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Abstract. Modern satisfiability (SAT) solvers provide an efficient implementa-
tion of classical propositional logic. Their input language, however, is based on
the conjunctive normal form (CNF) of propositional formulas. To use SAT solver
technology in practice, a user must create the input clauses in one way or another.
A typical approach is to write a procedural program that generates formulas on
the basis of some input data relevant for the problem domain and translates them
into CNF. In this paper, we propose a declarative approach where the intended
clauses are specified in terms of rules in analogy to answer set programming
(ASP). This allows the user to write first-order specifications for intended clauses
in a schematic way by exploiting term variables. We develop a formal framework
required to define the semantics of such specifications. Moreover, we provide
an implementation harnessing state-of-the-art ASP grounders to accomplish the
grounding step of clauses. As a result, we obtain a general-purpose clause-level
grounding approach for SAT solvers. Finally, we illustrate the capabilities of our
specification methodology in terms of combinatorial and application problems.

1 Introduction

Satisfiability (SAT) solvers [1] provide an efficient way to implement classical propo-
sitional logic. The conjunctive normal form (CNF) of formulas, which is based on dis-
junctions of literals also known as clauses, forms the standard input language supported
by solvers. However, writing clauses directly is not very practical from the modeling
perspective. This suggests the use of a more expressive language supporting the entire
range of logical connectives and allowing for (universally quantified) first-order vari-
ables to write formulas in a schematic way. E.g., the following formula aims to deny
occurrences of triangles in a directed graph represented by the edge/2 predicate:

edge(X,Y ) ∧ edge(Y, Z) ∧ (X 6= Y ) ∧ (X 6= Z) ∧ (Y 6= Z)→ ¬edge(Z,X). (1)

On the one hand, variables seem crucial to achieve the flexibility required in modeling
but, on the other hand, they lead to the problem of instantiating or grounding the vari-
ables when actual inference is performed. In the presence of facts edge(a, b), edge(b, c),
and edge(c, a), the essential step is to substitute the universally quantified variables X ,
Y , and Z in (1) by the constants a, b, and c. While 33 = 27 different substitutions
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are applicable, only one of them is useful for showing unsatisfiability. The theory of
grounding goes back to Herbrand’s seminal work, and it has been addressed in many
contexts, such as first-order model generation and theorem proving (see, e.g., [2, 3]) as
well as AI planning (cf. [4]). The substitution of variables by constants or more gen-
erally ground terms is subject to combinatorial explosion when the underlying domain
grows. To cut down the number of resulting ground instances, a variety of techniques
have been proposed, including clause splitting, structural constraints, and contraction
techniques to discard or simplify instances [5]. Also, by carefully analyzing variable
ranges, it is possible to reduce the number of clauses or formulas generated [3, 6].

The approach proposed in this paper also relies on domain information, but we sug-
gest to use declarative specifications based on closed world assumption (CWA) for con-
trolling domains. In case of (1), this means that there is no edge between any given pair
of nodes, thus falsifying the implication antecedent, unless specified otherwise. We pro-
vide an implementation harnessing state-of-the-art answer set programming (ASP) [7]
grounders for the computation of domains and variable instantiation, since they offer
built-in support for CWA and a rich rule-based language to express domain knowledge.

What remains is choosing the kind of formulas to ground. While free choice among
logical connectives seems desirable from the modeling perspective, translation into
CNF is necessary to use SAT solvers. The clausification of propositional (ground) for-
mulas often requires the introduction of new variables, e.g., using the Tseitin trans-
formation, to avoid exponential blow-ups, and in some cases the auxiliary variables
significantly affect solver performance [8–10]. The idea of this paper is to write declar-
ative specifications for clauses, thus enabling a user to define the input of a SAT solver
directly. Following the traditional what you see is what you get principle, clauses in the
grounder output can be traced back to the schematic specification. The trade-off is that
the user has to decide about potential new variables in a formalization, but specifying
such variables at the schematic level also provides more direct access than an implicit
clause compilation. In fact, given the expressiveness of modeling languages supported
by off-the-shelf ASP grounders [11, 12], we expect that declarative specifications are
easier to develop and maintain than their procedural counterparts. For one, it is possible
to separate domain descriptions from logical axioms, which enables uniform encodings
that are independent of particular instance data [13]. For another, the level of abstraction
provided by first-order rules makes specifications highly elaboration tolerant [14].

The rest of this paper is organized as follows. The syntax and semantics of the clause
specification language is defined in Section 2. In Section 3, we illustrate the proposed
language on practical modeling scenarios. Section 4 presents a streamlined implemen-
tation, interfacing the state-of-the-art ASP grounder GRINGO [15] with SAT or MaxSAT
solvers, and an experimental evaluation where haplotype inference is remodeled using
clause programs. Finally, we discuss related work and conclude the paper in Section 5.

2 Clause Programs

We begin by presenting the syntax of clause programs and then concentrate on defining
their semantics. To specify clause programs in the first-order case with variables, we
define terms as expressions built from function symbols f , also called constants in case



of arity zero, or variable symbols X . The signature for predicate symbols, denoted
by P, splits into Pd and Pv, i.e., domain predicates being minimized and those allowed
to vary as typical in classical logic. A first-order atom p(t1, . . . , tn), or an atom for
short, consists of an n-ary predicate symbol p ∈ P and terms t1, . . . , tn listed as its
arguments. A literal is either an atom a or its negation ¬a.

