
An Incremental Answer Set Programming Based
System for Finite Model Computation

Martin Gebser, Orkunt Sabuncu, and Torsten Schaub?

Universität Potsdam, {gebser,orkunt,torsten}@cs.uni-potsdam.de

Abstract. We address the problem of Finite Model Computation (FMC) of first-
order theories and show that FMC can efficiently and transparently be solved by
taking advantage of a recent extension of Answer Set Programming (ASP), called
incremental Answer Set Programming (iASP). The idea is to use the incremental
parameter in iASP programs to account for the domain size of a model. The
FMC problem is then successively addressed for increasing domain sizes until an
answer set, representing a finite model of the original first-order theory, is found.
We implemented a system based on the iASP solver iClingo and demonstrate its
competitiveness by showing that it slightly outperforms the winner of the FNT
division of CADE’s Automated Theorem Proving (ATP) competition.

1 Introduction

While Finite Model Computation (FMC;[1]) constitutes an established research area
in the field of Automated Theorem Proving (ATP;[2]), Answer Set Programming
(ASP;[3]) has become a widely used approach for declarative problem solving, fea-
turing manifold applications in the field of Knowledge Representation and Reasoning.
Up to now, however, both FMC and ASP have been studied in separation, presumably
due to their distinct hosting research fields. We address this gap and show that FMC
can efficiently and transparently be solved by taking advantage of a recent extension of
ASP, called incremental Answer Set Programming (iASP;[4]).

Approaches to FMC for first-order theories [5, 6] fall in two major categories, trans-
lational and constraint solving approaches. In translational approaches [7, 8], the FMC
problem is divided into multiple satisfiability problems in propositional logic. This divi-
sion is based on the size of the finite domain. A Satisfiability (SAT;[9]) solver searches
in turn for a model of the subproblem having a finite domain of fixed size, which is
gradually increased until a model is found for the subproblem at hand. In the constraint
solving approach [10, 11], a system computes a model by incrementally casting FMC
into a constraint satisfaction problem. While systems based on constraint solving are
efficient for problems with many unit equalities, translation-based ones are applicable
to a much wider range of problems [6].

In fact, translational approaches to FMC bear a strong resemblance to iASP. The
latter was developed for dealing with dynamic problems like model checking and plan-
ning. To this end, iASP foresees an integer-valued parameter that is consecutively in-
creased until a problem is found to be satisfiable. Likewise, in translation-based FMC,
? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

the size of the interpretations’ domain is increased until a model is found. This similar-
ity in methodologies motivates us to encode and solve FMC by means of iASP.

The idea is to use the incremental parameter in iASP to account for the domain size.
Separate subproblems considered in translational approaches are obtained by ground-
ing an iASP encoding, where care is taken to avoid redundancies between subproblems.
The parameter capturing the domain size is then successively incremented until an an-
swer set is found. In the successful case, an answer set obtained for parameter value i
provides a finite model of the input theory with domain size i.

We implemented a system based on the iASP solver iClingo [4] and compared its
performance to various FMC systems. To this end, we used the problems from the FNT
division of last year’s CADE ATP competition. The results demonstrate the efficiency
of our system. iClingo solved the same number of problems as Paradox [8] in approx-
imately half of its run time on average. Note that Paradox won first places in the FNT
division in 2007, 2008, and 2009.

The paper is organized as follows. The next section introduces basic concepts about
the translational approach to FMC and about iASP. Section 3 describes our incremental
encoding of FMC and how it is generated from a given set of clauses. Information about
our system can be found in Section 4. We empirically evaluate our system in Section 5
and conclude in Section 6. An input first-order theory along with logic programs, as
used by our FMC system based on iASP, are provided in appendixes.

2 Background

We assume the reader to be familiar with the terminology and basic definitions of first-
order logic and ASP. In what follows, we thus focus on the introduction of concepts
needed in the remainder of this paper.

