⊆ LΣ be a finite set of formulas,T = (D,V ) a default theory
fromDT∗(W ) withD = {δ1, . . . , δn}, andP = 〈Dn〉n∈ω a partition onD. We define

Eh[T, P ] =
∧
i∈ω

(
E [(V ∧

∧
δj∈D1∪...∪Di−1

(gj → c(δj)) , Di)]
)
,



whereG = {gi | δi ∈ D} is the same indexed set of globally new variables corre-
sponding toD as above appearing in eachE [·].

Lemma 4. LetW , (D,V ), G, andP be as in Definition 6. Furthermore, for any set
C ⊆ D, define the interpretationMC ⊆ G such thatgi ∈MC iff δi ∈ C, for 1 ≤ i ≤ n.

Then,Cn(V ∪ c(C)) is a hierarchic extension ofT with respect toP iff Eh[T, P ] is
true underMC .

Theorem 8. Paraconsistent consequence relations`ch, `±ch, `sh, `±sh, `ph, and`±ph

are expressible in the same manner as in Theorems 6 and 7 by replacingE [T ] with
Eh[T, P ].

5 Complexity Issues

In the sequel, we derive complexity results for deciding paraconsistent consequence in
all variants discussed previously. We show that all considered tasks are located at the
second level of the polynomial hierarchy. This is in some sense not surprising, because
the current approach relies on deciding whether a given formula is contained in an
extension of a suitably constructed default theory. This problem was shown to beΣP

2 -
complete by Gottlob [11], even if normal default theories are considered. However, this
completeness result is not directly applicable here because of the specialised default
theories in the present setting. Furthermore, for dealing with hierarchic extensions, it
turns out that the complexity remains at the second level of the polynomial hierarchy as
well. This result is interesting, since the definition of hierarchic extensions is somewhat
more elaborate than standard extensions. In any case, this observation mirrors in some
sense complexity results derived for cumulative default logic (cf. [12]).

In the same way as the satisfiability problem of classical propositional logic is the
“prototypical” problem ofNP, i.e., being anNP-complete problem, the satisfiability
problem of QBFs inprenex formpossessingk quantifier alternations is the “prototypi-
cal” problem of thek-th level of the polynomial hierarchy, as expressed by the following
well-known result:

Proposition 2 ([16]). Given a propositional formulaφ whose atoms are partitioned
into i ≥ 1 setsP1, . . . , Pi, deciding whether∃P1∀P2 . . .QiPiφ is true isΣP

i -complete,
where Qi = ∃ if i is odd andQi = ∀ if i is even, Dually, deciding whether
∀P1∃P2 . . .Q

′
iPiφ is true isΠP

i -complete, whereQ′i = ∀ if i is odd andQi = ∃ if
i is even.

Given the above characterisations, we can estimate upper complexity bounds for the
reasoning problems discussed in Section 3 simply by inspecting the quantifier order of
the respective QBF encodings. This can be argued as follows. First of all, by applying
quantifier transformation rules similar to ones in first-order logic, each of the above
QBF encodings can be transformed in polynomial time into a QBF in prenex form hav-
ing exactly one quantifier alternation. Then, by invoking Proposition 2 and observing
that completeness of a decision problemD for a complexity classC implies member-
ship ofD in C, the quantifier order of the resultant QBFs determines in which class of
the polynomial hierarchy the corresponding reasoning task belongs to.



Table 1.Complexity results for all paraconsistent consequence relations.

T0 = (DΣ , W±) T1 = (D1
Σ , W±

I ) T2 = (D2
Σ , W±

I )

`c ΣP
2 ΣP

2 ΣP
2

`s ΠP
2 ΠP

2 ΠP
2

`p ΠP
2 in ΠP

2 in ΠP
2

`±c ΣP
2 - -

`±s ΠP
2 - -

`±p in ΠP
2 - -

`ch ΣP
2 ΣP

2 ΣP
2

`sh ΠP
2 ΠP

2 ΠP
2

`ph ΠP
2 in ΠP

2 in ΠP
2

`±ch ΣP
2 - -

`±sh ΠP
2 - -

`±ph in ΠP
2 - -

Applying this method to our considered tasks, we obtain that credulous paracon-
sistent reasoning lies inΣP

2 , whilst skeptical and prudent paraconsistent reasoning are
in ΠP

2 . Furthermore, note that the QBFs expressing paraconsistent reasoning using the
concept of hierarchical extensions share exactly the same quantifier structures as those
using ordinary extensions.

Concerning lower complexity bounds, it turns out that most of the above given es-
timations arestrict, i.e., the considered decision problems are hard for the respective
complexity classes. The results are summarised in Table 1. There, all entries denote
completeness results, except where a membership relation is explicitly stated. The fol-
lowing theorem summarises these relations:

Theorem 9. The complexity results in Table 1 hold both for ordinary as well as for
hierarchical extensions ofTi (i = 0, 1, 2) as underlying inference principle.

Some of these complexity results have already been shown elsewhere. As pointed
out in [2], prudent consequence,W `p ϕ, on the basis of the default theory(DΣ ,W

±)
captures the notion offree-consequencesas introduced in [1]. This formalism was
shown to beΠP

2 -complete in [4].
Finally, [5] considers the complexity of a number of different paraconsistent rea-

soning principles, among them the completeness results for`s and`±s . Moreover, that
paper extends the intractability results to some restricted subclasses as well.

6 Discussion

We have shown how paraconsistent inference problems within the framework of signed
systems can be axiomatised by means of quantified Boolean formulas. This approach
has several benefits: First, the given axiomatics provides us with further insight about
how paraconsistent reasoning works within the framework of signed systems. Second,



this axiomatisation allows us to furnish upper bounds for precise complexity results,
going beyond those presented in [5]. Last but not least, we obtain a straightforward
implementation technique of paraconsistent reasoning in signed systems by appeal to
existing QBF solvers.

For implementing our approach, we rely on the existing systemQUIP [7, 13, 8]. The
general architecture ofQUIP consists of three parts, namely thefilter program, a
QBF-evaluator, and the interpreterint . The input filter translates the given problem
description (in our case, a signed system and a specified reasoning task) into the corre-
sponding quantified Boolean formula, which is then sent to the QBF-evaluator. The cur-
rent version ofQUIP provides interfaces to most of the currently available QBF-solvers.
The result of the QBF-evaluator is interpreted byint . Depending on the capabilities of
the employed QBF-evaluator,int provides an explanation in terms of the underlying
problem instance. This task relies on a protocol mapping of internal variables of the
generated QBF into concepts of the problem description.
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