A clause program P can have rules of two kinds: domain rules of the form (2), also
known as normal rules in ASP, as well as clause rules of the form (3):

a← c1, . . . , cm, ∼d1, . . . , ∼dn. (2)
a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl ← c1, . . . , cm, ∼d1, . . . , ∼dn. (3)

In the rules above, a, c1, . . . , cm, and d1, . . . , dn are domain atoms expressed inPd, and
the symbol∼ stands for default negation. Domain rules (2) are used to specify appropri-
ate domain relations for variable instantiation. The atoms a1, . . . , ak and b1, . . . , bl in a
clause rule (3) are expressed in Pv. The head a1∨· · ·∨ak∨¬b1∨· · ·∨¬bl is a schema
for propositional clauses where ∨ and ¬ stand for classical disjunction and negation,
respectively. The body c1, . . . , cm, ∼d1, . . . , ∼dn essentially provides the conditions
for creating the head clause, including the determination of variable assignments.

The semantics of clause programs is defined using Herbrand models as follows.
Given a clause program P , we define its Herbrand universe Hu(P ) and Herbrand base
Hb(P ) in the standard way. The base Hb(P ) is partitioned into Hbd(P ) and Hbv(P )
based on the signatures Pd and Pv, respectively. A (Herbrand) interpretation I of P is
written as a subset of Hb(P ). Moreover, we distinguish its projections Id = I∩Hbd(P )
and Iv = I∩Hbv(P ). Assuming that P is variable-free or ground, the body of (2) or (3)
is satisfied in I iff {c1, . . . , cm} ⊆ Id and {d1, . . . , dn} ∩ Id = ∅. The head of (2) is
satisfied in I iff a ∈ Id, while the head of (3) is satisfied in I iff {b1, . . . , bl} ⊆ Iv
implies {a1, . . . , ak} ∩ Iv 6= ∅. An interpretation I ⊆ Hb(P ) is a model of P iff, for
every rule (2) or (3) of P , the satisfaction of the body in I implies the satisfaction of
the head in I . To enforce the minimal interpretation of domain predicates, we define the
domain reduct P I of P with respect to I to contain a rule a ← c1, . . . , cm for every
domain rule (2) of P such that {d1, . . . , dn}∩Id = ∅. The program P I is a Horn theory
and guaranteed to have a unique⊆-minimal model over Hbd(P ), the least model of P I .

Definition 1. Let P be a clause program and Gnd(P ) the respective Herbrand instan-
tiation of P over Hu(P ). An interpretation I ⊆ Hb(P ) is a domain stable model of P
iff I is a model of Gnd(P ) such that Id is the least model of Gnd(P )

I .

While the abstract criteria for domain stable models are formulated in terms of
the full Herbrand instantiation Gnd(P ), the actual goal is to generate small subsets of
Gnd(P ) without affecting domain stable models. The intended way of applying Defini-
tion 1 in practice is to let an ASP grounder calculate Id, which also determines the rele-
vant clauses. After that, a SAT solver can be invoked to compute Iv such that I = Id∪Iv
is a model of Gnd(P ). In order to use ASP grounders, we have to restrict variable oc-
currences in rules. A rule of the form (2) or (3) is called safe if all variables occurring in
the head also appear in the positive conditions c1, . . . , cm of the body, which thereafter
constrain their domains. Moreover, it is reasonable to assume that the domain part of a



clause program P has a total well-founded model (cf. [16]) that can be calculated by
an ASP grounder. We therefore require domain rules (2) of P to be stratified (cf. [17]),
which confines recursive dependencies of a predicate in Pd on itself to be purely based
on c1, . . . , cm in the positive body parts of rules. All clause programs considered in
the following are safe and their domain rules stratified. This means that rule bodies are
fully evaluated during grounding, and the heads of clause rules (3) provide the input of
a SAT solver, searching for (classical) models of the propositional clauses.

Example 1. Let us consider the following clause program for graph coloring:

node(X)← edge(X,Y ). (4)
node(Y )← edge(X,Y ). (5)
b(X) ∨ g(X) ∨ r(X)← node(X). (6)
¬b(X) ∨ ¬b(Y )← edge(X,Y ). (7)
¬g(X) ∨ ¬g(Y )← edge(X,Y ). (8)
¬r(X) ∨ ¬r(Y )← edge(X,Y ). (9)

The idea is that these rules are conjoined with facts representing an input graph. To this
end, let us use the three facts from the context of (1). Together with the domain rules (4)
and (5), such facts give rise to the following least model Id:

edge(a, b), edge(b, c), edge(c, a), node(a), node(b), and node(c).
The atoms in Id determine the domains of variables in (6)–(9), resulting in the clauses:

b(a) ∨ g(a) ∨ r(a), b(b) ∨ g(b) ∨ r(b), b(c) ∨ g(c) ∨ r(c),
¬b(a) ∨ ¬b(b), ¬b(b) ∨ ¬b(c), ¬b(c) ∨ ¬b(a),
¬g(a) ∨ ¬g(b), ¬g(b) ∨ ¬g(c), ¬g(c) ∨ ¬g(a),
¬r(a) ∨ ¬r(b), ¬r(b) ∨ ¬r(c), ¬r(c) ∨ ¬r(a).