In our method, we translate first-order theories into sets of flat clauses. A clause
is flat if (i) all its predicates and functions have only variables as arguments, (ii) all
occurrences of constants and functions are within equality predicates, and (iii) each
equality predicate has at least one variable as an argument. Any first-order clause can be
transformed into an equisatisfiable flat clause via flattening [7, 8, 6], done by repeatedly
applying the rewrite ruleC[t] (C[X]∨(X 6= t)), where t is a term offending flatness
andX is a fresh variable. For instance, the clause (f(X) = g(Y)) can be turned into the
flat clause (Z = g(Y))∨ (Z 6= f(X)). In the translational approach to FMC, flattening
is used to bring the input into a form that is easy to instantiate using domain elements.

As regards ASP, we rely on the language supported by grounders lparse [12] and
gringo [13], providing normal and choice rules as well as cardinality and integrity con-
straints. As usual, rules with variables are regarded as representatives for all respective
ground instances. Beyond that, our approach makes use of iASP [4] that allows for deal-
ing with incrementally growing domains. In iASP, a parameterized domain description
is a triple (B,P,Q) of logic programs, among which P andQ contain a (single) param-
eter k ranging over positive integers. In view of this, we sometimes denote P and Q by
P [k] and Q[k]. The base program B describes static knowledge, independent of param-
eter k. The role of P is to capture knowledge accumulating with increasing k, whereas

Q is specific for each value of k. Our goal is then to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an answer set for some (minimum) integer i ≥ 1. In what follows, we refer to rules
in B, P [k], and Q[k] as being static, cumulative, and volatile, respectively.

3 Approach

In this section, we present our encoding of FMC in iASP. The first task, associating
terms with domain elements, is dealt with in Section 3.1. Based on this, Section 3.2
describes the evaluation of (flat) clauses within iASP programs. In Section 3.3, we ex-
plain how a model of a first-order theory is then read off from an answer set. Section 3.4
presents an encoding optimization by means of symmetry breaking. Finally, we show
the soundness and completeness of our approach in Section 3.5.

Throughout this section, we illustrate our approach on a running example. Assume
that the following first-order theory is given as starting point:

p(a)

(∀X) ¬q(X,X)

(∀X) (p(X)→ (∃Y) q(X,Y)).

(2)

The first preprocessing step, clausification of the theory, yields the following:

p(a)

¬q(X,X)

¬p(X) ∨ q(X, sko(X)).

The second step, flattening, transforms these clauses into the following ones:

p(X) ∨ (X 6= a)

¬q(X,X)

¬p(X) ∨ q(X,Y) ∨ (Y 6= sko(X)).

(3)

Such flat clauses form the basis for our iASP encoding. Before we present it, note that
the theory in (3) has a model I over domain {1, 2} given by:

aI = 1

skoI = {1 7→ 2, 2 7→ 2}
pI = {1}
qI = {(1, 2)}.

(4)

Importantly, I is also a model of the original theory in (2), even if skoI is dropped.

3.1 Interpreting Terms

In order to determine a model, we need to associate the (non-variable) terms in the input
with domain elements. To this end, every constant c is represented by a fact cons(c).,
belonging to the static part of our iASP program. For instance, the constant a found
in (3) gives rise to the following fact:

cons(a). (5)

Our iASP encoding uses the predicate assign(T,D) to represent that a term T is
mapped to a domain element D. Here and in the following, we write k to refer to the
incremental variable in an iASP program. Unless stated otherwise, all rules provided
in the sequel are cumulative by default. For constants, the following (choice) rule then
allows for mapping them to the kth domain element:

{assign(T, k)} ← cons(T). (6)

Note that, by using k in assign(T, k), it is guaranteed that instances of the rule are
particular to each incremental step.

