
Profiling Answer Set Programming:
The Visualization Component of the noMoRe System

Andreas Bösel, Thomas Linke, and Torsten Schaub

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam

Abstract. Standard debugging techniques, like sequential tracing, fail in answer
set programming due to its purely declarative approach. We address this problem
by means of the graph-oriented computational model underlying the noMoRe
system. Although this is no generic solution, it offers a way to make the compu-
tation of answer sets transparent within the noMoRe framwork. Apart from the
visualization of answer sets in terms of their generating rules, the computation
can be animated in different ways.

1 Introduction

Effective programming needs supporting tools, like debuggers and profilers. In fact, for
sequential programming languages, debugging can be done by step-wisely following
the execution of a program. This also applies to Prolog and its procedural semantics
expressed by SLD-trees. In general, such an approach is inapplicable to answer set
programming due to its extremely declarative approach. Rather one has to commit to a
particular computational model for making the computation of answers sets transparent.

To this end, we advocate the graph-oriented computational model of the noMoRe
system [2, 1]. This model is based on a rule dependency graph (RDG), whose nodes
are given by the ground rules of the program and whose edges reflect positive and
negative dependencies among rules. There is a positive edge from rule r to r′, if
head (r) ∈ body+(r′); accordingly there is a negative edge from rule r to r′, if
head (r) ∈ body

−(r′). The computation of answer sets is then accomplished by grad-
ually coloring the nodes of the graph by two colors (eg., green and red), reflecting the
applicability status of the respective rule. Green nodes indicate applied rules, while
red ones stand for inapplicable ones, relative to a possibly partial, putative answer set.
Answer sets are represented in terms of their generating rules.

For profiling answer set programming, we put forward a graphical approach by dy-
namically visualizing the coloration of RDGs. For this purpose, we extended noMoRe
by a visualization module. This module has an interface (API) to the graph visualiza-
tion system daVinci [3]. This part of noMoRe’s architecture is given in Figure 1. So
noMoRe is no black box anymore but rather a vitreous one. Furthermore, the animated
coloring sequences may be used for debugging ground logic programs under answer set
semantics, because the user gets access to the full construction process of the answer
sets. In particular, we are able to detect rules generating specific answer sets. For anima-
tion, one may chose among different levels of granularity. That is, the animation may be
stopped and interactively resumed after coloring a single node, employing a particular
operation, like a choice operation, for coloring or only when a coloring expressing an



RDG

Coloring

Visualizer daVinci

Fig. 1. Overview of the visualization of noMoRe.

answer set is obtained. (Stopping at particular rules is currently under implementation.)
Other parameters influencing the visualization, like animation speed or node layout, are
explained in Section 2 and summarized in Table 1.

For illustration, let us consider a program consisting of the following rules:

r1 : b ← p

r2 : f ← b, not f ′

r3 : f ′ ← p, not f

r4 : p ←
r5 : w ← b

(1)

For later reference, assume this program is contained in a file named penguin.lp.
The full sequence of coloring steps, leading to the two answer sets {p, b, w, f} and
{p, b, w, f ′} is given in Figure 2. This is the most fine-grained setting displaying each
subsequent coloration step. Nodes of supposedly applied rules are colored in green;
those standing for blocked ones in red. Whenever an answer set is obtained, as in the
6th and 10th instance, it is also printed by noMoRe. Nodes colored by choice operations
are indicated by a double circle. The only such node is colored green in the 5th instance
and red in the 9th one. Each choice leads to a different answer set. All other colorations
are obtained through forward propagation. The animation capacities of daVinci also
allow for visualizing and animating much larger graphs. Even graphs not fitting on a
computer screen (in a certain resolution) can be animated, since daVinci automat-
ically centers the considered node by horizontal and vertical scrolling. Although the
detailed information obtained for very large examples is questionable, one can figure
out which parts of a program are problematic due to extensive backtracking.