These clauses can be satisfied, e.g., by letting Iv = {b(a), g(b), r(c)}, which gives rise
to a domain stable model I = Id ∪ Iv. �

3 Modeling Methodology and Applications

We have above introduced the paradigm of clause programs in a simple setting where
the domain part is written in normal ASP-style rules. Using syntactic sugar available
in GRINGO, however, the compactness and flexibility of clause programs can be further
enhanced. We below illustrate the practice of clause programs on several use cases.

Graph Coloring. To begin with, we generalize the program in Example 1 to n colors:

color(1 . . . n). (10)
node(X;Y )← edge(X,Y ). (11)∨

hc(X,C) : color(C)← node(X). (12)

¬hc(X,C) ∨ ¬hc(Y,C)← edge(X,Y ), color(C). (13)



By setting the constant n to some integer, say 3, it defines a range of colors by (10):
color(1), color(2), and color(3). The separator “;” in the second domain rule (11) is
used to specify alternative terms for which the head atom is instantiated, so that (11)
amalgamates (4) and (5). Unlike (6), the clause rule (12), applying to each term X from
node(X), is parameterized by a conditional literal hc(X,C), where instances over all
terms C from color(C) are included in a disjunction. This enables the specification of
clauses whose length depends dynamically on a problem instance, such as the number
of colors in this case. Finally, the clause rule (13) generalizes (7)–(9).

Example 2. Based on the least model Id from Example 1, augmented with color(1),
color(2), and color(3), the clauses obtained from (12) and (13) are as follows:

hc(a, 1) ∨ hc(a, 2) ∨ hc(a, 3), hc(b, 1) ∨ hc(b, 2) ∨ hc(b, 3), hc(c, 1) ∨ hc(c, 2) ∨ hc(c, 3),
¬hc(a, 1) ∨ ¬hc(b, 1), ¬hc(a, 2) ∨ ¬hc(b, 2), ¬hc(a, 3) ∨ ¬hc(b, 3),
¬hc(b, 1) ∨ ¬hc(c, 1), ¬hc(b, 2) ∨ ¬hc(c, 2), ¬hc(b, 3) ∨ ¬hc(c, 3),
¬hc(c, 1) ∨ ¬hc(a, 1), ¬hc(c, 2) ∨ ¬hc(a, 2), ¬hc(c, 3) ∨ ¬hc(a, 3).

The clauses resemble those in Example 1, yet using the generic predicate hc(X,C) for
node X having color C, rather than dedicated predicates b/1, g/1, and r/1 for blue,
green, and red, respectively. Accordingly, an assignment of distinct colors to the three
nodes at hand is expressed by a projection like Iv = {hc(a, 1), hc(b, 2), hc(c, 3)}. �

n-Queens. The next clause program, encoding the well-known n-queens problem, illus-
trates the use of built-in integer arithmetic supported by ASP grounders like GRINGO:

coord(1 . . . n). dir(0,−1). dir(−1, 0). dir(−1,−1). dir(−1, 1). (14)
target(X,Y,R,C)← coord(X;Y ;X+R;Y+C), dir(R,C). (15)

attack(X+R, Y+C,R,C) ∨ ¬queen(X,Y )← target(X,Y,R,C). (16)
attack(X+R, Y+C,R,C) ∨ ¬attack(X,Y,R,C) (17)

← target(X,Y,R,C), target(X−R, Y−C,R,C).

¬attack(X+R, Y+C,R,C) ∨ queen(X,Y ) ∨ (18)∨
attack(X,Y,R,C) : target(X−R, Y−C,R,C)← target(X,Y,R,C).

¬queen(X+R, Y+C) ∨ ¬attack(X+R, Y+C,R,C)← target(X,Y,R,C). (19)

queen(X, 1) ∨
∨

attack(X, 1, 0,−1) : target(X, 2, 0,−1)← coord(X). (20)

queen(1, Y ) ∨
∨

attack(1, Y,−1, 0) : target(2, Y,−1, 0)← coord(Y ). (21)

The facts in (14) provide row and column coordinates, ranging from 1 to some integer
value for n, as well as the differences between the coordinates of adjacent cells in
horizontal, vertical, and diagonal directions. Particular adjacent cells are indicated by
the domain rule (15), where an instance of target(X,Y,R,C) expresses that the cells
at coordinates (X,Y ) and (X+R, Y+C) are adjacent. Given this, the clause rules
(16)–(18) specify conditions enforcing that attack(X+R, Y+C,R,C) is true iff some
cell with coordinates (X−k∗R, Y− k∗C) for k ≥ 0 hosts a queen, represented by a
corresponding instance of queen(X,Y ). The clauses specified by (19) then forbid a



queen at (X+R, Y+C) if the cell is horizontally, vertically, or diagonally attacked.
Finally, the clause rules (20) and (21) express that any row or column must contain
some queen, which can be checked at the first row or column position, respectively.

Example 3. For n = 4, the least model Id includes the following atoms indicating
horizontal attacks along the first row, obtained by instantiating X , R, and C with 1, 0,
and −1 in (15): target(1, 2, 0,−1), target(1, 3, 0,−1), and target(1, 4, 0,−1). These
atoms induce nine instances of (16)–(18), whose conjunction is equivalent to formulas

attack(1, 1, 0,−1)↔ queen(1, 2) ∨ attack(1, 2, 0,−1),
attack(1, 2, 0,−1)↔ queen(1, 3) ∨ attack(1, 3, 0,−1),
attack(1, 3, 0,−1)↔ queen(1, 4).

