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Abstract

We explore the possibility of a logic where
a conclusion substantially improves over its
premise(s): Specifically, we intend to rule out
inference steps such that the premise conveys
more information, in a simpler form, than
the conclusion does.

In fact, most reasoning formalisms, among
them classical logic, come with means for
generating disjunctive or conditional infor-
mation in a fairly arbitrary way.

The basic principle for drawing disjunctive
information is disjunctive weakening, which
allows for deriving ϕ ∨ ψ from ϕ (for any
ψ). Thus, given that “Nancy is married to
Ron”, disjunctive weakening makes us in-
fer that “Nancy is married to Ron or Mon-
ica is married to Bill”. Although the latter
propositions may still be seemingly related,
one should not forget (1) that any arbitrary
proposition can serve as the additional dis-
junct, eg. “Nancy is married to Ron or the
Queen of England is bald”, and (2) that this
can be iterated so that real information is
buried in the generated disjunction among
irrelevant propositions. What is the point in
inferring such disjunctive formulas?

Similar phenomena can be traced back to
conditionalization, which allows for deriving
ψ → ϕ from ϕ (for any ψ).

As a result, we propose a natural deduction
system along the intuitions sketched above.

1 MOTIVATION

Perhaps the most salient feature of reasoning is to
make explicit what is only implicit. Accordingly, the
less obvious a (correct) conclusion is, the more valu-
able is any reasoning by which that conclusion is
drawn. In a sense, some conclusions may then not be
worth inferring. Such a point of view is latent in rele-
vance logics [Anderson and Belnap,1975] because they
reject certain conclusions that weaken some premise in
a peculiar way, as happens with arbitrary condition-
alization for instance, i.e., p ` q → p (where p and q
are propositional symbols). In this respect, relevance
logics pave the way to a logic where only conclusions
worth expressing are drawn. However, relevance log-
ics stop short of fully achieving this idea. This can be
viewed from relevantly valid schemes such as p ` p∨q.
Indeed, one may regard p ∨ q as a dubious weakening
of p, as much as q → p is. In fact, we regard the
scheme p ` p ∨ q as drawing a conclusion which fails
to be significant in view of its premise. What do we
mean by significant here? We mean that the conclu-
sion is not worth stating when its premise is stated:
Once it is clear that “the winning ticket is number
36”, there is no point in making the inquiry whether
“the winning ticket is number 17 or 36”. Much as it
would make no sense to investigate iteratively about
the fact that “the winning ticket is number n1 or. . . or
nk or 36” for k increasing. It does not even matter
that any ni be 36 as well: What is the point of stating
that “the winning ticket is number 36 or the winning
ticket is number 36” when it has already been stated
that “the winning ticket is number 36”? That is, even
the restricted form p ` p ∨ p is a particular form of
dubious weakening.

Hence, we want to explore the possibility of a logic
where a conclusion substantially improves over its
premise(s): Specifically, we intend to rule out infer-
ence steps such that the premise conveys more infor-



mation, in a simpler form, than the conclusion does.

Indeed, we are not aiming at ignoring a conclusion
that is less informative than its premises, provided
that the conclusion has a simpler form. For instance,

p ∨ q, p→ ¬r, s↔ r,¬p→ (q → ¬s) ` ¬s

is an inference whose conclusion ¬s does not exhaust
all the information about p, q, r, s that the premises
provide but is much easier to grasp.

2 TOWARDS SIGNIFICANT
INFERENCE

In contrast to a proof system such as resolution
[Robinson,1965] that has a single inference rule (ignor-
ing factorization), natural deduction [Gentzen,1935] is
traditionally a suitable framework for analyzing infer-
ences. So let us consider the matter of conditionaliza-
tion and disjunctive weakening from the perspective
of natural deduction.

Conditionalization consists of turning an inference of
ψ from some premises including ϕ into a proof of
ϕ → ψ. In extensional logics, the notion of being a
premise is fairly liberal so that it is not required that ϕ
actually serves for deriving ψ. Intensional logics such
as relevance logics insist on ϕ being actually used to
infer ψ: Relevance is then a necessary condition for
ϕ → ψ to be derived. We adopt the same criterion
because it matches also our idea of significance: on
the one hand, ϕ → ψ is certainly significant when-
ever ψ is derived by means of ϕ, and, on the other
hand, if ψ is derived independently of ϕ, then ϕ→ ψ
is both less simple and less insightful than ψ itself. In
natural deduction, generalizing this leads us to requir-
ing that the so-called “auxiliary assumptions” have to
take part in the derivation of the conclusion that is
declared to rely on them.

Disjunctive weakening consists of concluding ϕ ∨ ψ
from ϕ (or similarly from ψ). We have argued above
that this is never justified on its own, although it is
sometimes useful as a device for inferring intermediate
conclusions, as needed for reasoning by cases (whose
principle is that, given ϕ ∨ ψ, if χ is concluded from
ϕ and if χ is concluded from ψ, then χ is inferred).
So, weakening is needed for combining the conclusions
obtained in each case:

p ∨ q, p→ r, q → s ` r ∨ s .

