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Abstract. Signed systems were introduced as a general, syntax-independent
framework for paraconsistent reasoning, that is, non-trivialised reasoning from
inconsistent information. In this paper, we show how the family of corresponding
paraconsistent consequence relations can be axiomatised by means of quantified
Boolean formulas. This approach has several benefits. First, it furnishes an ax-
iomatic specification of paraconsistent reasoning within the framework of signed
systems. Second, this axiomatisation allows us to identify upper bounds for the
complexity of the different signed consequence relations. We strengthen these
upper bounds by providing strict complexity results for the considered reasoning
tasks. Finally, we obtain an implementation of different forms of paraconsistent
reasoning by appeal to the existing syst@lIP.

1 Introduction

In view of today’s rapidly growing amount and distribution of information, it is in-
evitable to encounter inconsistent information. This is why methods for reasoning from
inconsistent data are becoming increasingly important. Unfortunately, there is no con-
sensus on which information should be derivable in the presence of a contradiction.
Nonetheless, there is a broad class of consistency-based approaches that reconstitute
information from inconsistent data by appeal to the notion of consistency. Our overall
goal is to provide a uniform basis for these approaches that makes them more transpar-
ent and easier to compare. To this end, we take advantage of the framework of quantified
Boolean formulas (QBFs). To be more precise, we concentrate here on axiomatising the
class of so-calledigned system&] for paraconsistent reasoning; a second paper will
deal with maximal-consistent sets and related approaches (cf. [4, 5]).

Our general methodology offers several benefits: First, we obtain uniform axiomati-
sations of rather different approaches. Second, once such an axiomatisation is available,
existing QBF solvers can be used for implementation in a uniform setting. The avail-
ability of efficient QBF solvers, like the systems described in [3, 10, 9], makes such a
rapid prototyping approach practicably applicable. Third, these axiomatisations provide
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a direct access to the complexity of the original approach. Finally, we remark that this
approach allows us, in some sense, to express paraconsistent reasoning in (higher order)
classical propositional logic and so to harness classical reasoning mechanisms from (a
conservative extension of) propositional logic.

Our elaboration of paraconsistent reasoning is part of an encompassing research
program, analysing a large spectrum of reasoning mechanisms in Artificial Intelligence,
among them nonmonotonic reasoning [7], (hnonmonotonic) modal logics [8], logic pro-
gramming [13], abductive reasoning [15], and belief revision [6].

In order to keep our paper self-contained, we must carefully introduce the respec-
tive techniques. Given the current space limitations, we have thus decided to reduce the
motivation and rather concentrate on a thorough formal elaboration. This brings us to
the following outline: Section 2 lays down the formal foundations of our work, intro-
ducing QBFs and Default Logic. Section 3 is devoted to signed systems as introduced
in [2]. Apart from reviewing the basic framework, we provide new unifying character-
isations that pave the way for the respective encodings in QBFs, which are the subject
of Section 4. That section comprises thus our major contribution: a family of basic
QBF axiomatisations that can be assembled in different ways in order to accommodate
the variety of paraconsistent inference relations within the framework of signed sys-
tems. We further elaborate upon these axiomatisations in Section 5 for analysing the
complexity of the respective reasoning tasks. Finally, our axiomatisations are also of
great practical value since they allow for a direct implementation in terms of existing
QBF-solvers. Such an implementation is described in Section 6, by appeal to the system
QUIP [7,13, 8].

2 Foundations

We deal with propositional languages and use the logical symials —, v, A, —, and

= to construct formulas in the standard way. We wte to denote a language over an
alphabet?’ of propositional variable®r atoms Formulas are denoted by Greek lower-
case letters (possibly with subscripts). Finite SBts= {¢4,..., ¢, } of formulas are
usually identified with the conjunctiof\"_, ¢; of its elements. The set of all atoms
occurring in a formulap is denoted byvar(¢). Similarly, for a setS of formulas,
var(S) = U4es var(¢). The classical derivability operatdr, is defined in the usual
way. Thedeductive closuref a setS C Ly of formulas is given byCn (S) = {¢ €
Lx | S+ ¢}. We say thatS is deductively closedf S = Cnx(S). FurthermoreS is
consistentff L ¢ Cnyx(9). If the language is clear from the context, we usually drop
the index “2” from Cn x(-) and simply writeCn/(-) for the deductive closure operator.
An occurrence of a formula is positive(resp.,negative in a formulay iff the number

of implicit or explicit negation signs precedingin 1 is even (resp., odd).