Clauses from (19) exclude horizontal attacks: ¬queen(1, 1) ∨ ¬attack(1, 1, 0,−1),
¬queen(1, 2) ∨ ¬attack(1, 2, 0,−1), ¬queen(1, 3) ∨ ¬attack(1, 3, 0,−1). �

Propositional Logic. Next we illustrate how the satisfiability problem of full proposi-
tional logic can be captured in a declarative way. To this end, a meta-representation of
a propositional theory is needed, using function symbols (supported by ASP grounders
like GRINGO) to represent Boolean connectives. For brevity, we only consider disjunc-
tion and negation here, but note that our approach easily extends to other connectives
as well. We use constants for atoms, the functions or/2 and neg/1 for disjunction and
negation, and the predicate sentence/1 to declare sentences in a theory. Given this, we
axiomatize the satisfaction of the theory as follows:

subformula(F )← sentence(F ). (22)
subformula(F )← subformula(neg(F )). (23)
subformula(F ;G)← subformula(or(F,G)). (24)
sat(neg(F )) ∨ sat(F )← subformula(neg(F )). (25)
sat(or(F,G)) ∨ ¬sat(F )← subformula(or(F,G)). (26)
sat(or(F,G)) ∨ ¬sat(G)← subformula(or(F,G)). (27)
¬sat(neg(F )) ∨ ¬sat(F )← subformula(neg(F )). (28)
¬sat(or(F,G)) ∨ sat(F ) ∨ sat(G)← subformula(or(F,G)). (29)
sat(F )← sentence(F ). (30)

Here, the domain rules (22)–(24) derive the subformulas of the given theory, and the
clause rules (25)–(29) evaluate these subformulas according to the interpretation of
atoms and the semantics of propositional connectives. Finally, the clause rule (30) as-
serts that all sentences in the given theory must be satisfied. For instance, the sentence
¬p ∨ ¬q is represented by the following clauses:

sat(neg(p)) ∨ sat(p), ¬sat(neg(p)) ∨ ¬sat(p),
sat(neg(q)) ∨ sat(q), ¬sat(neg(q)) ∨ ¬sat(q),
sat(or(neg(p), neg(q))) ∨ ¬sat(neg(p)), sat(or(neg(p), neg(q))) ∨ ¬sat(neg(q)),
¬sat(or(neg(p), neg(q))) ∨ sat(neg(p)) ∨ sat(neg(q)), sat(or(neg(p), neg(q))).



In summary, the above use cases illustrate how clause programs can uniformly
model non-trivial combinatorial as well as application problems. The presented encod-
ings exploit built-in integer arithmetic, aggregation operations, function symbols, and
the closed world assumption of ASP in concise first-order specifications of schematic
clauses. In particular, fixpoint constructions enable deriving (implicit) domains of vari-
ables from instance data, thus reducing the need for involved procedural computations.

4 Implementation

To implement the grounding of clause programs, we utilize the state-of-the-art ASP
grounder GRINGO [15]. This is feasible because GRINGO (from version 2 on) supports
classical literals and disjunctive rule heads as in (3). By hiding and hence omitting
the domain part of a clause program P , the ground program Gnd(P ) is essentially
a set of ground disjunctions a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl. From the perspective
of GRINGO, the semantics of Gnd(P ) is based on consistent sets of classical literals,
also known as answer sets [18], which can be viewed as minimal hitting sets for the
disjunctions in Gnd(P ). For the purposes of this work, however, we re-establish the
semantic connection between an atom a and its classical negation ¬a by transforming
disjunctions into a set Cl(Gnd(P )) of clauses in DIMACS format, serving as input of
SAT solvers, or optionally into pseudo-Boolean constraints in OPB format. This step
is implemented by a tool called SATGRND (v. 1.24), which passes the symbolic names
of atoms on as comments in its output. The transformation preserves classical models
and satisfiability, so that satisfying assignments of Cl(Gnd(P )) correspond to domain
stable models of P .4 Additionally, the file formats for satisfiability modulo theories
(SMT) and mixed integer programming (MIP) are supported.

Beyond this basic transformation, SATGRND can be used to extract graph informa-
tion from symbolic atom names, as exploited in the SAT modulo graphs approach [20,
21]. Both in plain SAT and SAT modulo graphs, models may be subject to optimiza-
tion, expressible by optimization statements in the input language of GRINGO, in which
case SATGRND generates (weighted partial) MaxSAT problems in DIMACS format, or
again optionally OPB format, which supports objective functions. Moreover, SATGRND
permits the computation of classical models for (disjunctive) logic programs in general
and is provided along with sample encodings for the use cases in the previous section.5

G 1 2 3 H 1 2 3

g1 1 1 0 h1 1 1 0
g2 1 2 0 h2 1 0 0
g3 2 1 2 h3 0 1 1

In order to compare SATGRND’s declarative approach with
a procedural implementation producing a solver’s input, we in-
vestigated the optimization problem of haplotype inference [22,
23]. The task is to compute a cardinality-minimal set H of hap-
lotypes that explain a set G of genotypes, as given on the right.

