Coala: A Compiler from Action Languages to ASP

Martin Gebser, Torsten Grote, and Torsten Schaub*

Universitit Potsdam, Institut fiir Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. Action languages allow for compactly describing dynamic domains.
They are usually implemented by compilation, e.g., to Answer Set Programming.
To this end, we developed a tool, called Coala, offering manifold compilation
techniques for several action languages. We provide an overview of the salient
and distinctive features of Coala as well as an experimental comparison of them.

1 Introduction

Action languages provide a compact formal model for describing dynamic domains [1],
being central to many applications like model checking, planning, robotics, etc. More-
over, action languages can be implemented rather efficiently through compilation to
Answer Set Programming (ASP; [2]) or Satisfiability Checking (SAT; [3]). Our system
Coala takes advantage of this by offering a variety of different compilation techniques
for several action languages.

Coala originates from al2asp, constituting the heart of the BioC system [4] used
for reasoning about biological models in action language Cra;p [5]: al2asp compiles
Crarp to C, which is in turn mapped to ASP via the transformation in [6]. Coala ex-
tends the capacities of al2asp in several ways. First, it adds certain features of C+ [7]
and provides full support of 5 [8] (and Az). Second, it offers different compilation
schemes. Apart from a priori bounded encodings using standard ASP systems, Coala
furnishes incremental encodings that can be used in conjunction with the incremental
ASP system iClingo [9]. Moreover, Coala distinguishes among forward and backward
(incremental) encodings, depending on whether trajectories are successively extended
from initial states or whether they are built backwards starting from final states. Third,
Coala supports all action query languages, P, Q, and R, in [1]. Fourth, Coala allows for
posing LTL-like queries, following [10]. Finally, Coala offers the usage of first-order
variables that are treated by the underlying ASP grounder. Optionally, type checking
for variables can be enabled. Coala is implemented in C++ and can also be used as a
library; it is freely available at [11].

Our general approach is similar to the one taken by DLV™ [12] for processing ac-
tion language /C. Similarly, C'Calc [7] addresses C+ in its generality and maps it to SAT.
We provide in [4] an empirical evaluation comparing al2asp (aka Coala’s bounded en-
coding of C following [6]) in combination with Gringo and clasp to CCalc and DLV*
on benchmarks expressed in C. Among the three systems, this rudimentary version of
Coala had an edge in terms of robustness, having by far the fewest number of time-
outs. Hence, in what follows we concentrate on the novel features of Coala going well
beyond existing systems.

* Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

2 Coala at Work

Coala starts with parsing an action description by means of an easily adaptable
bison++-based parser before compiling it into a non-ground logic program. This pro-
gram is grounded by Gringo and optionally extended by further ground facts before
trajectories are generated via clasp. In what follows, we sketch the major compilation
features of Coala illustrated by constructs of C [1].

To begin with, Coala generates via option —e either instance-based or direct encod-
ings. For instance, the dynamic causal law

<caused> -alive <if> hit <after> shoot.
can be mapped onto either the fact caused (neg(alive), hit, true, shoot) . or
the rule ~-fluent_alive (T) :- not —fluent_hit (T), action_shoot (T-1).
While a direct encoding is executable without further additions (cf. [6]), an instance-
based encoding relies on meta-interpretation through an accompanying encoding. Al-
though we do not detail it here, such meta-interpretation is very flexible and thus an
easy way to implement different strategies.

Another major feature of Coala is the usage of incremental ASP solving techniques
(via option —1), as provided by iClingo." In this case, an action description is mapped
onto a parametrized threefold logic program B U P[k] U Q[k], among which P[k]
and Q[k] contain a parameter k ranging over positive integers. Program B describes
static knowledge, independent of k. The role of P[k] is to capture knowledge accumu-
lating with increasing k, whereas Q[k] is specific for each value of k. The goal is then
to compute answer sets of program B U, ;< P[k/j] U Q[k/i] for some (minimum)
integer ¢ > 1. In an incremental setting, the above dynamic law is mapped onto

#cumulative t.