Given an alphabeY, we define a disjoint alphab&t™ asy* = {p*,p~ | p € I}.
Fora € Ly, we definen™ as the formula obtained from by replacing each negative
occurrence op by —p~ and by replacing each positive occurrence bfy p*, for each
propositional variable in . For examplép A (p — ¢))* = p™ A (-p~ — ¢T). This
is defined analogously for sets of formulas. Observe that for any’ setLs, T+ is
consistent, even i’ is inconsistent.



Quantified Boolean FormulasQuantified Boolean formulas (QBFs) generalise or-
dinary propositional formulas by the admission of quantifications over propositional
variables (QBFs are denoted by Greek upper-case letters). Informally, a QBF of form
Vp dq  means that for all truth assignmentsgothere is a truth assignment gfsuch
that® is true. The precise semantical meaning of QBFs is defined as follows.

First, some ancillary notation. An occurrence of a propositional varjaliie QBF
& isfreeiff it does not appear in the scope of a quantifier(Q € {V, 3}), otherwise the
occurrence op is bound If ¢ contains no free variable occurrences, tkeis closed
otherwise® is open Furthermore, we writ®[p; /¢4, ..., p./¢n] to denote the result
of uniformly substituting each free occurrence of a variablm ¢ by a formulag;, for
1<i<n.

By aninterpretation M, we understand a set of atoms. Informally, an ajom
true underM iff p € M. In general, the truth value;;(2), of a QBF® under an
interpretationM is recursively defined as follows:

if =T, thenvy (®) = 1;

if = pis an atom, them,;(®) = 1 if p € M, andvy,(®) = 0 otherwise;
if & =0, thenl/]u (@) =1- I/M(W);

if® = (@1 AN @2), thenVM(@) = min({uM(Ql), V]\,{(@Q)}>;

if @ =VpW,thenvy () = vy (Pp/T] A¥[p/L]);

if & = 3p ¥, thenvy, (@) = vy (P[p/T]V ¥[p/L]).

ok whE

The truth conditions fou_, vV, —, and= follow from the above in the usual way. We say
that® is true underM iff vy, (®) = 1, otherwised is false underM. If vy, (P) = 1,
thenM is amodelof @. If & has some model, thehis said to besatisfiableIf @ is true
under any interpretation, thehis valid. As usual, we write= ¢ to express thad is
valid. Observe that a closed QBF is either valid or unsatisfiable, because closed QBFs
are either true under each interpretation or false under each interpretation. Hence, for
closed QBFs, there is no need to refer to particular interpretations. Two sets of QBFs
(or ordinary formulas) artogically equivalentiff they possess the same models.

In the sequel, we use the following abbreviations in the context of QBFs: For a
setP = {p1,...,p,} Of propositional variables and a quantifi@re {v, 3}, we let
QP @ stand for the formulaQp,Qps - - - Qp,, @. Furthermore, for indexed sefs =
{¢1,..., ¢}t a@andT = {¢1,..., 4, } of formulas,S < T abbreviateg\'"_, (¢; — ;).

The following result is needed in the sequel:

Proposition 1. LetS = {¢1, ..., ¢, } andT be finite sets of formulas, 1t = var(SU
T), and letG = {g1, ..., gn} be a set of new variables. Furthermore, for a$fyC S,
define the interpretation/s, C G such thatp; € S’ iff g; € Mg/, for1 < i < n. Then,

1. Tu S is consistent iff\/s. is a model of the QBE[T, S] = IP(T A (G < 5)).
2. S’ is a maximal subset of consistent withT" iff Mg. is a model of the QBF
CIT, SIA N2y (mgi = ~CIT U {8}, S\ {#:}]).

Default Logic. The primary technical means for dealing with “signed theoriesies
fault logic [14], whose central concepts adefault rulesalong with their induceex-
tensionsof an initial set of premises. A default rule (defaultfor short)o‘T:B has two



types of antecedentspaerequisiterr which is established i is derivable and austifi-
cation 5 which is established it is consistent. If both conditions hold, tkensequent
~ is concluded by default. For convenience, we denote the prerequisite of a default
0 by p(0), its justification byj(d), and its consequent by(d). Accordingly, for a set
of defaultsD, we definep(D) = {p(d) | § € D}, j(D) = {j(6) | 6 € D}, and
(D) ={c(d) | 6 € D}.
A default theoryis a pair(D, W) whereD is a set of default rules and’ a set
of formulas. A sets of formulas is arextensiorof (D, W) iff E = |J,,,, En, where

Ey =W and,forn > 1, E, 1 = Cn(E,) U {y| 2L € D,a € E,,~8 ¢ E}.

