
Improving the Normalization of Weight Rules
in Answer Set Programs?

Jori Bomanson, Martin Gebser??, and Tomi Janhunen

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science
Aalto University, FI-00076 AALTO, FINLAND

Abstract. Cardinality and weight rules are important primitives in answer set
programming. In this context, normalization means the translation of such rules
back into normal rules, e.g., for the sake of boosting the search for answers sets.
For instance, the normalization of cardinality rules can be based on Boolean cir-
cuits that effectively sort or select greatest elements amongst Boolean values. In
this paper, we develop further constructions for the normalization of weight rules
and adapt techniques that have been previously used to translate pseudo-Boolean
constraints into the propositional satisfiability (SAT) problem. In particular, we
consider mixed-radix numbers as an efficient way to represent and encode in-
teger weights involved in a weight rule and propose a heuristic for selecting a
suitable base. Moreover, we incorporate a scheme for structure sharing in the
normalization procedure. In the experimental part, we study the effect of normal-
izing weight rules on compactness and search performance measured in terms of
program size, search time, and number of conflicts.

1 Introduction

Cardinality and weight rules [38] are important primitives in answer set programming
(ASP) [11]. They enable more compact problem encodings compared to normal rules,
which formed the first syntax when the stable model semantics of rules was originally
proposed [22]. Stable models are also called answer sets, and the basic intuition of ASP
is to capture the solutions of the problem being solved as answer sets of a respective
logic program. There are two mainstream approaches to computing answer sets for a
logic program given as input. The first is represented by native answer set solvers [3,
15, 21, 29, 38], which have direct implementations of extended rule types in their data
structures. The alternative, translation-based approach aims at transforming rules into
other kinds of constraints and using off-the-shelf solver technology such as satisfiabil-
ity (SAT) [9] solvers and their extensions for the actual search for answer sets (see,
e.g., [23, 26, 28, 32, 34]). Regardless of the approach to compute answer sets, the nor-
malization [10, 26] of cardinality and weight rules becomes an interesting issue. In this
context, this means translating extended rules back into normal rules, e.g., in order to

? The support from the Finnish Centre of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

?? Also affiliated with the University of Potsdam, Germany.

boost the search for answers sets. Normalization is also unavoidable if cardinality and
weight constraints are not directly expressible in the language fragment supported by a
back-end solver.

Intuitively, a cardinality rule with a head atom a, literals l1, . . . , ln in the body, and
a bound 1 ≤ k ≤ n allows the derivation of a if at least k literals out of l1, . . . , ln can
be satisfied by other rules. Existing approaches to normalize cardinality rules exploit
translations based on binary decision diagrams [16] as well as Boolean circuits that
effectively sort n Boolean values or select k greatest elements amongst them [5]. The
normalization schemes developed in [26] and [10] introduce of the order of k× (n−k)
or n × (log2 k)

2 rules, respectively. The latter scheme is typically more compact and,
as suggested by the experimental results in [10], also possibly faster when computing
answer sets. Weight rules are similar to cardinality rules but each literal li in the body is
assigned a positive (integer) weight wi and, typically, we have that k �

∑n
i=1 wi. The

sum of the weights associated with satisfied literals matters when it comes to checking
the bound k ≥ 0 and deriving the head atom a. Literals with different weights bring
about extra complexity and obvious asymmetry to the normalization of weight rules.
Nevertheless, since cardinality rules form a special case of weight rules (wi = 1 for
each li), it is to be expected that normalization schemes developed for cardinality rules
provide relevant primitives for the normalization of weight rules. Indeed, by introducing
suitable auxiliary atoms, a number of rules polynomial in n, log2 k, and log2(

∑n
i=1 wi)

will be sufficient.
The goal of this paper is to develop further constructions needed in the normaliza-

tion of weight rules. A natural idea is to adapt techniques that have been previously
used to translate pseudo-Boolean constraints into SAT. In particular, the sum of weights
associated with satisfied literals is calculated stepwise as in the approach of [16]. In
the purely binary case, this means summing up the bits constituting weights, so either
0 or 1, for satisfied literals, while propagating carry bits in increasing order of signifi-
cance. This is also feasible with merger and sorter programs developed in [10], as they
provide carry bits in a natural way. Since sorter programs consist of merger programs,
we use the latter as basic primitives in this paper.

It is also possible to go beyond the base 2 and introduce mixed-radix bases to encode
integer weights so that the number of digits to be summed gets smaller. In this paper,
we propose a heuristic for selecting a suitable base rather than doing a complete search
over all alternatives [12]. Moreover, to simplify the check for the bound k, we adopt
the idea from [7] and initialize the weight sum calculation with a preselected tare. As
a consequence, to perform the check it suffices to produce the most significant digit of
the sum. Finally, we incorporate a mechanism for structure sharing in the normalization,
which composes merger programs in a bottom-up fashion and shares structure whenever
possible, while trying to maximize such possibilities.