Unlike with constants, the argument tuples of (non-zero arity) functions grow
when k increases. To deal with this, we first declare auxiliary facts to represent available
domain elements:

dom(k). arg(k, k). (7)

Predicates dom and arg are then used to qualify the arguments of an n-ary function f
in the following rule:

func(f(X1, . . . , Xn))← dom(X1), . . . , dom(Xn),

1{arg(X1, k), . . . , arg(Xn, k)}.
(8)

The cardinality constraint 1{arg(X1, k), . . . , arg(Xn, k)} stipulates at least one of the
arguments X1, . . . , Xn of f to be k. As in (6), though using a different methodology,
this makes sure that the (relevant) instances are particular to a value of k. However,
note that rules of the above form need to be provided separately for each function in
the input, given that the arities of functions matter. For the unary function sko in (3),
applying the described scheme leads to the following rule:

func(sko(X))← dom(X), 1{arg(X, k)}. (9)

To represent new mappings via a function when k increases, the previous method-
ology can easily be extended to requiring some argument or alternatively the function
value to be k. The following (choice) rule encodes mappings via an n-ary function f :

{assign(f(X1, . . . , Xn), Y)} ← dom(X1), . . . , dom(Xn), dom(Y),

1{arg(X1, k), . . . , arg(Xn, k), arg(Y, k)}.
(10)

For instance, the rule encoding mappings via unary function sko is as follows:

{assign(sko(X), Y)} ← dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}. (11)

Observe that the cardinality constraint 1{arg(X, k), arg(Y, k)} necessitates at least one
of argument X or value Y of function sko to be k, which in the same fashion as before
makes the (relevant) instances of the rule particular to each incremental step.

To see how the previous rules are handled in iASP computations, we below show
the instances of (7) and (11) generated in and accumulated over three incremental steps:

Step 1 Step 2 Step 3

dom(1). arg(1, 1). dom(2). arg(2, 2). dom(3). arg(3, 3).

{assign(sko(1), 1)}. {assign(sko(1), 2)}. {assign(sko(1), 3)}.
{assign(sko(2), 1)}. {assign(sko(2), 3)}.
{assign(sko(2), 2)}. {assign(sko(3), 1)}.

{assign(sko(3), 2)}.
{assign(sko(3), 3)}.

Given that the body of (11) only relies on facts (over predicates dom and arg), its
ground instances can be evaluated and then be reduced: if a ground body holds, the
corresponding (choice) head is generated in a step; otherwise, the ground rule is trivially
satisfied and needs not be considered any further. Hence, all rules shown above have
an empty body after grounding. Notice, for example, that rule {assign(sko(1), 1)}. is
generated in the first step, while it is not among the new ground rules in the second and
third step.

Finally, a mapping of terms to domain elements must be unique and total. To this
end, translation-based FMC approaches add uniqueness and totality axioms for each
term to an instantiated theory. In iASP, such requirements can be encoded as follows:

← assign(T,D), assign(T, k), D < k. (12)
← cons(T), {assign(T,D) : dom(D)}0. (13)
← func(T), {assign(T,D) : dom(D)}0. (14)

While the integrity constraint in (12) forces the mapping of each term to be unique,
the ones in (13) and (14) stipulate each term to be mapped to some domain element.
However, since the domain grows over incremental steps and new facts are added for
predicate dom , ground instances of (13) and (14) are only valid in the step where they
are generated. Hence, the integrity constraints in (13) and (14) belong to the volatile
part of our iASP program.

3.2 Interpreting Clauses

To evaluate an input theory, we also need to interpret its predicates. To this end, we
include a rule of the following form for every n-ary predicate p in our iASP program:

{p(X1, . . . , Xn)} ← dom(X1), . . . , dom(Xn),

1{arg(X1, k), . . . , arg(Xn, k)}.
(15)

As discussed above, requiring 1{arg(X1, k), . . . , arg(Xn, k)} to hold guarantees that
(relevant) instances are particular to each incremental step. The only exception to this

is n = 0 (a predicate p of arity zero), in which case the rule {p}. belongs to the static
part of our program. Also note that, unlike constants and functions, we do not reify
predicates, as assigning a truth value can be expressed more naturally without it. For
example, the following rules allow for interpreting the predicates p and q in (3):

{p(X)} ← dom(X), 1{arg(X, k)}.
{q(X,Y)} ← dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}.