3 Signed Systems

The basic idea of sighed systems is to transform an inconsistent theory into a consistent
one by renaming propositional variables and then to extend the resulting signed theory
by equivalences using default logic.

Starting with a possibly inconsistent finite thed# C L5, we consider the default
theory obtained fromiV+ and a set of default ruleB s, = {5, | p € X'} defined in the
following way. For each propositional lettgiin X, we define
tpt=-p”

o = (pEﬁ)A_(ﬂpEp*) '

1)

Using this definition, we define the first family of paraconsistent consequence relations:

Definition 1. LetTV be a finite set of formulas ifi; and lety be a formulainly. Let
Ext be the set of all extensions 6Dy, W*). For each set of formula§ C Ly y-=,
letIIs = {c(d,) | p € X, —j(d,) € S}. Then, we define

W ke ¢ iff o € Upepe Cn(W= U IIg) (credulous unsignédconsequenge
W, ¢ iff o € Npepe Cn(WE U IE) (skeptical unsigned consequehce
Wk, ¢ iff o € Cn(W* UNgege E) (prudent unsigned consequehce

For illustration, consider the inconsistent thed¥ = {p, ¢, —p vV —q}. For obtain-
ing the above paraconsistent consequence relatidhis turned into the default the-
ory? (Ds,W*) = ({6p,8,},{p".q¢",p~ V ¢ }). We obtain two extensions, viz.
Cn(W#* U {c(6,)}) and Cn(W* U {c(4,)}). The following relations show how the
different consequence relations behawet-. p, W I/, p, W I7, p, but, for instance,
WhtepVag WhspVg, WipVag

For a complement, the following “signed” counterparts are defined.

Definition 2. Given the prerequisites of Definition 1, we define

WHE ¢ iff o* € Upepe On(W* U Ilg) (credulous signed consequepce
WL ¢ iff o* € Npege Cn(WE U ITE) (skeptical signed consequeice
W HE ¢ iff o € On(W* UNpege 1E) (prudent signed consequence

! The term “unsigned” indicates that only unsigned formulas are taken into account.
2 For simplicity, we omitted alb,, for z € X'\ {p, q}.



As shown in [2], these relations compare to each other in the following way.

Theorem 1. Let C; be the operator correspondlng ©,(W) = {p | WF, ¢} where
i ranges oveKp, s, c}, and similarly forOZ Then, we have

1. C;(W) C CEW);
2. C,(W) C Cy(W) C Ce(W) andCiE (W) € CE(W) C CE(W).
That is, signed derivability gives more conclusions than unsigned derivability and

within each series of consequence relations the strength of the relation is increasing.
Moreover, they enjoy the following logical properties:

Theorem 2. Let C; be the operator corresponding @;(W) = {¢ | W ; ¢} where
i ranges overp, s, c}, and similarly forC:=. Then, we have

W C CHEW )
C, (W) = Cn(C, W ) andC (W) = On(Cy(W));
CHEW) = Ci( W));

W
Cn(W >;éczomywcw< ) = Ci(W) = CF(W);
Ci(W) # Ly and CE(W) # Ly;
W C W' does not implyC;(W) C C;(W’), andW C W’ does not imply
CiE(W) C CEW).

©NO O AW

The last item simply says that all of our consequence relations are nonmonotonic. For
instance, we have€’;({A, A — B}) = CF({4,A — B}) = Cn({A, B}), while
neitherC;({A, ~A, A — B}) norC:*({A,-A, A — B}) containsB.

RefinementsThe previous relations embody a somewhat global approach in restoring
semantic links between positive and negative literals. In fact, the application of@, rule
re-establishes the semantic link between all occurrences of propgsitind its nega-
tion —p at once. A more fine-grained approach is to establish the connections between
complementary occurrences of an atom individually.