The paper is organized as follows. Section 2 provides an account of the syntax and
semantics of weight constraint programs, as well as a summary of principles for sim-
plifying weight rules before normalization. The basic primitives for the normalization
of weight rules, i.e., the merger programs discussed above, are introduced in Section 3,
together with sorter programs built on top. The normalizations themselves are then de-
veloped in Section 4, where several schemes arise since mixed-radix bases and structure

sharing are used. An experimental evaluation is carried out in Section 5, studying the
effects of the new normalization schemes using the state-of-the-art ASP solver CLASP
as back end. Related work and conclusions are discussed in Sections 6 and 7.

2 Preliminaries

In what follows, we briefly introduce the syntactic fragments of ASP addressed in this
paper, namely normal logic programs (NLPs) and weight constraint programs (WCPs).
Afterwards, we introduce mixed-radix notation for encoding finite domain numbers.

Normal logic programs are defined as finite sets of normal rules of the form

a← l1, . . . , ln. (1)

where a is a propositional atom (or an atom for short) and each li is a literal. Literals are
either positive or negative, i.e., simply atoms ‘b’ or their default negations ‘not c’, re-
spectively. Intuitively, the head atom a can be derived by the rule (1) whenever positive
literals in the body are derivable by other rules in a program but none of the negative
literals’ atoms is derivable. A weight rule allows for a more versatile rule body:

a← k ≤ [l1 = w1, . . . , ln = wn]. (2)

Each body literal li in (2) is assigned a weight wi. The weight wi is charged if li = b
is positive and b can be derived or li = not c is negative and c cannot be derived. The
head a is derived if the sum of satisfied literals’ weights is at least k. Also note that
cardinality rules addressed in [10] are obtained as a special case of (2) when wi = 1
for 1 ≤ i ≤ n, and it is customary to omit weights then. Weight constraint programs P
are defined as finite sets of normal and/or weight rules. A program P is called positive
if no negative literals appear in the bodies of its rules.

To introduce the answer set semantics of WCPs, we write At(P) for the signature
of a WCP P , i.e., a set of atoms to which all atoms occurring in P belong to. A positive
literal a ∈ At(P) is satisfied in an interpretation I ⊆ At(P) of P , denoted I |= a, iff
a ∈ I . A negative literal ‘not a’ is satisfied in I , denoted I |= not a, iff a 6∈ I . The
body of (1) is satisfied in I iff I |= l1, . . . , I |= ln. Similarly, the body of (2), which
contains the weighted literals l1 = w1, . . . , ln = wn, is satisfied in I iff the weight sum∑

1≤i≤n, I|=liwi ≥ k. (3)

A rule (1), or alternatively (2), is satisfied in I iff the satisfaction of the body in I
implies a ∈ I . An interpretation I ⊆ At(P) is a (classical) model of a program P ,
denoted I |= P , iff I |= r for every rule r ∈ P . A model M |= P is ⊆-minimal iff
there is no M ′ |= P such that M ′ ⊂M . Any positive program P is guaranteed to have
a unique minimal model, the least model denoted by LM(P).

For a WCP P and an interpretation M ⊆ At(P), the reduct of P with respect
to M , denoted by PM , contains (i) a positive rule a ← b1, . . . , bn for each normal
rule a ← b1, . . . , bn,not c1, . . . ,not cm of P such that M 6|= c1, . . . ,M 6|= cm [22]
and (ii) a weight rule a ← k′ ≤ [b1 = w1, . . . , bn = wn] for each weight rule

a ← k ≤ [b1 = w1, . . . , bn = wn,not c1 = wn+1, . . . ,not cm = wn+m] of P , where
k′ = max{0, k−

∑
1≤i≤m, ci /∈M wn+i} is the new lower bound [38]. Given that PM is

positive by definition, an interpretation M ⊆ At(P) of a WCP P is defined as a stable
model of P iff M = LM(PM) [22, 38]. The set of stable models, also called answer
sets, of a WCP P is denoted by SM(P).

Example 1. Consider a WCP P consisting of the following three rules:

a← 5 ≤ [b = 4,not c = 2]. b← 1 ≤ [not d = 1]. c← 2 ≤ [a = 1, c = 2].

Given M1 = {a, b}, the reduct PM1 consists of a ← 3 ≤ [b = 4], b ← 0 ≤ [], and
c ← 2 ≤ [a = 1, c = 2]. As LM(PM1) = {a, b} = M1, M1 is a stable model of P .
But M2 = {a, b, c} is not stable because LM(PM2) = {b} 6=M2. �

Since the body of a weight rule (2) can be satisfied by particular subsets of literals,
it is to be expected that the normalization of the rule can become a complex operation
in the worst case. Thus it makes sense to simplify weight rules before the actual nor-
malization is performed. In the following, we provide a summary of useful principles
in this respect. Some of them yield normal rules as by-product of simplification.

1. Simplify weights: if the weights w1, . . . , wn in (2) have a greatest common divisor
(GCD) d > 1, replace them by w1/d, . . . , wn/d and the bound k by dk/de.