(16)

Following [14], the basic idea of encoding a (flat) clause is to represent it by an
integrity constraint containing the complements of the literals in the clause. However,
clauses may contain equality literals of the form (X = Y) or (X 6= Y), where at least
one of the termsX and Y is a variable, and so we also need to consider complements of
such literals. W.l.o.g., we below assume that the left-hand side of every equality literal
is a variable, while the right-hand side is either a variable or a non-variable term. In
view of this convention, we define the encoding L of the complement of a (classical or
equality) literal L as follows:

L =

not p(X1, . . . , Xn) if L = p(X1, . . . , Xn)

p(X1, . . . , Xn) if L = ¬p(X1, . . . , Xn)

not assign(t,X) if L = (X = t) for some non-variable term t

assign(t,X) if L = (X 6= t) for some non-variable term t

X 6= Y if L = (X = Y) for some variable Y
X = Y if L = (X 6= Y) for some variable Y .

Observe that the first two cases refer to the interpretation of a predicate p, the third and
the fourth to the mapping of non-variable terms to domain elements, and the last two to
built-in comparison operators of grounders like lparse and gringo.

With the complements of literals at hand, we can now encode a flat clause containing
literals L1, . . . , Lm and variables X1, . . . , Xn by an integrity constraint as follows:

← L1, . . . , Lm, dom(X1), . . . , dom(Xn), 1{arg(X1, k), . . . , arg(Xn, k)}. (17)

Note that we use the same technique as before to separate the (relevant) instances ob-
tained at each incremental step. For our running example, the clauses in (3) give rise to
the following integrity constraints:

← not p(X), assign(a,X), dom(X), 1{arg(X, k)}.
← q(X,X), dom(X), 1{arg(X, k)}.
← p(X),not q(X,Y), assign(sko(X), Y),

dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}.

(18)

While the first two integrity constraints each contribute a single instance at an incre-
mental step, (2 ∗ k)− 1 instances are obtained for the third one.

Although they are unlikely to occur in first-order theories, propositional clauses
without variables and equality literals require a slightly different treatment. For a propo-
sitional clause containing (classical) literals L1, . . . , Lm, instead of (17), we include the
following simpler integrity constraint in the static part of our iASP program:

← L1, . . . , Lm. (19)

3.3 Extracting Models

The rules that represent the mapping of terms to domain elements (described in Sec-
tion 3.1) along with those representing satisfiability of flat clauses (described in Sec-
tion 3.2) constitute our iASP program for FMC. To compute an answer set, the incre-
mental variable k is increased by one at each step. This corresponds to the addition of a
new domain element. If an answer set is found in a step i, it means that the input theory
has a model over a domain of size i. In fact, from an answer setA of our iASP program,
a model I of the input theory over domain {d | dom(d) ∈ A} is extracted as follows:

cI = d where cons(c), assign(c, d) ∈ A,
f I = {(d1, . . . , dn) 7→ d | assign(f(d1, . . . , dn), d) ∈ A},
pI = {(d1, . . . , dn) | p(d1, . . . , dn) ∈ A}.

For the iASP program encoding the theory in (3), composed of the rules in (5–7, 9,
11–14, 16, 18), the following answer set is obtained in the second incremental step:

dom(1), dom(2), arg(1, 1), arg(2, 2),

cons(a), assign(a, 1),

func(sko(1)), assign(sko(1), 2),

func(sko(2)), assign(sko(2), 2),

p(1), q(1, 2)

The corresponding model over domain {1, 2} is the one shown in (4).