Formally, for a giveri¥ and an index sef assigning different indices to all occur-
rences of all atoms ifl’, define

s (p=p ) A (-p=0pj)
(p=p) A (-p=pj)

6yt = 2
forallp € X and alli, j € I, provided that and; refer to complementary occurrences
of p in W, otherwise set’ = §,. Denote byD}; this set of defaults and by the
result of replacing each™ € W= (resp.,p~ € W*) by p; (resp.,p; ) wherei is the
index assigned to the corresponding occurrence, provided that there are complementary
occurrences of in .

Finally, abandoning the restoration of semantical links and foremost restoring orig-
inal (unsigned) literals leads to the most adventurous approach to signed inferences.
Consider the following set of defaults, defined foralf X andi,j € I,

+_ (p=p) —_ s (p=p;)
61—1— — 1 5] — J
P o= " (w=p) ©



for all positive and negative occurrencesgfrespectively. As above, we use these
defaults provided that there are complementary occurrences$nofV, otherwise use
5, A set of defaults of form (3) with respect i is denoted byD%.

Thus, further consequence relations are defined when W+) in Definition 1 is
replaced by(DL., W) or by (D%, W;). Similar results to Theorem 1 and 2 can be
shown for these families of consequence relations.

In the following, we identify all introduced default theories as follows. Given a
finite setW C Ly, the clasDT(W) contains(Dyx;, W), as well as(DL, W) and
(D3, Wit) for any index sef . FurthermoreDT = Uwcr, DT(W) denotes the class
of all possible default theories under consideration.

Whenever a problem instance may give rise to several solutions, it is useful to pro-
vide a preference criterion for selecting a subset of preferred solutions. This is accom-
plished in [2] by means of aanking functionp : ¥ — IN on the alphabef’ for
inducing a hierarchy on the default rulesiin::

Definition 3. Letp : X — IN be some ranking function on alphab®tand(D, V) €
DT. We define the hierarchy @ with respect t as the partition(D,,) .., 0f D such
that for eachy € D with  of formd,,, 677, 6:F, 6., forp € X andi, j € I, 6 € D, iff
o(p) = n holds.

Strictly speaking,(D,,)»c., IS NOt always a genuine partition, siné&, may be the
empty set for some values of

Definition 4. LetV be afinite set of formulasifiy, (D, V) € DT(W), andE a set of
formulas. Let D,,),.c., be the hierarchy oD with respect to some ranking functien

Then,E = |J,,c., En is ahierarchic extension ofD, V) relative tog if E; = V
and E, 1 is an extension ofD,,, E,,) forall n > 1.

Let (D,,)ne. be the hierarchy oD with respect to some ranking functien and
let Ext;, be the set of all hierarchic extensions of a default thédpyV) € DT in
Definition 1. Then, we immediately get corresponding consequence relatipns,,,
andt,;. Furthermore, applying hierarchic extensions on default the¢figs 1) in
accordance to Definition 2 yields new relation,, 2, and-, .

In concluding this section, let us briefly recapitulate all paraconsistent consequence
relations introduced so far. As a basic classification, we have credulous, skeptical
and prudent consequence. For each of these relations, we defined unsigned operators,
which are invokable on three different classes of default theories (vigDgn W),

(DL, W), and(D%, WiH)), either on ordinary extensionis,{ or on hierarchic exten-

sions £;;), and, on the other hand, signed operators also relying on ordinary extensions
(Ff) or hierarchic extension:trf;) of the default theory D, W). This gives in to-

tal 18 unsigned and 6 signed paraconsistent consequence relations, which shall all be
considered in the following two sections.

4 Reductions

In this section, we show how the above introduced consequence relations can be mapped
into quantified Boolean formulas in polynomial time.



Recall the seDT (W) for finite W C Lx. In what follows, we use finite default
theorieDT* (W) = {(Dw,V) | (D,V) € DT(W)} whereDy, = {6 € D | var(§)N
var(W) # (}. Hence,Dy, contains each default from having an unsigned atom
which also occurs inV.

We first show the adequacy of these default theories, and afterwards we develop our
QBF-reductions based on these finite default theories.

Lemmal. LetW C Ly be a finite set of formulas and, V) € DT(W) a default
theory. Moreover, le€ C D andCy = {6 € C | var(d) Nvar(W) # 0}. Then,

1. Cn(VUc(Cw))NLy=Cn(VUc(C))NLy;and
2. for eachyp® € Ly+, o € Cn(V UC(Q))iff = € On(V Uc(Cw)Uc(D,))
whereD, = {8, | p € var(p) \ var(W)}.