2. Normalize directly: if the sum s =
∑n
i=1 wi ≥ k but s−wi < k for each 1 ≤ i ≤ n,

all body literals are necessary to reach the bound, and (2) can be rewritten as a
normal rule (1) by dropping the weights and the bound altogether.

3. Remove inapplicable rules: if
∑n
i=1 wi < k, remove the rule (2) altogether.

4. Remove dominating literals: if the body of (2) contains a literal li with wi ≥ k, add
a normal rule a← li and remove li = wi from the body.

Example 2. Let us reconsider the weight rules from Example 1. The weights of the first
rule have the GCD d = 2, and the division yields a ← 3 ≤ [b = 2,not c = 1], which
can be directly normalized as a ← b,not c. Similarly, the second rule can be directly
normalized as b ← not d. The third rule has a dominating literal c = 2, which yields
a normal rule c ← c. Such a tautological rule can be removed immediately. Since the
remainder c ← 2 ≤ [a = 1] is inapplicable, only two normal rules a ← b,not c and
b← not d are left, and it is easy to see that {a, b} is their unique stable model. �

A mixed-radix baseB is a sequence b1, . . . , bm of positive integers. Special cases of
such include the binary and decimal bases, 〈2, 2, . . .〉 and 〈10, 10, . . .〉. In this paper, we
deal with finite-length mixed-radix bases only and refer to them simply as bases. The
radices b1, . . . , bm are indexed from the least significant, b1, to the most significant,
bm, and we denote the integer at a given radix position i by B(i) = bi. The length m is
accessed with |B|. We define the ith place value of B as Π(i) =

∏i−1
j=1B(j). By wiB ,

we refer to the ith digit of an integer w in B. A mixed-radix literal H in base B is a
sequence of sequences of literals H = H1, . . . ,H|B|, where each Hi = hi,1, . . . , hi,ni

captures the ith digit of the encoded value. Any such literal digit Hi represents a
unary digit vM (Hi) ∈ {0, . . . , ni} given by the satisfied literals hi,1, . . . , hi,j for
0 ≤ j ≤ ni in a model M . In turn, we write vM (H) for the value of H calculated

Merger6,5

Sorter6 Sorter5

Fig. 1. A recursively constructed merge-sorter on the left, a corresponding unrolled merge-sorter
on the top right, and an alternative merge-sorter on the bottom right. On the left and top right, in-
puts are split approximately in halves. On the bottom right, mergers are mainly laid-out for some
power of two many inputs. Other splitting approaches are possible and investigated in Section 4.

as
∑|B|
i=1 (vM (Hi)×Π(i)). Finally, we distinguish unique mixed-radix literals with

ni = B(i) − 1 for 1 ≤ i ≤ |B|, which represent each value uniquely, whereas non-
unique mixed-radix literals can generally express a value by several combinations of
digits. In the sequel, we make explicit when uniqueness is expected.

3 Merger and Sorter Programs

Sorting operations for, e.g., the normalization of cardinality rules are compactly im-
plementable with the well known merge-sorting scheme, illustrated in Figure 1, where
an input sequence of literals is recursively split in halves, sorted, and the intermediate
results merged. Due to the ordered inputs, merging can be implemented in n2 rules [7]
without introducing any auxiliary atoms. A more efficient alternative that has been suc-
cessfully applied in ASP [10] is Batcher’s odd-even merger [8], which requires of the
order of n × log2 n atoms and rules. Furthermore, the variety of options for primitives
has been leveraged in practice by parametrizing the decision of when to apply which
scheme [1]. For simplicity, we below abbreviate sequences of literals by capital letters.
For instance, letting L be b,not c, we write a ← 2 ≤ [L,not d] as a shorthand for
a ← 2 ≤ [b,not c,not d]. The basic building blocks used in this work are mergers,
and in the following we specify the behavior required by them. To this end, we rely on
visible strong equivalence [10, 27], denoted by P ≡vs P

′ for two programs P and P ′.

Definition 1. Given three sequences H1 = h1, . . . , hn, H2 = hn+1, . . . , hn+m, and
S = s1, . . . , sn+m of atoms, we call any NLP P a merger program, also referred to by
Merger(H1, H2, S), if P ∪ Q ≡vs {sk ← k ≤ [H1, H2]. | 1 ≤ k ≤ n +m} ∪ Q for
Q = {hi ← hi+1. | 1 ≤ i < n+m, i 6= n}.

The role ofQ in the above definition is to deny interpretations in whichH1 orH2 is un-
ordered and does not correspond to a unary digit, as presupposed for merging. In order
to drop this restriction, a merge-sorter can be conceived as a binary tree with mergers

as inner nodes and literals as leaves, as shown on the right in Figure 1. Starting from
trivial sequences at the lowest level, successive merging then yields a sorted output.

Definition 2. Given a sequence L = l1, . . . , ln of literals and a sequence S = s1, . . . ,
sn of atoms, we call any NLP P a sorter program, also referred to by Sorter(L, S), if
P ≡vs {sk ← k ≤ [L]. | 1 ≤ k ≤ n}.

Compared to a merger program, a sorter program does not build on preconditions and
derives a unary digit representation for an arbitrary sequence of input literals.