2 Using Visualization in noMoRe

The flags show and animate influence the visualization component of the noMoRe
system [1]. By setting flag show the visualization is activated, which enables noMoRe
to use daVinci as output tool for RDGs and their colorings. After calling the com-
mand nomore/2 (or nomore/4) the daVinci API is used to draw the actual RDG.
By setting the flag animate the daVinci API is used to animate the noMoRe col-
oring procedure during run time. Let’s demonstrate the visualization component by
computing the answer sets of program (1):



da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1
1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

da
Vi

nc
i

V
2.

1

1

2

3

4

5

Fig. 2. The visualization of the complete coloring sequence for program (1).

1. Start ECLiPSe, load noMoRe and ensure that set flag show is set by
set flag(show). This activates the visualization tool. Furthermore, ensure that
the flag animate is set by set flag(animate), since we are interested in
an animated coloring sequence. Observe that due to flag dependency handling it is
sufficient to set flag animate; then flag show is set automatically.

2. Continue by typingnomore(’penguin.lp’,0). After noMoRe has computed
the RDG of Program (1) it is translated in the daVinci term representation. Then
daVinci is started as a child process and the translated RDG is send to daVinci.
See also Figure 2.

3. Now daVinci takes control and awaits an input by the user in order to process
a number of coloring steps (a coloring step is the coloring of exactly one node.).
The number of coloring steps which are performed without interruption depends
on the setting of the Edit sub menu Stop At of daVinci. By default it is set
to Every Node, which causes the noMoRe coloring procedure to stop after each
single coloring step. However, via daVinci’s Edit menu we are able to change
some daVinci specific settings, such as node presentation, dependency graph
representation, stopping criterion for animated colorings and animation speed. For
a complete description of the possible daVinci settings see Table 1. Finally, to
continue the computation type Alt-G or click the Go-icon on the upper left side
of the daVinci window.



4. Step by step every coloring of the noMoRe algorithm is visualized in daVinci
(Figure 2). Observe that nodes which are used as choices during computation are
marked by a double circle.

5. At last, a coloring corresponding to answer set {b, p, w, f ′} is obtained. The
noMoRe algorithm tries to compute alternative colorings via backtracking. This
is modeled by uncoloring the corresponding nodes. See Figure 2 for the complete
coloring sequence for program (1).

Apart from the flags show and animate (see [1] for details on noMoRe flags) there
are several settings affecting the visualization style. Those settings are accessible via
the Edit menu of daVinci. See Table 1 for a complete listing of all possibilities to
influence the presentation of RDGs and their animated colorings. By right clicking on
a single node, it is also possible to change its representation.

Edit menu items shortcut function

Toggle Node Labels Alt-T toggles between internal noMoRe identifiers and the actual
rules as node labels (same as flag names)

Go Alt-G start animation until stopping criterion is reached
Abort Alt-A abort answer set computation and exit daVinci
Stop At no sub menu for choosing one of the following as stopping cri-

terion for the animation: Choices, Each Node, Full
Coloring, No Stop

Animation Speed no sub menu for choosing the speed of animation, possible choices
are: Slow, Normal, Fast

Table 1. Possibilities to influence the representation of RDGs and their animated colorings via
the Edit sub menu of daVinci.

noMoRe also represents different dependency graphs, so–called body-head (BH-)
and rule-head (RH-) graphs. They can be used for visualization. Each body and head
(rule and head) is represented through a single node in BH-graphs (RH-graphs). Finally
observe that for every partial model the generating rules can be easily computed. Hence
any ASP solver may use (partial) colored RDGs together with some graph drawing tool
for visualizing its intermediate partial models as described in this paper.

References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: Non-monotonic reasoning with logic pro-
grams. In G. Ianni and S. Flesca, editors, Eighth European Workshop on Logics in Artificial
Intelligence (JELIA’02), volume 2424 of Lecture Notes in Artificial Intelligence. Springer
Verlag, 2002.

2. T. Linke. Graph theoretical characterization and computation of answer sets. In B. Nebel,
editor, Proceedings of the International Joint Conference on Artificial Intelligence, pages 641–
645. Morgan Kaufmann Publishers, 2001.

3. M.Werner. davinci v2.1.x online documentation, 1998.