3.4 Breaking Symmetries

In view of the fact that interpretations obtained by permuting domain elements are iso-
morphic, an input theory can have many symmetric models. For example, an alternative
model to the one in (4) can easily be obtained by swapping domain elements 1 and 2.
Such symmetries tend to degrade the performance of FMC systems. Hence, systems
based on the constraint solving approach, such as Sem and Falcon, apply variants of a
dynamic symmetry breaking technique called least number heuristic [11]. Translation-
based systems, such as Paradox and FM-Darwin, staticly break symmetries by narrow-
ing how terms can be mapped to domain elements.

Our approach to symmetry breaking is also a static one that aims at reducing the
possibilities of mapping constants to domain elements. To this end, we use the technique
described in [8, 15], fixing an order of the constants in the input by uniquely assigning
a rank in [1, n], where n is the total number of constants, to each of them. Given such a
ranking in terms of facts over predicate order , we can replace the rule in (6) with:

{assign(T, k)} ← cons(T), order(T,O), k ≤ O.

For instance, if the set of constants is {c1, c2, c3} and the order is given by facts
order(ci, i). for i ∈ {1, 2, 3}, the following instances of the above rule are generated
in and accumulated over three incremental steps:

Step 1 Step 2 Step 3

{assign(c1, 1)}.
{assign(c2, 1)}. {assign(c2, 2)}.
{assign(c3, 1)}. {assign(c3, 2)}. {assign(c3, 3)}.

That is, while all three constants can be mapped to the first domain element, c1 cannot
be mapped to the second one, and only c3 can be mapped to the third one.

Finally, we note that our iASP encoding of the theory in (3) yields 10 answer sets in
the second incremental step. If we apply the described symmetry breaking, it disallows
mapping the single constant a to the second domain element, which prunes 5 of the 10
models. Although our simple technique can in general not break all symmetries related
to the mapping of terms because it does not incorporate functions, the experiments in
Section 5 demonstrate that it may nonetheless lead to significant performance gains.
Unlike with constants, given a priori, additionally incorporating functions into our ap-
proach to symmetry breaking would require the extension of predicate order to newly
composed functional terms in each incremental step. For the special case of unary func-
tions, such an extension [8] is implemented in Paradox; with FM-Darwin, it has not
turned out to be more effective than symmetry breaking for only constants [15].

3.5 Soundness and Completeness

Before stating our theorem, we first define the parameterized domain description
formed for a set T of flat clauses. The signature 〈F0,F ,P0,P〉 of T is built from a
set F0 of constants, a set F of (non-zero arity) functions, a set P0 of zero arity predi-
cates, and a set P of non-zero arity predicates. For T , we then form the parameterized
domain description (B,P,Q) in the following way:

B =
{
cons(c). | c ∈ F0

}
∪
{
{p}. | p ∈ P0

}
∪ΠT0 ,

P =
{
dom(k). arg(k, k). {assign(T, k)} ← cons(T).

← assign(T,D), assign(T, k), D < k.
}
∪ΠF ∪ΠP ∪ΠT , and

Q =
{
← cons(T), {assign(T,D) : dom(D)}0.
← func(T), {assign(T,D) : dom(D)}0.

}
,

where ΠF contains rules of form (8) and form (10) for each function f ∈ F , ΠP

contains a rule of form (15) for each predicate p ∈ P , ΠT contains a rule of form (17)
for each non-propositional clause in T , and ΠT0 contains a rule of form (19) for each
propositional clause in T . With these concepts at hand, we are ready to formulate the
soundness and completeness of our approach.

Theorem 1. Let T be a set of flat clauses and (B,P,Q) the parameterized domain
description for T . Then, the logic program R[k/i], as defined in (1), has an answer set
for some positive integer i iff T has a finite model over a domain of size i.

Note that the theorem still applies when including symmetry breaking, as described
in the previous section, in view of the fact that it may eliminate some isomorphic mod-
els, but not all of them.