4 Normalizing Weight Rules

In this section, we extend the translation of [7] to normalize WCPs into NLPs. To this
end, we decompose normalization into parallel sorting tasks and a sequence of merging
tasks. For the former subtasks, we generalize sorting to weight sorting.

Example 3. Let us consider a WCP P composed of the single rule

a← 6 ≤ [b = 2, c = 4, d = 3, e = 3, f = 1, g = 4].

The NLP realization of Sorter17(〈b, b, c, c, c, c, d, d, d, e, e, e, f,
g, g, g, g〉, 〈s1, . . . , s17〉) displayed in Figure 2, augmented with
the rule a ← s6, gives a plausible yet unnecessarily large nor-
malization of P . This scheme, implemented via merge-sorting
without simplifications by calling lp2normal2 -ws -r (cf.
Section 5), results in 116 rules. Omitting the -r flag enables
simplifications and reduces the number of rules to 53. For com-
parison, the translation described in the sequel leads to 16 rules
only. While outcomes like this may seem to discourage unary
weight sorting, it still permits compact constructions for rules
with small weights and, in particular, cardinality rules. �

4
3
3
1
4

2

=

=

=
=
=

Sorter17

=
d
e
f
g

b
c

Fig. 2: Weight sorting.

Returning to the general translation, we now describe the first constituent, address-
ing the calculation of a digit-wise sum of satisfied input weights in a chosen mixed-radix
base B. Given a sequence L = l1, . . . , ln of literals and a sequence W = w1, . . . , wn
of weights, we below write L =W as a shorthand for l1 = w1, . . . , ln = wn. Similarly,
L = W i

B abbreviates l1 = (w1)
i
B , . . . , ln = (wn)

i
B for 1 ≤ i ≤ |B|, associating the

literals in L with the ith digits of their weights in B. Moreover, we refer to a program
for weight sorting, such as Sorter17 in Example 3, by WSorter.

Definition 3. Given a sequence L =W of weighted literals and a mixed-radix baseB,
a digit-wise sorter into the non-unique mixed-radix literal H is the program

WDigitwiseSorterB(L =W,H) =
⋃|B|
i=1WSorter(L =W i

B , Hi). (4)

Equation (4) reveals the substeps of decomposing an input expression L = W into
digit-wise bucket expressions L = W i

B , which are then subject to weight sorting. The
result is a potentially non-unique mixed-radix literal H encoding the weight sum. An
example of a digit-wise sorter is shown in Figure 3.

13
7
1
11
19
19
10
13
6
13
3
4

0× 12 3× 6 3× 3
5× 1

=
=
=
=
=
=
=
=
=
=
=
=

not
not
not
not
not

Sorter5 Sorter6 Sorter4 Sorter11

b
c
d
e
f
g
h
i
j
k
l
m

1001B
101B
1B

112B
1101B
1101B
111B
1001B
100B
1001B
10B
11B

Fig. 3. Structure of a WDigitwiseSorterB program for the weighted literals displayed on the left
in base B = 3, 2, 2, 10. Filled markers designate derivations stemming from the input literals c,
d, e, not j, not l, and notm, satisfied in some interpretation M . From right to left, the sorters
yield multiples of Π(1) = 1, Π(2) = 3, Π(3) = 6, and Π(4) = 12. The output mixed-radix
literal H represents vM (H) = 0× 12+ 3× 6+ 3× 3+ 5× 1 = 7+1+11+6+3+4 = 32.

The second part of the translation incorporates carries from less to more significant
digits in order to derive the weight sum uniquely and accurately. In the following, we
denote the sequence sd, s2d, . . . , sdbn/dc, involving every dth element of a literal digit
S = s1, . . . , sn, by S/d.

Definition 4. Given a mixed-radix literalH = H1, . . . ,H|B| in baseB, a carry merger
into the sequence S = S1, . . . , S|B| of literal digits, where S1 = H1, is the program

WCarryMergerB(H,S) =
⋃|B|
i=2Merger(Si−1/B(i− 1), Hi, Si). (5)

The intended purpose of the program in (5) is to produce the last digit S|B| of S, while
S1, . . . , S|B|−1 are intermediate results. The role of each merger is to combine carries
from Si−1 with the unary input digit Hi at position i. To account for the significance
gapB(i−1) between Si−1 andHi, the former is divided byB(i−1) in order to extract
the carry. An example carry merger is shown in Figure 4.

The digit-wise sorter and carry merger fit together to form a normal program to sub-
stitute for a weight rule. To this end, we follow the approach of [7] and first determine a
tare t by which both sides of the inequality in (3) are offset. The benefit is that only the
most significant digit in B of a weight sum is required for checking the lower bound k.
This goal is met by the selection t = (dk/Π(|B|)e ×Π(|B|))− k. Equipped with this
choice for the tare t, we define the following program for weight rule normalization.