Genotypes gi are determined by strings of some fixed length l, consisting of the
symbols ‘0’, ‘1’, and ‘2’. Haplotypes hj are also strings of length l, yet admitting ‘0’
and ‘1’ only. Two (not necessarily distinct) haplotypes hj1 , hj2 explain a genotype gi
if, for each string position 1 ≤ k ≤ l, we have that gki = 2 implies hk

j1
6= hk

j2
, while

4 Classical models can be encoded in ASP, e.g., using choice rules and integrity constraints [19].
5 http://research.ics.aalto.fi/software/asp/satgrnd/



hk
j1

= hk
j2

= gki otherwise. In the above table, g1 is explained by h1, h1, g2 by h1, h2,
and g3 by h1, h3. Moreover, one can check that at least three haplotypes are needed to
explain g1, g2, and g3, so that H = {h1, h2, h3} is an optimal solution.

The tool RPOLY6 provides a reference implementation of haplotype inference, using
a generator to convert instance data into a problem representation in OPB format, which
is then passed on to a pseudo-Boolean solver like MINISAT+ [24]. The pseudo-Boolean
constraints produced by the generator, described in [22, 23], exploit domain knowledge
to achieve a compact representation: duplicated genotypes as well as isomorphic string
positions in the input are conflated, and static symmetry breaking is applied to disam-
biguate pairs of haplotypes used to explain genotypes. For instance, the string positions
1 and 3 are isomorphic for the above genotypes G = {g1, g2, g3}, given that the other
column is reproduced by swapping ‘0’ and ‘1’ in one of the columns. In such a case,
either of the isomorphic positions can be reproduced from the other, and only one repre-
sentative needs to be computed by a solver. Moreover, for each genotype gi, an arbitrary
occurrence of ‘2’ at remaining positions can be picked to statically fix one of the haplo-
types explaining gi to ‘0’, and the other to ‘1’ at this position. In fact, the combination
of both techniques directly leads to the above haplotypes H = {h1, h2, h3}, simply by
applying static symmetry breaking to the occurrences of ‘2’ at the second position of
g2 (which gives h1 = g1 and h2 to explain g2) and the first position of g3, and then
using the opposite symbol among ‘0’ and ‘1’ for aligning the ‘2’ at the isomorphic third
position of g3 (thus reproducing h1 along with its counterpart h3 to explain g3).

In general, not all occurrences of ‘2’ can be fixed a priori, and the problem rep-
resentation generated by RPOLY includes variables tki to indicate whether a remaining
occurrence of ‘2’ at the k-th position of gi is split up similar or opposite to the statically
fixed ‘2’ in the two haplotypes explaining gi. This determines the used haplotypes, and
further variables xe1,e2

i1,i2
for genotypes gi1 , gi2 such that i1 < i2 and e1, e2 ∈ {0, 1}

are implied when any pair of some of the (at most) two haplotypes to explain gi1 or
gi2 , respectively, is different. Finally, variables ue2

i2
, indicating haplotypes used first in

explaining gi2 , i.e., xe1,e2
i1,i2

holds for all i1 < i2 and e1 ∈ {0, 1}, are to be minimized.
We took the ideas implemented by RPOLY as basis for a corresponding encoding of

haplotype inference by a clause program,5 as shown in Figure 1. A problem instance
specifies genotypes like the above by facts

gene(1), symb(1, 1, 1), symb(1, 2, 1), symb(1, 3, 0), position(1),
gene(2), symb(2, 1, 1), symb(2, 2, 2), symb(2, 3, 0), position(2),
gene(3), symb(3, 1, 2), symb(3, 2, 1), symb(3, 3, 2), and position(3).

Given such facts, the domain rules (31) and (32) take care of filtering duplicates, where
the conditional literal diff(G1, G2) in (32) checks whether any genotype G1 whose
identifier is smaller than G2 differs from G2 at some string position. If so, an instance
of keep(G2) indicates that genotype G2 is not a duplicate and to be explained by hap-
lotypes. Similar to (31), the domain rules (33)–(35) derive instances of dist(K1,K2),
expressing that a string position K2 is not isomorphic to the smaller position K1. To
this end, (33) and (34) apply if ‘0’ and ‘1’ both occur at K1 and K2 in some genotype
as well as either of them twice in another genotype. Moreover, (35) checks for an oc-
currence of ‘2’ at either K1 or K2 to signal a difference between the two positions. The

6 http://sat.inesc-id.pt/software/rpoly/



diff(G1, G2)← symb(G1,K,X), gene(G2), G1 < G2, ∼symb(G2,K,X). (31)

keep(G2)← gene(G2), diff(G1, G2) : (gene(G1), G1 < G2). (32)

flip(K1,K2)← symb(G,K1, X), symb(G,K2, 1−X), K1 < K2, X < 2. (33)

dist(K1,K2)← symb(G,K1, X), symb(G,K2, X), flip(K1,K2), X < 2. (34)

dist(K1,K2)← symb(G,K1, X1), symb(G,K2, X2), K1 < K2,
X1/2 +X2/2 = 1.

(35)

pick(K2)← position(K2), dist(K1,K2) : (position(K1), K1 < K2). (36)

twos(K,S)← pick(K), S = |{G : (keep(G), symb(G,K, 2))}|. (37)

vary(G,K)← keep(G), (S,K) = min{(T,L) : (twos(L, T ), symb(G,L, 2))}. (38)

¬same(G1, 0 . . . 1, G2, 0 . . . 1)← keep(G1), keep(G2), pick(K), G1 < G2, X < 2,
symb(G1,K,X), symb(G2,K, 1−X).