Both results show that having computed a (possibly hierarchic) extension, one has
a finite set of generating defaults sufficient for deciding whether a paraconsistent con-
sequence relation holds. The following result shows that these sets are also sufficient to
compute the underlying extensions themselves.

Theorem 3. LetW, (D, V), C, andCy be asin Lemma 1, and lédyy = {6 € D |
var(6) Nvar(W) # 0}.

Then, there is a one-to-one correspondence between the extensidnsiof and
the extensions of Dy, V). In particular, Cn(V U c(C)) is an extension ofD, V)
iff Cn(V Uc(Cw)) is an extension ofDyy, V). Similar relations hold for hierarchic
extensions as well.

The next result gives a uniform characterisation for all default theories under consid-
eration. It follows from the fact that, for eadl), the consequerip = p*)A(-p=p)
is actually equivalent tgp™ = —p~) A (p = p™), and, furthermore, that defaults of
form (2) and (3) share the property that their justifications and consequents are identi-
cal. Hence, giveV andI as usual, it holds that(é) = j(d), for eaché € D, with
(D,V) e DT*(W).

Theorem 4. Let W C Ly be a finite set of formulas, 1D, V) € DT*(W) be a
default theory, and lef” C D.

Then,Cn(V U c(C)) is an extension ofD, V) iff j(C') is a maximal subset g{ D)
consistent with/.

Note that the subsequent QBF reductions, obtained on the basis of the above re-
sult, represent a more compact axiomatics than the encodings given in [7] for arbitrary
default theories.

We derive an analogous characterisation for hierarchic extensions. In fact, each hi-
erarchic extension is also an extension (but not vice versa) [2]. Thus, we can charac-
terise hierarchic extensions of a default theB, V') as ordinary extensions, viz. by
Cn(W U c(C)) with C C D suitably chosen. The following result generalises Theo-
rem 4 with respect to a given partition on the defaults. In particuldBjf) .c., = (D),
Theorem 5 corresponds to Theorem 4.



Theorem 5. LetW, (D, V), andC be given as in Theorem 4.

Then,Cn(V U c(C)) is a hierarchic extension afD, V') with respect to partition
(Dp)new on D iff for eachi € w, j(D; N C) is a maximal subset of P,) consistent
withV ulJ;, c(D; N O).

Finally, in order to relate extensions of default theories to paraconsistent conse-
guence operators, we note the following straightforward observations.

Let ITs be as in Definition 1. Then, for each extensibrof (D,V) € DT(W),
there exists & C D such that(C) = ITg. However, since we have to check whether
a given formula is contained in sonten(V U I1g), by Lemma 1 it is obviously suf-
ficient to consider just the generating defaults of an extension of the corresponding
restricted default theory fro@T* (7). In view of Theorems 4 and 5, this immediately
implies that all paraconsistent consequence relations introduced so far can be char-
acterised by maximal subsets of the consequea@@$ of the corresponding default
theory (D, V) € DT*(W). More specifically, credulous and skeptical paraconsistent
consequence reduces to checking whether a given formula is contained in at least one
or respectively all such maximal subsets. Additionally, prudent consequence enjoys the
following property.

Lemma 2. LetW C Ly be afinite set of formulas, ar(d, V') € DT*(W).

Then, for eachy € Lx, we have thalV t/, ¢ (resp.,W /,, ) iff there exists
a setC C D such thaty ¢ Cn(V Uc(C)) and, for eactv € D \ C, there is some
extensior(resp., hierarchic extensigr’ of (D, V') such that ¢5) ¢ E. An analogous
result holds for relations-* andt, .

Main Construction. We start with some basic QBF-modules. To this end, recall the
schema’|-, -] from Proposition 1.

Definition 5. Let W C Ly be a finite set of formulas and € L. For each finite
default theoryl' = (D, V) € DT*(W), let D = {41, ...,d,}, and define

el =cv,i) A A\ (~g: = ~CV Ui LI\ {a:})]);

i=1

DIT, ] = vp(v A (G < (D)) — <p),

where P denotes the set of atoms occurringZinor ¢, andG = {g; | 6; € D} is an
indexed set of globally new variables correspondingto

Lemma3. LetW, T = (D,V), andG be as in Definition 5. Furthermore, for any
setC C D, define the interpretatiod/- C G such thatg; € M¢ iff §; € C, for
1< <n.