—fluent_alive(t) :- not —-fluent_hit(t),action_shoot (t-1).
indicating that the rule belongs to P[t]; its ground instances are successively produced
and accumulated in the solver. Similarly, declarations #base. and #volatile t.
indicate whether a rule belongs to B or QIk], respectively. Unlike this, a non-
incremental setting is guarded by a fixed number of time steps t, provoking repetitive
grounding of rules during iterative deepening search.

A third major feature is Coala’s distinction between forward and backward (in-
cremental) encodings (via option —r), depending on whether trajectories are succes-
sively extended from initial states or whether they are built backwards starting from
final states. This is implemented by means of meta-interpretation. To get an impression,
consider the following three “meta-rules”:

1 { holds(F,-t), holds(neg(F),-t) } 1 :— fluent(F).

fire(F,G,P,A,-t) :- caused(F,G,P,A), occurs(A,-t),

holds (P, -t), holds(G,-t+1).

:— fire(F,G,P,A,-t), not holds (F,-t+1).

The first rule aims at guessing a predecessor state (time stamp —t). The second one
determines firing dynamic laws. Third, the integrity constraint ensures that the effects
of firing causal laws are consistent with the successor state (time stamp —t+1).

! Note that iClingo relies on Gringo and clasp.

default -n -i -e -e -i -e -1 -r
Benchmark #|| time| stime|| time| stime|| time| stime|| time|stime|| time| stime|| time| stime
blocksworld/b08 [16|| 44.19| 20.90|| 44.31| 21.84 4.30| 4.23|(323.43[69.98|| 76.83| 74.83(/112.95/109.78
blocksworld/b09|16|| 53.56| 9.27|| 55.78| 9.58|| 11.68| 11.58 TO| TO||283.90(280.33||338.64|332.95
blocksworld/b10|17|| 88.69| 20.53|| 77.38| 11.74|| 14.69| 14.56 TO| TO||366.34|361.42 MO| MO
blocksworld/b11{18](403.31(276.31||403.78|247.84|117.53|117.37 TO| TO TO TO MO| MO
blocksworld/b12{19((228.47(160.37{(290.91|163.54|| 69.99| 69.81 MO| MO MO| MO MO| MO
ferryman/f03 15]| 29.38| 6.80| 29.79| 7.26 2.67| 2.63|| 49.84| 7.43 7.40| 6.99(13.09| 12.31
ferryman/f04 17]| 65.40| 14.48|| 64.00| 13.26 3.48| 3.44|| 96.89|14.20|| 11.84] 11.17|| 26.96| 25.71
ferryman/f05 19]132.22| 26.67((100.30| 26.83 4.36| 4.32|(170.14{23.46|| 19.35| 18.31|| 46.27| 44.35
ferryman/f06 17(1122.92| 28.63([120.93| 26.29 6.03| 5.97((202.99(28.12|| 26.57| 25.26|| 67.57| 65.13
ferryman/f07 191|243.05| 54.12(|257.18| 50.53|| 18.04| 17.96||356.48|48.50|| 40.12| 38.19(138.62|135.09

hano/h03 31|[85.89| 9.77|| 8848| 10.68|| 1.83| 1.80|| 50.80| 5.01|| 4.66| 4.50||281.18|280.86
hanoi/h04 63| To| TO|| TO| TO| 69.51]| 69.41|| TO| TO|| 54.74| 54.19|| TO| TO
yale/y04 T8|[6.22| 0.16|| 6.14| 0.20|| 10.18| 10.14]| 11.35] 0.07|| 5.13| 5.10]| 16.11| 16.08
yale/y05 20| 40.91| 0.14|| 35.52| 0.79|| 16.83| 16.80|| 64.19| 0.86|| 40.59| 40.56|| 69.95 69.91
yale/y06 22|[132.51| 5.88|165.62| 4.50|| 79.05| 79.02|| 87.20| 0.34|[177.14[177.10|| TO| TO
yale/y07 24||547.40] 045|| TO| TO||205.35/205.31||499.4022.02|| TO| TO|| TO| TO
[Average Outs) || 17651 (D] 18376 @] __39-72(0)]] 30704 5)]] _ 182.16)] _ 29446 (6)]

Table 1. Experiments comparing different target compilations of Coala.