(39)

¬same(G1, 0 . . . 1, G2, E) ∨
∨

vary(G2,K) : E = X ∨
∨
¬vary(G2,K) : E 6= X (40)

← keep(G1), keep(G2), pick(K), G1 < G2, X < 2,
symb(G1,K,X), symb(G2,K, 2), E = 0 . . . 1.

¬same(G1, E,G2, 0 . . . 1) ∨
∨

vary(G1,K) : E = X ∨
∨
¬vary(G1,K) : E 6= X (41)

← keep(G1), keep(G2), pick(K), G1 < G2, X < 2,
symb(G1,K, 2), symb(G2,K,X), E = 0 . . . 1.

¬same(G1, E,G2, E) ∨ ¬vary(G1,K) ∨ vary(G2,K) (42)
← keep(G1), keep(G2), pick(K), G1 < G2,

symb(G1,K, 2), symb(G2,K, 2), E = 0 . . . 1.

¬same(G1, E,G2, E) ∨ vary(G1,K) ∨ ¬vary(G2,K) (43)
← keep(G1), keep(G2), pick(K), G1 < G2,

symb(G1,K, 2), symb(G2,K, 2), E = 0 . . . 1.

¬same(G1, E,G2, 1− E) ∨ ¬vary(G1,K) ∨ ¬vary(G2,K) (44)
← keep(G1), keep(G2), pick(K), G1 < G2,

symb(G1,K, 2), symb(G2,K, 2), E = 0 . . . 1.

¬same(G1, E,G2, 1− E) ∨
∨

vary(G1,K) : G1 < G2 ∨
∨

vary(G2,K) : G1 < G2 (45)

← keep(G1), keep(G2), pick(K), (G1, E) < (G2, 1),
symb(G1,K, 2), symb(G2,K, 2), E = 0 . . . 1.

used(G2, E2) ∨ (46)∨
same(G1, E1, G2, E2) : (keep(G1), E1 = 0 . . . 1, (G1, E1) < (G2, E2))

← keep(G2), E2 = 0 . . . 1.

minimize |{(G,E) : used(G,E)}|. (47)

Fig. 1. A clause program encoding haplotype inference

domain rule (36) then derives pick(K2) if the conditional literal dist(K1,K2) yields
that no smaller position K1 is isomorphic to K2. For the given problem instance, we
obtain keep(1), keep(2), and keep(3), as none of the three genotypes is a duplicate,
along with keep(1) and keep(2), since the third string position is isomorphic to the first.



The final domain rule (37) determines the number of occurrences of ‘2’ at non-
isomorphic string positions in order to perform static symmetry breaking by means of
the clause rule (38). In the latter rule, we use the min aggregation operation of GRINGO
to pick an occurrence of ‘2’ (if there is any) in a genotype gi such that the overall number
of ‘2’s at the respective position k is minimal. This in turn maximizes the number of
‘0’s and ’1’s at position k, following the rationale that fixing such a position to ‘0’ or ‘1’
directly discards plenty options of sharing one of the two haplotypes used to explain gi.
The atom vary(gi, k) in a unit clause expressed by (38) stands for the variable tki , whose
truth signals that the first haplotype explaining gi contains ‘0’ at position k and the
second ‘1’, while ‘0’ and ‘1’ are swapped when tki or vary(gi, k), respectively, is false.

The purpose of the clause rules (39)–(45) is to assert a literal ¬same(gi1 , e1, gi2 , e2)
for genotypes gi1 , gi2 such that i1 ≤ i2 and e1, e2 ∈ {0, 1} when two of the haplotypes
explaining gi1 and gi2 are different, so that the literals correspond to the aforementioned
variables xe1,e2

i1,i2
. In a nutshell, rule (39) applies to haplotypes whose genotypes differ

on ‘0’ and ‘1’ at a position, (40) and (41) align a ‘0’ or ‘1’ in either gi1 or gi2 with
the interpretation of tki2 or tki1 , respectively, and (42)–(45) compare tki1 and tki2 in case
both gi1 and gi2 contain ‘2’ at position k. Note that (45) yields ¬same(gi, 0, gi, 1) for
genotypes gi with some occurrence of ‘2’, and all clauses have in common that they
imply ¬same(gi1 , e1, gi2 , e2) for pairs of haplotypes that differ at some position. For
instance, the facts given above along with the domain rules (31)–(37) lead to the clauses:

¬same(1, 0, 2, 0) ∨ ¬vary(2, 2), ¬same(1, 1, 2, 0) ∨ ¬vary(2, 2),
¬same(2, 0, 3, 0) ∨ ¬vary(2, 2), ¬same(2, 0, 3, 1) ∨ ¬vary(2, 2),
¬same(1, 0, 2, 1) ∨ vary(2, 2), ¬same(1, 1, 2, 1) ∨ vary(2, 2), ¬same(2, 0, 2, 1),
¬same(2, 1, 3, 0) ∨ vary(2, 2), ¬same(2, 1, 3, 1) ∨ vary(2, 2),
¬same(1, 0, 3, 0) ∨ ¬vary(3, 1), ¬same(1, 1, 3, 0) ∨ ¬vary(3, 1),
¬same(2, 0, 3, 0) ∨ ¬vary(3, 1), ¬same(2, 1, 3, 0) ∨ ¬vary(3, 1),
¬same(1, 0, 3, 1) ∨ vary(3, 1), ¬same(1, 1, 3, 1) ∨ vary(3, 1),
¬same(2, 0, 3, 1) ∨ vary(3, 1), ¬same(2, 1, 3, 1) ∨ vary(3, 1), ¬same(3, 0, 3, 1).