Merger6,3

Merger4,3

Merger5,4

0× 12 3× 6 3× 3

1× 3

2× 6

5× 1

2× 12

4× 3

5× 6

2× 12

Fig. 4. Structure of a WCarryMergerB program for deriving a unique, most significant literal
digit S|B| from digit-wise sums Hi in Figure 3. Each merger for 1 < i ≤ |B| combines Hi with
carries, extracted from an intermediate literal digit Si−1 by means of the division Si−1/B(i−1).
For instance, in view of B(1) = 3, every third bit of S1 = H1 is used as carry for deriving S2.

Definition 5. Given a weight rule a ← k ≤ [L = W] and a mixed-radix base B, a
weight sorting network is the program

WSortingNetworkB,k(L =W,a) = WDigitwiseSorterB([L =W,> = t], H)

∪ WCarryMergerB(H,S)

∪ {a← S|B|,dk/Π(|B|)e. }.
(6)

In the above, the symbol > stands for an arbitrary fact, and H and S for auxiliary
(hidden) mixed-radix literals capturing the outputs of the utilized subprograms. In view
of the tare t, the last rule in (6) merely propagates the truth value of a single output
bit from the most significant literal digit S|B| to the original head atom a. Definition 5
readily leads to a weight rule normalization once a base B is picked, and we can then
substitute a weight rule (2) with WSortingNetworkB,k([l1 = w1, . . . , ln = wn], a).

The so far presented translation is an ASP variant of the Global Polynomial Watch-
dog [7] encoding, modified to use mixed-radix bases. In what follows, we describe two
novel additions to the translation. We give a heuristic for base selection, which is differ-
ent from the more or less exhaustive methods in [12, 16]. Also, we provide a structure
sharing approach to compress the digit-wise sorter component of the translation.

We perform mixed-radix base selection for a weight rule (2) by choosing radices
one by one from the least to the most significant position. The choices are guided by
heuristic estimates of the resulting translation size. In the following, we assume, for
simplicity, that max{w1, . . . , wn} ≤ k ≤

∑n
j=1 wj , as guaranteed for example by the

simplifications described in Section 2. Furthermore, the order of the size of sorters and

Algorithm 1 Plan Structure Sharing
1: function PLAN(L =W,B)

2: let C ← {[l(w1)
i
B

1 , . . . , l
(wn)iB
n] | 1 ≤ i ≤ |B|}

3: while ∃S ∈ C : ∃x, y ∈ S : x 6= y

4: let (x, y)← argmax
x,y∈

⋃
C

∑
S∈C

{
#S(x)×#S(y) if x 6= y

(#S(x)× (#S(x)− 1))/2 if x = y

5: let z ← [x, y]
6: for each S ∈ C
7: let j ← min{#S(x),#S(y)}

8: update S ←

{
(S \ [xj , yj]) ∪ [zj] if x 6= y

(S \ [x2bj/2c]) ∪ [zbj/2c] if x = y

9: return C

mergers used as primitives is denoted by z(n) = n×(log2 n)2. To select the ith radix bi,
we consider B = b1, . . . , bi−1,∞. Then, in terms of kiB , W i

B = (w1)
i
B , . . . , (wn)

i
B ,

and s =
∑n
j=1

(
(wj)

i
B mod b

)
, we pick

bi ← argmax
b is prime, b≤max

{2,(w1)
i
B ,...,(wn)

i
B}

(
z(s) + z

(
n/2 + min

{
ds/be ,

⌊
kiB/b

⌋}
+ 1
)

+ z (3/4× n)× log2(1/(2× n× b)×
∑n
j=1(wj)

i
B)

)
.

The idea of the three addends is to generously estimate the size of primitives directly
entailed by the choice of a prime b, the size of immediately following components,
and the size of the entire remaining structure. Radices are picked until

∏i
j=1 bj >

max{w1, . . . , wn}, after which the selection finishes with the base B = b1, . . . , bi−1,

d(
∑n
j=1 wj)/

∏i−1
j=1 bie+1. In Section 5, we compare the effect of heuristically chosen

mixed-radix bases with binary bases having bj = 2 for 1 ≤ j < i.
The digit-wise sorter in (4) consists of sorters that, when implemented via merge-

sorting, form a forest of mergers on a common set of leaves. The mergers, i.e., inner
nodes of the forest, produce sorted sequences based on bucket expressions. This paves
the way for structure sharing. Namely, many of these mergers may coincide in terms of
their output, and consequently parts of the combined subprograms that would otherwise
be replicated can be reused instead. Respective savings are for instance achievable by
structural hashing [16].

Our approach advances sharing, taking into account that there is a large degree
of freedom in how a single merge-sorter is constructed. In fact, we may choose to
split a sequence of input bits at various positions, not only in the middle, as shown
on the right in Figure 1. Choices regarding such partitions generally lead to differ-
ent amounts of reusable, coinciding structure. To this end, we propose Algorithm 1 to
greedily expand opportunities for structure sharing. Thereby, we denote a multiset S
on a set X = {x1, . . . , xn} of ground elements with respective multiplicities i1, . . . , in
by [xi11 , . . . , x

in
n]. The multiplicity ij of xj ∈ X is referred to by #S(xj), and xj is

said to have ij occurrenes in S. The superscript ij can be omitted from x
ij
j if ij = 1.