4 System

We use FM-Darwin to read an input in TPTP format, a format for first-order theories
widely used within the community of ATP, to clausify it if needed, and to flatten the
clauses at hand. Additionally, FM-Darwin applies some input optimizations before flat-
tening, such as renaming deep ground subterms to avoid the generation of flat clauses
with many variables [15]. For obtaining flat clauses from an input theory specified in a
file tptp input.p, FM-Darwin is invoked as follows:

darwin -fd true -pfdp Exit tptp input.p

Having an input in terms of flat clauses, we can apply the transformations described
in Section 3.1 and 3.2 to generate an iASP program. To this end, we implemented a
compiler called fmc2iasp1, written in Python. It outputs the rules that are specific to an
input theory, while the theory-independent rules in (6), (7), and (12–14) are provided
in a separate file. This separation allows us to test encoding variants without changing
fmc2iasp, for instance, the symmetry breaking described in Section 3.4. Finally, we use
iClingo to incrementally ground the obtained iASP program and to search for answer
sets representing finite models of the input theory. Provided that fmc.lp is the file
containing theory-independent rules, the following command-line call is used for FMC:

darwin -fd true -pfdp Exit tptp input.p | fmc2iasp.py |
cat fmc.lp - | iclingo

5 Experiments

We consider the following systems: iClingo (2.0.5), Clingo (2.0.5), Paradox (3.0), FM-
Darwin (1.4.5), and Mace4 (2009-11A). While Paradox and FM-Darwin are based on
the translational approach to FMC, Mace4 applies the constraint solving approach. For
iClingo and Clingo, we used command line switch --heuristic=VSIDS, as it im-
proved search performance.2 Our experiments have been performed on a 3.4GHz Intel
Xeon machine running Linux, imposing 300 seconds as time and 2GB as memory limit.

FMC instances stem from the FNT (First-order form Non-Theorems) division of the
2009 CADE ATP competition. The instances in this division are satisfiable and suitable
for evaluating FMC systems, among which Paradox won the first place. The considered
problem domains are: common-sense reasoning (CSR), geography (GEG), geometry
(GEO), graph theory (GRA), groups (GRP), homological algebra (HAL), knowledge
representation (KRS), lattices (LAT), logic calculi (LCL), management (MGT), miscel-
laneous (MSC), natural language processing (NLP), number theory (NUM), processes
(PRO), software verification (SWV), syntactic (SYN).3

Table 1 shows benchmark results for each of the problem domains. Column # dis-
plays how many instances of a problem domain belong to the test suite. For each sys-
tem and problem domain, average run time in seconds is taken over the solved in-
stances; their number is given in parentheses. A dash in an entry means that a system

1 http://potassco.sourceforge.net/
2 Note that Minisat, used internally by Paradox, also applies VSIDS as decision heuristic [16].
3 http://www.cs.miami.edu/˜tptp/

Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4
CSR 1 2.28 (1) 2.19 (1) 4.20 (1) — 20.96 (1) —
GEG 1 — — — 229.12 (1) — —
GEO 12 0.07 (12) 0.06 (12) 0.09 (12) 0.08 (12) 0.09 (12) 0.02 (12)
GRA 2 3.48 (1) — 12.33 (1) 0.50 (1) — —
GRP 1 5.58 (1) 215.62 (1) 78.90 (1) 0.65 (1) — 0.26 (1)
HAL 2 2.35 (2) 2.40 (2) 2.68 (2) 0.68 (2) 11.43 (1) —
KRS 6 0.13 (6) 0.13 (6) 0.24 (6) 0.20 (6) 30.76 (6) 0.02 (4)
LAT 5 0.09 (5) 0.09 (5) 0.12 (5) 0.10 (5) 0.07 (5) 0.03 (5)
LCL 17 8.71 (17) 9.36 (17) 11.44 (17) 3.72 (17) 1.56 (17) 5.07 (8)
MGT 4 0.06 (4) 0.06 (4) 0.08 (4) 0.07 (4) 0.12 (4) 0.98 (4)
MSC 3 9.31 (2) 0.20 (1) 16.51 (2) 121.03 (2) 0.19 (1) —
NLP 9 1.60 (9) 1.98 (9) 3.06 (9) 0.25 (9) 0.28 (8) 22.19 (1)
NUM 1 0.19 (1) 0.19 (1) 0.26 (1) 0.26 (1) 0.13 (1) 202.45 (1)
PRO 9 1.09 (9) 8.99 (9) 1.91 (9) 0.37 (9) 0.78 (9) 31.56 (7)
SWV 8 0.13 (4) 0.12 (4) 0.17 (4) 0.16 (4) 45.13 (5) 0.03 (2)
SYN 18 0.56 (18) 0.57 (18) 0.68 (18) 0.40 (18) 3.88 (12) 0.66 (5)
Total 99 2.39 (92) 5.49 (90) 4.24 (92) 6.02 (92) 6.43 (82) 9.88 (50)