That is, the two haplotypes explaining g2 or g3, respectively, are inherently different
from one another, and the unit clauses ¬same(2, 0, 2, 1) and ¬same(3, 0, 3, 1) represent
the truth of x0,1

2,2 and x0,1
3,3. Moreover, the clauses including, e.g., ¬same(1, e, 3, 0) and

¬same(1, e, 3, 1) with e ∈ {0, 1} stand for xe,0
1,3 ∨ ¬t13 and xe,1

1,3 ∨ t13, thus reflecting
differences between the haplotypes for g1 that contain ‘1’ at position 1 and either of
the two haplotypes for g3. Also note that none of the clauses refers to ‘2’ at the third
position of g3 or t33, respectively, since the third string position is isomorphic to the first.

The last clause rule (46) implies used(gi2 , e2), corresponding to variables ue2
i2

for
genotypes gi2 and e2 ∈ {0, 1}, to indicate first uses of haplotypes. Such atoms are sub-
ject to minimization in view of the minimize statement in (47), instantiated as follows:

used(1, 0),
used(1, 1) ∨ same(1, 0, 1, 1),
used(2, 0) ∨ same(1, 0, 2, 0) ∨ same(1, 1, 2, 0),
used(2, 1) ∨ same(1, 0, 2, 1) ∨ same(1, 1, 2, 1) ∨ same(2, 0, 2, 1),
used(3, 0) ∨ same(1, 0, 3, 0) ∨ same(1, 1, 3, 0) ∨ same(2, 0, 3, 0) ∨ same(2, 1, 3, 0),



used(3, 1) ∨ same(1, 0, 3, 1) ∨ same(1, 1, 3, 1) ∨ same(2, 0, 3, 1) ∨ same(2, 1, 3, 1)
∨ same(3, 0, 3, 1),

minimize |{(1, 0) : used(1, 0), (1, 1) : used(1, 1), (2, 0) : used(2, 0),
(2, 1) : used(2, 1), (3, 0) : used(3, 0), (3, 1) : used(3, 1)}|.

One can check that all clauses are satisfied by a domain stable model I such that

Iv = {vary(2, 2), vary(3, 1), same(1, 0, 1, 1), same(1, 0, 2, 1), same(1, 0, 3, 1),
used(1, 0), used(2, 0), used(3, 0)}.

The number of distinct haplotypes, given by the predicate used/2, is minimal, and in
total there are 21 optimal models comprising the above haplotypes H = {h1, h2, h3}.

In the pseudo-Boolean constraints of RPOLY as well as the encoding in Figure 1,
the variables xe1,e2

i1,i2
and ue2

i2
, signaling differences between haplotypes and those to

count in the objective function, are handled by implications forcing them to true. In
the following, we refer to this encoding approach by “Implication”. We also imple-
mented an encoding variant, indicated by “Equivalence”, where such derived variables
are matched to the conditions they express and cannot vary in case a condition does not
apply. The stronger assertions of “Equivalence” thus reduce combinatorics to the prize
of an increased number of clauses. Moreover, [22] mentions a condition under which at
least three of four haplotypes explaining two genotypes gi1 , gi2 must be different, which
can be expressed by clauses of the form ¬xe1,e2

i1,i2
∨ ¬xe3,e4

i1,i2
for e1, e2, e3, e4 ∈ {0, 1}

such that e1 6= e3 or e2 6= e4. Interestingly, respective pseudo-Boolean constraints are
not generated by RPOLY, while the encoding variants denoted by “Implication-LB” and
“Equivalence-LB” include such clauses. The four available encoding variants can be
activated easily via command-line switches of GRINGO, and the encoding extensions
for enabling flexibility amount to another ten selectively used schematic clause rules.5

To compare solving performance relative to input generated by RPOLY or by using
clause programs and SATGRND, we ran the pseudo-Boolean solvers MINISAT+ (v. 1.0)
and CLASP (v. 3.1.4), the latter performing unsatisfiability-based optimization (cf. [25]),
sequentially on a Linux machine equipped with Intel Xeon E5-4650 2.70GHz proces-
sors. Instance data, out of which we selected the 63 instances such that some of the two
solvers took more than ten seconds in a preliminary screening phase, was kindly pro-
vided by the authors of RPOLY. All solver runs were completed with an optimal solution,
i.e., no effective time or memory limit was enforced. Table 1 provides averages over the
63 selected instances in terms of runtime and numbers of conflicts as well as constraints,
the latter as reported by CLASP and MINISAT+, relative to input generated by RPOLY
or SATGRND with the four encoding variants outline above. The conversion of instance
data to a problem representation in OPB format, using RPOLY or SATGRND, was done
offline and does thus not contribute to measured runtimes. Clearly, the procedural im-
plementation by RPOLY is noticeably quicker than the grounding step of SATGRND, as
the latter is geared for modeling flexibility rather than low-level performance.