Furthermore, we write x ∈ S iff x ∈ X and #S(x) > 0. At the beginning of the

algorithm, the bucket expressions L = W i
B are gathered into a collection C of multi-

sets, where the literals L = l1, . . . , ln form the common ground elements and the digits
W i
B = (w1)

i
B , . . . , (wn)

i
B give the multiplicities for 1 ≤ i ≤ |B|. Then, iteratively,

pairs (x, y) of elements with heuristically maximal joint occurrences in C are selected
to form new multisets z replacing common occurrences of (x, y) in each S ∈ C. The
introduced multisets z are in the sequel handled like regular ground elements, and the
algorithm proceeds until every S ∈ C consists of a single multiset. The resulting collec-
tionC will generally comprise nested multisets, which we interpret as a directed acyclic
graph, intuitively consisting of a number of overlaid trees with the literals l1, . . . , ln as
leaves, multisets z as roots, and inner nodes giving rise to mergers.

Example 4. Considering the weighted literals a = 9, b = 3, c = 7, d = 2, e = 5, f = 4
and the base B = 2, 2, 9, Algorithm 1 yields the following merge-sorter structure:

C ← {[a, b, c, e], [b, c, d], [a2, c, e, f]},
C ← {[[a, e], b, c], [b, c, d], [a, [a, e], c, f]},
C ← {[[a, e], [b, c]], [[b, c], d], [a, [a, e], c, f]},

...
C ← {[[[a, e], [b, c]]], [[[b, c], d]], [[[a, [a, e]], [c, f]]]}. �

5 Experiments

The weight rule normalization techniques described in the previous section are imple-
mented in the translation tool LP2NORMAL2 (v. 1.10).1 In order to evaluate the effects
of normalization, we ran LP2NORMAL2 together with the back-end ASP solver CLASP
(v. 3.0.4) [21] on benchmarks stemming from five different domains: Bayesian network
structure learning [14, 25], chordal Markov network learning [13], the Fastfood logis-
tics problem [10], and the Incremental scheduling and Nomystery planning tasks from
the 4th ASP Competition [4]. The first two domains originally deal with optimization,
and we devised satisfiable as well as unsatisfiable decision versions by picking the ob-
jective value of an optimum or its decrement (below indicated by the suffixes “Find”
and “Prove”) as upper bound on solution cost. The other three domains comprise gen-
uine decision problems in which weight constraints restrict the cost of solutions. All
experiments were run sequentially on a Linux machine with Intel Xeon E5-4650 CPUs,
imposing a CPU time limit of 20 minutes and a memory limit of 3GB RAM per run.

Table 1 provides runtimes in seconds, numbers of constraints, and conflicts reported
by CLASP, summing over all instances of a benchmark class and in total, for different
weight rule implementations. In the native configuration, weight rules are not normal-
ized but handled internally by CLASP [20]. Different translations by LP2NORMAL2 in
the third to sixth column vary in the use of mixed-radix or binary bases as well as
the exploitation of structure sharing. Furthermore, results for the Sequential Weight
Counter (SWC) normalization scheme, used before in ASP [18] as well as SAT [24],

1 Available with benchmarks at http://research.ics.aalto.fi/software/asp.

Instances Mixed Binary
↓ Benchmark Native Shared Independent Shared Independent SWC

11 Bayes-Find 202 30 164 246 165 1,721
Constraints 34,165 347,450 417,768 325,033 353,381 4,948,058
Conflicts 12,277,288 181,957 822,390 1,056,764 868,056 616,930

11 Bayes-Prove 1,391 492 1,316 631 890 2,587
Constraints 34,165 344,637 414,967 322,212 350,596 4,947,717
Conflicts 52,773,713 1,393,935 3,293,955 1,933,103 3,165,312 1,459,105

11 Markov-Find 2,426 2,770 1,845 2,682 2,966 5,224
Constraints 1,580,164 2,176,067 2,296,063 2,309,147 2,436,769 36,699,300
Conflicts 1,771,663 1,276,599 1,092,467 1,130,776 1,178,797 318,771

11 Markov-Prove 2,251 3,294 3,428 3,255 3,229 5,402
Constraints 1,580,164 2,182,157 2,302,171 2,307,991 2,435,603 36,694,525
Conflicts 1,806,525 1,788,800 1,720,270 1,521,272 1,452,042 317,555

38 Fastfood 10,277 12,843 14,156 13,756 13,479 17,867
Constraints 928,390 2,880,725 3,640,856 2,826,606 3,667,538 11,860,656
Conflicts 122,423,130 47,566,085 42,794,938 44,148,615 49,035,512 8,940,612

12 Inc-Scheduling 257 1,340 1,330 1,481 1,581
Constraints 2,304,166 7,161,226 8,166,527 7,274,513 8,570,210
Conflicts 82,790 127,628 134,987 218,224 173,849