Then, the following relations hold:

1. Cn(V Uc(Q)) is an extension df iff £[T is true underM; and
2. p € Cn(V UCc(C)) iff D[T, 4] is true underM ¢, for any formulap in L.



Observe that the correctness of Condition 1 follows directly from Proposition 1(2),
since we have thaf[T'] is true underM iff j(C) is a maximal subset of(D) con-
sistent withV/, and, in view of Theorem 4, the latter holds @f(V U c(C)) is an ex-
tension ofT". Moreover, Condition 2 is reducible to Proposition 1(1). Combining these
two QBF-modules, we obtain encodings for the basic inference tasks as follows:

Theorem 6. Let W C Ly be a finite set of formulag] = (D, V) a default theory
fromDT*(W) with D = {41,...,8,}, p aformulainLy, andG = {g1,...,g,} the
indexed set of variables occurring 8T andD[T, ¢].

Then, paraconsistent credulous and skeptical consequence relations can be axioma-
tised by means of QBFs as follows:

1. Wt piff E3G(E[T) AD[T,¢]); and
2. Wk, oiff E-3G(E[T)A—=DIT, ¢]).

Moreover, for prudent consequence, &t= {g. | g; € G} be an additional set of
globally new variables and = A}, (—g, — 3G(E[T] A —~D[T,c(6;)])). Then,

3. W, ¢iff = -3G' (D [T, 0] AP,

whereD¢ ./ [T, ¢] denotes the QBF obtained frofT', ] by replacing each occur-
rence of an atong € Gin D[T, ¢] by ¢'.

In what follows, we discuss the remaining consequence relations under consid-
eration. We start with signed consequence. Here, we just have to adopt the calls to
D[(D, V), ¢] with respect to Lemma 2, by adding those defasjtso W+ such that
p € var(yp) \ var(W). Observe that in the following theorem this additiomat nec-
essary for the modul&. Furthermore, recall that signed consequence is applied only to
default theorie§ Dy, W).

Theorem 7. LetWW C Ly be afinite set of formulas anda formula inL 5;,. Moreover,
let Dy = {6, | p € var(W)} and D, = {6, | p € var(p) \ var(W)}, with the
corresponding default theoriés = (Dy,, W*) andT’ = (Dw,W* Uc(D,)), and
let G, G’, and¥ be as in Theorem 6.

Then, paraconsistent signed consequence relations can be axiomatised by means of
QBFs as follows:

L WS oiff =3GET] DT, o¥]);
2. WK oiff || =3G(E[T] A ~DIT", o*)); and
3. WHS ¢iff = =3G"(0 A -Do—cr[T", %)),

where, as aboveDs. /[, -] replaces eacly by ¢'.

It remains to consider the consequence relations based on hierarchical extensions.
To this end, we exploit the characterisation of Theorem 5.

Definition 6. LetWW C Ly be a finite set of formulag; = (D, V) a default theory
fromDT* (W) with D = {61, ...,0,}, andP = (D,,)ne, @ partition onD. We define

alr P =N\ Eva A (o), D),

i€w §;€D1U...UD;



whereG = {g; | 0; € D} is the same indexed set of globally new variables corre-
sponding taD as above appearing in eady:].

Lemma4. LetW, (D,V), G, and P be as in Definition 6. Furthermore, for any set
C C D, define the interpretationd C G suchthay, € M¢ iff §; € C,for1 <i < n.

Then,Cn(V U ¢(C)) is a hierarchic extension df with respect taP iff £, [T, P] is
true underM¢.

Theorem 8. Paraconsistent consequence relations,, b, Fan, Fj,0 Fpn, @nd b,
are expressible in the same manner as in Theorems 6 and 7 by repl@dingvith
EnlT, P).

5 Complexity Issues

In the sequel, we derive complexity results for deciding paraconsistent consequence in
all variants discussed previously. We show that all considered tasks are located at the
second level of the polynomial hierarchy. This is in some sense not surprising, because
the current approach relies on deciding whether a given formula is contained in an
extension of a suitably constructed default theory. This problem was showng be
complete by Gottlob [11], even if normal default theories are considered. However, this
completeness result is not directly applicable here because of the specialised default
theories in the present setting. Furthermore, for dealing with hierarchic extensions, it
turns out that the complexity remains at the second level of the polynomial hierarchy as
well. This result is interesting, since the definition of hierarchic extensions is somewhat
more elaborate than standard extensions. In any case, this observation mirrors in some
sense complexity results derived for cumulative default logic (cf. [12]).