Considering the average runtimes of both solvers, the best highlighted in boldface,
CLASP is an order of magnitude faster on input provided by SATGRND, while the oppo-
site effect applies to MINISAT+ on input generated by RPOLY. We attribute such inverse
behavior to different selections of string positions for static symmetry breaking. In our
encoding in Figure 1, we use a greedy approach aiming to reduce the resulting number



Table 1. Experiments with CLASP and MINISAT+ on haplotype inference benchmarks

RPOLY Implication Implication-LB Equivalence Equivalence-LB
Runtime 182.3 3.3 3.5 4.7 5.5 C

L
A

S
P

Conflicts 466,933 47,262 52,420 57,789 67,178
Constraints 36,299 28,318 28,454 49,054 49,192

Runtime 133.6 1789.8 1402.7 2639.1 2467.4

M
IN

IS
A

T+

Conflicts 863,514 6,779,058 6,441,567 6,769,964 5,866,433
Constraints 36,859 28,500 28,638 51,003 51,142

of clauses: for each genotype, pick some occurrence of ‘2’ that maximizes the number
of ‘0’s and ’1’s at this position. The strategy applied by RPOLY is, to our knowledge, not
documented in the literature, and the apparent difference to ours can be observed on the
numbers of constraints reported by CLASP and MINISAT+ in the first two columns of Ta-
ble 1. In fact, there is a lot of room for different strategies, and declarative specifications
by clause programs offer means for the rapid prototyping of alternative approaches.

Regarding the runtime differences between CLASP and MINISAT+, we want to stress
that CLASP is a recent system, whereas MINISAT+ is not actively maintained. Hence,
rather than further comparing the solvers to each other, it is more meaningful to con-
centrate on the effect of the encoding variants in the last three columns of Table 1,
whose clauses differ from the pseudo-Boolean constraints of RPOLY. Here, we ob-
serve an expected rough doubling of size, witnessed by numbers of constraints, for
the two “Equivalence” approaches. Since the size increase deteriorates runtimes and
does not reduce conflicts significantly, the more relaxed approach taken by RPOLY
and the “Implication” encoding is clearly the right choice. Moreover, the addition of
clauses asserting necessary differences between haplotypes explaining different geno-
types in “Implication-LB” (and “Equivalence-LB”) modestly improves the runtime of
MINISAT+ and its reported conflicts, yet not by a substantial amount. There are, how-
ever, no gains for CLASP, which again confirms the choice of RPOLY not to generate
such constraints as appropriate. In summary, our practical case study demonstrates the
utility of clause programs to implement a problem encoding, investigate the effect of
alternative formulations, and identify parts that are critical for solving performance.

5 Discussion of Related Work and Conclusion

In this paper, we promote declarative domain specifications in contrast to procedural
ones that are typical when solvers are interfaced with a programming library (see, e.g.,
the Python interface of Microsoft’s Z3). Naturally, other declarative approaches exist. In
the context of pseudo-Boolean solvers, the system PSGRND [26] can be used to ground
clauses and their extensions. The domain information, however, is given by type dec-
larations for predicates, and it is not possible to define types in terms of others. The
first-order approaches of [2, 27, 28, 6] also aim to restrict variable domains recursively
over the structure of first-order formulas, where the CWA is limited to predicates that
are defined (inductively) in terms of those allowed to vary. The same can be stated
about the methods proposed for effectively propositional logic [3, 5], although domain



constraints are imposed. The IDP3 system [29] exploits PROLOG-style rules to ex-
press domain information, but it processes them through query answering rather than
bottom-up evaluation. In [4], the grounding problem is addressed in the context of plan-
ning domain definition language (PDDL) descriptions over finite domains. While this
approach explores a Datalog representation and grounding techniques similar to ASP, it
is specialized to planning tasks. The interface provided by GRINGO is more general, in
particular, given that domains need not be finitely bounded a priori. Last but not least,
note that traditional constraint models [30, 31] can also be translated into CNF (see,
e.g., [10]), yet expressing recursive domain specifications remains difficult.

Since its initial conception [32], SATGRND has been used in several lines of work:
firstly as a grounder to support high-level declarative specifications for the SAT-TO-SAT
solver [33], and also as a tool to convert meta-representations of quantified Boolean
formulas to layers of CNFs [34]. Secondly, SATGRND has been used in [35] to support
declarative solver development for knowledge representation languages. Specifically,
we took advantage of SATGRND to specify and implement a solver for combined logic
programs [36].

In conclusion, we suggest to utilize ASP grounders for instantiating first-order clau-
ses involving term variables. This provides us with means to control the resulting propo-
sitional clauses in a declarative way and to avoid the implicit introduction of new
Boolean variables, which is practically necessary otherwise, e.g., when translating logic
programs into SAT [37]. The combination of GRINGO and SATGRND forms a general-
purpose grounding tool not confined to a particular application domain. Due to the
versatile and eventually Turing-complete input language of GRINGO, complex domain
specifications can be written to support fine-grained instantiation of term variables. The
uniform rule-based syntax makes specifications highly elaboration tolerant and inde-
pendent of particular instance data. We expect that the grounding methodology intro-
duced in this paper can be beneficial for SAT application developers in order to rapidly
devise and experiment with encodings directly at clause level.
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