15 Nomystery 4,907 4,236 3,332 4,290 3,512 4,739
Constraints 845,321 1,678,580 2,330,329 1,725,458 2,459,603 5,115,156
Conflicts 10,765,572 3,216,072 2,161,566 3,207,353 2,092,378 2,047,501

109 Summary 21,715 25,009 25,576 26,345 25,827
Constraints 7,306,535 16,770,842 19,568,681 17,090,960 20,273,700
Conflicts 201,900,681 55,551,076 52,020,573 53,216,107 57,965,946

109 Summary 21,715 24,758 26,611 26,524 26,063
without 7,306,535 17,279,805 21,632,440 17,665,922 22,358,451
simplification 201,900,681 52,264,536 46,809,044 56,247,153 51,814,629

Table 1. Sums of runtimes, numbers of constraints, and conflicts encountered by CLASP.

are included for comparison. All normalization approaches make use of the weight rule
simplifications described in Section 2. The last three rows, however, give accumulated
results obtained without simplifications. The summaries exclude the SWC scheme,
which works well on “small” weight rules but leads to significant size increases on large
ones, as it exceeds the time and memory limits on Incremental scheduling instances.

Considering the benchmark classes in Table 1, normalization has a tremendous ef-
fect on the search performance of CLASP for the Bayesian network problems. Although
the number of constraints increases roughly by a factor of 10, CLASP encounters about
two orders of magnitude fewer conflicts on satisfiable as well as unsatisfiable instances
(indicated by “Find” or “Prove”). In particular, we observe advantages due to using
mixed-radix bases along with structure sharing. On the Markov network instances, the
size increase but also the reduction of conflicts by applying the normalization schemes
presented in Section 4 are modest. As a consequence, the runtimes stay roughly the

same as with native weight rule handling by CLASP. Interestingly, the SWC scheme is
able to significantly reduce the number of conflicts, yet the enormous size outweighs
these gains. The Fastfood instances exhibit similar effects, that is, all normalization ap-
proaches lead to a reduction of conflicts, but the increased representation size inhibits
runtime improvements. Unlike with the other problems, normalizations even deteriorate
search in Incremental scheduling, and the additional atoms and constraints they intro-
duce increase the number of conflicts. With the SWC scheme, the resulting problem
size is even prohibitive here. These observations emphasize that the effects of normal-
ization are problem-specific and that care is needed in deciding whether to normal-
ize or not. In fact, normalizations turn again out to be helpful on Nomystery planning
instances. Somewhat surprisingly, both with mixed-radix and binary bases, the omis-
sion of structure sharing leads to runtime improvements. Given the heuristic nature of
structure sharing, it can bring about side-effects, so that it makes sense to keep such
techniques optional.

In total, we conclude that the normalization approaches presented in Section 4 are
practicable and at eye level with the native handling by CLASP. Although the problem
size increases, the additional structure provided by the introduced atoms sometimes
boosts search in terms of fewer conflicts, and the basic format of clausal constraints
also makes them cheaper to propagate than weight rules handled natively. Advanced
techniques like using mixed-radix instead of binary bases as well as structure sharing
further improve the solving performance of CLASP on normalized inputs. Finally, taking
into account that ASP grounders like GRINGO [19] do not themselves “clean up” ground
rules before outputting them, the last three rows in Table 1 also indicate a benefit in
terms of numbers of constraints due to simplifying weight rules a priori.

6 Related Work

Extended rule types were introduced in the late 90’s [37], at the time when the paradigm
of ASP itself was shaping up [30, 33, 35]. The treatment of weight rules varies from
solver to solver. Native solvers like CLASP [20], DLV [17], IDP [41], SMODELS [38],
and WASP2 [3] (where respective support is envisaged as future work) have internal data
structures to handle weight rules. On the other hand, the CMODELS system [23] relies on
translation [18] (to nested rules [31]). However, the systematic study of normalization
approaches for extended rules was initiated with the LP2NORMAL system [26]. New
schemes for the normalization of cardinality rules were introduced in [10], and this
paper presents the respective generalizations to weight rules.

Weight rules are closely related to pseudo-Boolean constraints [36], and their nor-
malization parallels translations of pseudo-Boolean constraints into plain SAT. The lat-
ter include adder circuits [16, 40], binary decision diagrams [2, 6, 16, 24, 39], and sort-
ing networks [7, 16]. The normalization techniques presented in this paper can be un-
derstood as ASP adaptions and extensions of the Global Polynomial Watchdog [7] en-
coding of pseudo-Boolean constraints. Techniques for using mixed-radix bases [12, 16]
and structure sharing [2, 16] have also been proposed in the context of SAT translation
approaches. However, classical satisfiability equivalence between pseudo-Boolean con-
straints and their translations into SAT does not immediately carry forward to weight

rules, for which other notions, such as visible strong equivalence [27], are needed to
account for the stable model semantics. Boolean circuits based on monotone operators
yield normalization schemes that preserve stable models in the sense of visible strong
equivalence. In particular, this applies to the merger and sorter programs from [10].