Moreover, Coala supports LTL-like queries, using next, finally, globally, until, weak
until, and release, viz. X, ¥, G, U, W, R, and aims at generating counterexam-
ples. For instance, the simple LTL query LTL: X alive. asks whether the fluent
alive is true in the next step in all trajectories. Following [10], this is translated to

1tl_counter_example :— 1tl_f 2(0).

1tl_£f 2(0) :— —-fluent_alive(l).
producing counterexamples in which the complement of alive holds. More complex
LTL formulas require additional auxiliary rules and are omitted here for brevity.

Finally, a typical call of Coala looks as follows:

coala -1 b -i bw.alb | cat - bw.stat | iclingo 0
The options ‘-1 b -1’ tell Coala that bw.alb is written in 3 and that it should be
compiled into an incremental ASP program. The latter is then augmented with static
domain knowledge in bw. stat before iClingo is invoked to compute all answer sets
for a minimum number of time steps. The interested reader is directed to [11] for more
details on the language and usage of Coala.

3 Experiments

We conducted experiments in order to evaluate the different compilation techniques
furnished by Coala. To this end, we confined ourselves to action language C and
concentrate on combinations of several Coala options: ‘—n’ enables dedicated han-
dling of classical negation; ‘~i’ produces an incremental encoding for iClingo; ‘—e’
uses meta-interpretation (rather than direct encoding); ‘~r’ uses backward encoding.
The default setting includes none of these features. All experiments were run with
iClingo (2.0.5), using clasp (1.3.2) in its default settings on an Intel Core 2 Duo CPU
at 2.66 GHz running Ubuntu GNU/Linux 9.10 with RAM usage limited to 1.5 GB. All
programs were run sequentially as single threads on one CPU core.

Our results are summarized in Table 1. The first two columns give the respective
benchmark along with its horizon (#). Note that the next three columns use direct en-

codings, while the last three rely upon meta-interpretation. Column time is average CPU
time from three runs per benchmark; stime is average time needed by the solver (in the
final successful run during iterative deepening search; and in total for —i). An entry TO
indicates timeout after 600 seconds, while MO means that the processes were aborted at
1.5 GB RAM consumption. The last row shows the average CPU time (and number of
timeouts) over all benchmarks. In case of timeout, a time of 600 seconds was assumed.

Looking at the global outcome in the last row, we observe that incremental di-
rect encodings (—1) perform best over all benchmarks (except for 704 and y04). Al-
though worse, the incremental non-direct counterpart (-e —1) performs best on av-
erage among the meta-interpreted encodings. Changing to a more complex backward
encoding (—e —1i -r) does not lead to an improvement and yields two more memory
exhaustions than the other meta-interpreted encodings. Pure meta-interpretation (-e),
suffering from a grounding overhead, performs worst, despite of solving one more in-
stance than the backward encoding. No clear difference was observable on the usage of
built-in classical negation (—n), producing more integrity constraints than a dedicated
treatment (default).

All in all, we observe that an incremental approach to action languages is largely
beneficial. The usage of backward encodings may make a difference on particular prob-
lem classes. Although meta-interpretation appears to lead to less efficient encodings, it
offers an easy way to experiment with different strategies.

Acknowledgments. This work was partially funded by BMBF project GoOFORSYS
and DFG grant SCHA 550/8-1.

References

1. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Atrtificial Intelli-
gence 3(6) (1998) 193-210
2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University (2003)
. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS (2009)
4. Dworschak, S., Grote, T., Konig, A., Schaub, T., Veber, P.: The system BioC for reasoning
about biological models in C. In: ICTAT’08. IEEE (2008) 11-18
5. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks
by action languages via ASP. Constraints 13(1-2) (2008) 21-65
6. Lifschitz, V., Turner, H.: Representing transition systems by logic programs. In: LPNMR’99.
Springer (1999) 92-106
7. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2) (2004) 49-104
8. Son, T., Baral, C., Nam, T., Mcllraith, S.: Domain-dependent knowledge in answer set
planning. ACM Transactions on Computational Logic 7(4) (2006) 613-657
9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: ICLP’08. Springer (2008) 190-205
10. Heljanko, K., Niemeld, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4-5) (2003) 519-550
11. http://potassco.sourceforge.net
12. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to
knowledge-state planning. Artificial Intelligence 144(1-2) (2003) 157-211

w