In the same way as the satisfiability problem of classical propositional logic is the
“prototypical” problem ofNP, i.e., being ariNP-complete problem, the satisfiability
problem of QBFs irprenex fornpossessing quantifier alternations is the “prototypi-
cal” problem of the:-th level of the polynomial hierarchy, as expressed by the following
well-known result:

Proposition 2 ([16]). Given a propositional formula whose atoms are partitioned
intoi > 1setsPy, ..., P;, deciding whetheBP,VP, ... Q;P;¢ is true ist—compIete,
whereQ; = 3 if ¢ is odd andQ; = V if ¢ is even, Dually, deciding whether
VP3P, ...Q.P;¢ is true is II7-complete, wher®, = V if i is odd andQ; = 3 if
1is even.

Given the above characterisations, we can estimate upper complexity bounds for the
reasoning problems discussed in Section 3 simply by inspecting the quantifier order of
the respective QBF encodings. This can be argued as follows. First of all, by applying
guantifier transformation rules similar to ones in first-order logic, each of the above
QBF encodings can be transformed in polynomial time into a QBF in prenex form hav-
ing exactly one quantifier alternation. Then, by invoking Proposition 2 and observing
that completeness of a decision probléhfor a complexity clas€’ implies member-
ship of D in C, the quantifier order of the resultant QBFs determines in which class of
the polynomial hierarchy the corresponding reasoning task belongs to.



Table 1. Complexity results for all paraconsistent consequence relations.

TO:(D27Wi)T1:(DleWIi)TQ:(D%VWIi)

Fe 3 Xy b2y
Fs 1y 1y ey
Fp Jice in 115 in 115
He 5 - -
FE 1y - -
HE in 175 - -
Fen 23 3 =y
Fph nf in 14 in 115
'_Zth 2y - B
'_sih 13 - B
Fo in 114 - -

Applying this method to our considered tasks, we obtain that credulous paracon-
sistent reasoning lies il’, whilst skeptical and prudent paraconsistent reasoning are
in 171 . Furthermore, note that the QBFs expressing paraconsistent reasoning using the
concept of hierarchical extensions share exactly the same quantifier structures as those
using ordinary extensions.

Concerning lower complexity bounds, it turns out that most of the above given es-
timations arestrict, i.e., the considered decision problems are hard for the respective
complexity classes. The results are summarised in Table 1. There, all entries denote
completeness results, except where a membership relation is explicitly stated. The fol-
lowing theorem summarises these relations:

Theorem 9. The complexity results in Table 1 hold both for ordinary as well as for
hierarchical extensions d&f; (i = 0, 1, 2) as underlying inference principle.

Some of these complexity results have already been shown elsewhere. As pointed
out in [2], prudent consequendé -, ¢, on the basis of the default theofP s, W)
captures the notion diree-consequenceas introduced in [1]. This formalism was
shown to bel7Z’-complete in [4].

Finally, [5] considers the complexity of a number of different paraconsistent rea-
soning principles, among them the completeness results,fandi-F. Moreover, that
paper extends the intractability results to some restricted subclasses as well.

6 Discussion

We have shown how paraconsistent inference problems within the framework of signed
systems can be axiomatised by means of quantified Boolean formulas. This approach
has several benefits: First, the given axiomatics provides us with further insight about
how paraconsistent reasoning works within the framework of signed systems. Second,



this axiomatisation allows us to furnish upper bounds for precise complexity results,
going beyond those presented in [5]. Last but not least, we obtain a straightforward
implementation technique of paraconsistent reasoning in signed systems by appeal to
existing QBF solvers.

For implementing our approach, we rely on the existing syspehP [7, 13, 8]. The
general architecture @@UIP consists of three parts, namely tfiker program, a
QBF-evaluator, and the interpretet . The input filter translates the given problem
description (in our case, a signed system and a specified reasoning task) into the corre-
sponding quantified Boolean formula, which is then sent to the QBF-evaluator. The cur-
rent version ofQUIP provides interfaces to most of the currently available QBF-solvers.
The result of the QBF-evaluator is interpretedifity . Depending on the capabilities of
the employed QBF-evaluatant provides an explanation in terms of the underlying
problem instance. This task relies on a protocol mapping of internal variables of the
generated QBF into concepts of the problem description.
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