7 Conclusions

We presented new ways to normalize weight rules, frequently arising in ASP appli-
cations. To this end, we exploit existing translations from pseudo-Boolean constraints
into SAT and adapt them for the purpose of transforming weight rules. At the technical
level, we use merger and sorter programs from [10] as basic primitives. The normaliza-
tion schemes based on them combine a number ideas, viz. mixed-radix bases, structure
sharing, and tares for simplified bound checking. Such a combination is novel both in
the context of ASP as well as pseudo-Boolean satisfiability.

Normalization is an important task in translation-based ASP and, in particular,
if a back-end solver does not support cardinality and weight constraints. Our pre-
liminary experiments suggest that normalization does not deteriorate solver perfor-
mance although the internal representations of logic programs are likely to grow. The
decision versions of hard optimization problems exhibit that normalization can even
boost the search for answer sets by offering suitable branch points for the underly-
ing branch&bound algorithm. It is also clear that normalization pays off when a rule
under consideration forms a corner case (cf. Section 2). For a broad-scale empirical as-
sessment, we have submitted a number of systems exploiting normalization techniques
developed in this paper to the 5th ASP Competition (ASPCOMP 2014).

As regards future work, there is a quest for selective normalization techniques that
select a scheme on the fly or decide not to normalize, given the characteristics of a
weight rule under consideration and suitable heuristics. The current implementation of
LP2NORMAL2 already contains such an automatic mode.

References

1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for
smaller and better encodings of cardinality constraints. In: CP 2013. Springer (2013) 80–96

2. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A
new look at BDDs for pseudo-Boolean constraints. Journal of Artificial Intelligence Re-
search 45 (2012) 443–480

3. Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0. In: NMR 2014. (2014)
4. Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G., Krennwallner,

T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C., Ricca, F., Schneider, P.,
Schwengerer, M., Spendier, L., Wallner, J., Xiao, G.: The fourth answer set programming
competition: Preliminary report. In: LPNMR 2013. Springer (2013) 42–53

5. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: A
theoretical and empirical study. Constraints 16(2) (2011) 195–221

6. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2(1-4) (2006) 191–200

7. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-Boolean constraints into
CNF. In: SAT 2009. Springer (2009) 181–194

8. Batcher, K.: Sorting networks and their applications. In: AFIPS 1968. ACM (1968) 307–314
9. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS (2009)

10. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sorting con-
structions. In: LPNMR 2013. Springer (2013) 187–199

11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12) (2011) 92–103

12. Codish, M., Fekete, Y., Fuhs, C., Schneider-Kamp, P.: Optimal base encodings for pseudo-
Boolean constraints. In: TACAS 2011. Springer (2011) 189–204

13. Corander, J., Janhunen, T., Rintanen, J., Nyman, H., Pensar, J.: Learning chordal Markov
networks by constraint satisfaction. In: NIPS 2013. Advances in Neural Information Pro-
cessing Systems 26 (2013) 1349–1357

14. Cussens, J.: Bayesian network learning with cutting planes. In: UAI 2011. AUAI (2011)
153–160

15. De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M.: Predicate logic as a modelling
language: The IDP system. CoRR abs/1401.6312 (2014)

16. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2(1-4) (2006) 1–26

17. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6)
(2008) 545–580

18. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2) (2005) 45–74

19. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Communications 24(2) (2011)
107–124

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight
constraint rules in conflict-driven ASP solvers. In: ICLP 2009. Springer (2009) 250–264

21. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187 (2012) 52–89

22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP
1988. MIT (1988) 1070–1080

23. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4) (2006) 345–377

24. Hölldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-Boolean constraints
into SAT. In: KI 2012. Springer (2012) 107–118

25. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure
using LP relaxations. In: AISTATS 2010. JMLR (2010) 358–365

26. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Gelfond Festschrift. Springer (2011) 111–130

27. Janhunen, T., Niemelä, I.: Applying visible strong equivalence in answer-set program trans-
formations. In: Lifschitz Festschrift. Springer (2012) 363–379

28. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to differ-
ence logic. In: LPNMR 2009. Springer (2009) 142–154

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

30. Lifschitz, V.: Answer set planning. In: ICLP 1999. MIT (1999) 23–37
31. Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals of Mathe-

matics and Artificial Intelligence 25(3-4) (1999) 369–389
32. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.

Artificial Intelligence 157(1-2) (2004) 115–137
33. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: A 25-Year Perspective. Springer (1999) 375–398
34. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.

In: INAP 2011. Springer (2013) 95–113
35. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273
36. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: Handbook of

Satisfiability. IOS (2009) 695–733
37. Simons, P.: Extending the stable model semantics with more expressive rules. In: LPNMR

1999. Springer (1999) 305–316
38. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
39. Tamura, N., Banbara, M., Soh, T.: PBSugar: Compiling pseudo-Boolean constraints to SAT

with order encoding. In: PoS 2013. (2013)
40. Warners, J.: A linear-time transformation of linear inequalities into conjunctive normal form.

Information Processing Letters 68(2) (1998) 63–69
41. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for first-order logic and

inductive definitions. ACM Transactions on Computational Logic 14(3) (2013) 17:1–17:45