Table 1. Benchmark results for problems in the FNT division of the 2009 CADE competition.

could not solve any instance of the corresponding problem domain within the run time
and memory limits. For each system, the last row shows its average run time over all
solved instances and provides their number in parentheses. The evaluation criteria in
CADE competitions are first number of solved instances and then average run time as
tie breaker.

In Table 1, we see that Mace4 and FM-Darwin solved 50 and 82 instances, respec-
tively, out of the 99 instances in total. Paradox, the winner of the FNT division in the
2009 CADE competition, solved 92 instances in 6.02 seconds on average. While the
version of our system not using symmetry breaking (described in Section 3.4), denoted
by iClingo (2), solved two instances less, the one with symmetry breaking, denoted by
iClingo (1), also solved 92 instances. As it spent only 2.39 seconds on average, accord-
ing to the CADE criteria, our system slightly outperformed Paradox. For assessing the
advantages due to incremental grounding and solving, we also ran Clingo, performing
iterative deepening search by successively grounding and solving our iASP encoding
for fixed domains of increasing size. The average run time achieved with Clingo, 4.24
seconds, is substantially greater than the one of iClingo (1), and the gap becomes more
apparent the more domain elements are needed.

However, a general problem with the translational approach is that flattening may
increase the number of variables in a clause, which can deteriorate grounding perfor-
mance. We observed this clearly for the instance in the GEG domain, where the flat
clauses contain about seven variables. While iClingo could not ground the resulting
iASP program within the given limits, Paradox still solved it (in 229.12 seconds). The
fact that the underlying first-order theory has many sorts, so that sort inference [8] of
Paradox helps, shows that there is still potential to improve the translational approach
via iASP. On the other hand, for the instances in groups CSR and MSC, we speculate

that clausification and further preprocessing steps of Paradox may be the cause for its
deteriorated performance.

6 Discussion

We presented an efficient yet transparent approach to computing finite models of first-
order theories by means of ASP. Our approach takes advantage of an incremental exten-
sion of ASP that allows us to consecutively search for models with given domain size
by incrementing the corresponding parameter in the iASP encoding. The declarative
nature of our approach makes it easily modifiable and leaves room for further improve-
ments. Moreover, our approach is rather competitive and has even a slight edge on the
hitherto leading system for FMC. Finally, our approach complements the work in [17],
where FMC systems were used for computing the answer sets of tight4 logic programs
in order to circumvent grounding.

In [18], a special class of first-order formulas, called Effectively Propositional
(EPR) formulas, was addressed via ASP. EPR formulas must not contain function sym-
bols in their clause forms. Although our approach takes more general input than this, it
can currently not decide EPR formulas. To this end, we had either to extract a bound on
the incremental parameter to make the system halt or to provide an alternative dedicated
encoding of EPR formulas. Such extensions are interesting topics for future research.

Acknowledgments. This work was supported by the German Science Foundation (DFG)
under grant SCHA 550/8-1.

References

1. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Kluwer Academic (2004)
2. Bibel, W.: Automated Theorem Proving. Vieweg (1987)
3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University (2003)
4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering

an incremental ASP solver. In Garcia de la Banda, M., Pontelli, E., eds.: Proceedings of the
24th International Conference on Logic Programming (ICLP’08), Springer (2008) 190–205

5. Zhang, J., Huang, Z.: Reducing symmetries to generate easier SAT instances. Electronic
Notes in Theoretical Computer Science 125(3) (2005) 149–164

6. Tammet, T.: Finite model building: Improvements and comparisons. In Baumgartner, P.,
Fermüller, C., eds.: Proceedings of the Workshop on Model Computation — Principles, Al-
gorithms, Applications (MODEL’03), (2003)

7. McCune, W.: A Davis-Putnam program and its application to finite first-order model search:
Quasigroup existence problems. Technical Report ANL/MCS-TM-194, Argonne National
Laboratory (1994)

8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding.
In Baumgartner, P., Fermüller, C., eds.: Proceedings of the Workshop on Model Computation
— Principles, Algorithms, Applications (MODEL’03), (2003)

4 Tight programs are free of recursion through positive literals (cf. [3]).

9. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS (2009)
10. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Proceedings of the

14th International Joint Conference on Artificial Intelligence (IJCAI’95), Morgan Kaufmann
(1995) 298–303

11. Zhang, J.: Constructing finite algebras with FALCON. Journal of Automated Reasoning
17(1) (1996) 1–22

12. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s

guide to gringo, clasp, clingo, and iclingo. http://potassco.sourceforge.net
14. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
15. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction

to function-free clause logic. Journal of Applied Logic 7(1) (2009) 58–74
16. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella, A., eds.:

Proceedings of the 6th International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), Springer (2003) 502–518

17. Sabuncu, O., Alpaslan, F.: Computing answer sets using model generation theorem provers.
In Costantini, S., Watson, R., eds.: Proceedings of the 4th International Workshop on Answer
Set Programming (ASP’07), (2007) 225–240

18. Lierler, Y., Lifschitz, V.: Logic programs vs. first-order formulas in textual inference.
http://z.cs.utexas.edu/users/ai-lab/publications recent.php

A Input Theory

The input theory (2), written in TPTP format, is as follows:

fof(1, axiom, p(a)).
fof(2, axiom, ! [X]: (˜q(X,X))).
fof(3, axiom, ! [X]: (p(X) => (? [Y]: q(X,Y)))).

B Theory-Independent iASP Program

The theory-independent program part with symmetry breaking (cf. Section 3.4), in the
input language of iClingo, is as follows:

#cumulative k.

dom(k).
arg(k,k).

{ assign(T,k) } :- cons(T), order(T,O), k<=O.

:- assign(T,D), assign(T,k), D<k.

#volatile k.

:- cons(T), { assign(T,D):dom(D) } 0.
:- func(T), { assign(T,D):dom(D) } 0.

C Theory-Dependent iASP Program

The rules generated by fmc2iasp for the flat clauses in (3) are as follows:

#cumulative k.

% functions
func(sko(X0)) :- dom(X0), 1 { arg(X0,k) }.
{ assign(sko(X0),Y) } :- dom(X0;Y), 1 { arg(X0;Y,k) }.

% predicates
{ p(X0) } :- dom(X0), 1 { arg(X0,k) }.
{ q(X0,X1) } :- dom(X0;X1), 1 { arg(X0;X1,k) }.

% flat clauses
:- not p(X0), assign(a,X0), dom(X0), 1 { arg(X0,k) }.
:- q(X0,X0), dom(X0), 1 { arg(X0,k) }.
:- p(X0), not q(X0,X1), assign(sko(X0),X1),

dom(X0;X1), 1 { arg(X0;X1,k) }.

#base.

cons(a).
order(a,1).

#hide.
#show assign/2.
#show q/2.
#show p/1.

In order to compute a finite model of (2), we can use this program concatenated with
the rules from Appendix B, as it is described in Section 4.