In fact, we permit disjunctive weakening only for de-
riving conclusions drawn by reasoning by cases (see
below).

Technically, banning disjunctive weakening while re-
stricting conditionalization as just indicated could
simply yield a subsystem of a relevance logic. How-
ever, we ban disjunctive weakening according to our
intuitions about significant conclusions and these intu-
itions are different from those behind relevance logics,
in particular, they make us depart from the relevance
view against disjunctive syllogism (viz. ϕ∨ψ,¬ϕ ` ψ).

A well-taken objection by the relevantists is that if
ϕ ∨ ψ holds because ϕ does then applying disjunctive
syllogism is flawed: There is a contradiction between
ϕ and ¬ϕ but ψ is irrelevant in the matter. We agree
that disjunctive syllogism is inappropriate in such a
case but we contend that it is a valuable pattern when
no contradiction is involved. Indeed, our intuitions
about ϕ∨ψ are that the disjunction is really an alter-
native between ϕ and ψ so that it actually is about ϕ
as well as about ψ. Accordingly, it is not about just
ϕ or about just ψ and this warrants that if either case
is denied then the other must hold.

As appears from the preceding discussion, significant
inference is paraconsistent (i.e., the so-called ex falso
ϕ,¬ϕ ` ψ does not hold). The intuitive notion of a
significant conclusion appeals for paraconsistency in
at least two different ways. One is that nothing is
more informative or substantially simpler than ϕ∧¬ϕ.
Another is that, should paraconsistency be ruled out,
then everything would be concluded from a contradic-
tion (meaning that everything is significant, which is
antinomic).

The issue of paraconsistency naturally leads us to that
of analyzing the standard deduction of the ex falso:

ϕ

ϕ ∨ ψ
1
¬ϕ

ψ
2

Relevance logics preclude such a deduction because
they rule out disjunctive syllogism (step (2)). A dif-
ferent perspective is to rule out disjunctive weakening
(step (1)), as we advocate. The last option is to allow
for both inference schemes but to preclude transitivity
of inference. This is the path taken by Tennant in his
most interesting work on entailment [Tennant,1987].
Unfortunately, failure of transitivity has major draw-
backs.

Also, it is worth paying attention to the interaction
between disjunction and implication embodied by the
formula (ϕ ∨ ψ) → χ. Let us repeat that, for us,
p ∨ q really is an alternative between p and q so that
p ∨ q is actually about p as well as about q. For this



reason, (ϕ ∨ ψ) → χ is specifically meant to deduce
χ from ϕ ∨ ψ whereas ϕ → χ and ψ → χ serve the
same purpose with respect to ϕ and ψ. Accordingly,
(ϕ∨ψ)→ χ together with ϕ, or similarly together with
ψ, does not make χ to be deduced. When thinking of
it, all this is the more sensible and only is the prejudice
attached to unlimited disjunctive weakening making
the usual equivalence of (ϕ ∨ ψ)→ χ with the couple
of formulas ϕ→ χ and ψ → χ sound all right.

Of course, the notion of significance is intuitive so not
everything is clear-cut about significant conclusions.
Nonetheless, the above discussion gives us enough con-
straints to define a first inference system for significant
reasoning.

3 NATURAL DEDUCTION

The reader familiar with natural deduction can skip
this section.

Throughout the text, we focus on trees in which each
node is labeled with a formula. We call them trees of
formulas (actually, we rather tend to identify a node
with its labeling formula).

It is assumed that every link (in fact, hyper-link) re-
lating a parent node to its children is uniquely deter-
mined by a so-called identifier (which we take to be a
natural number).

Given a tree of formulas, we also say that a formula
A is an hypothesis for a node N iff A is a leaf in the
subtree rooted at N . By abuse of language, we say
that A is an hypothesis for B when B is the labeling
formula of N .

We assume a notational device called discharge such
that any leaf (in a tree of formulas) can be marked as
“discharged”. Such a leaf is said to be a discharged
formula, as is usual, even though a discharged formula
refers to an occurrence: Not all leaves labeled with
the same formula need have the same status regarding
discharge.

Intuitively, discharged formulas are auxiliary hypothe-
ses that serve to deduce intermediate conclusions
whereas the final conclusion does not depend on these
formulas. In contrast, the final conclusion depends on
all non-discharged hypotheses.

As usual, inference rules are used to form trees of for-
mulas corresponding to a deduction. Here, all the
inference rules have the following general form:

A1 · · ·An
C

{
given A1 and · · · and An, deduce C
possibly subject to some condition(s)

where A1, . . . , An are the assumptions of the rule and
C is the consequence of the rule.

Definition 1 A derivation Π of a formula C from a
set of formulas P is a finite tree of formulas such that:

• The root node of Π is C.

• Each leaf of Π is either a discharged formula or
a formula in P (or an axiom, if any).

• Each node B of Π has A1, . . . , An as its child
nodes only if there exists an inference rule of
which A1, . . . , An are the assumptions and B the
consequence (all constraints, if any, attached to
the rule must be met).

• Discharge marks in Π only occur as per the stip-
ulations (§n) stated for (I →) and (E ∨) (see be-
low).

We write P ` C whenever we have such a derivation
Π.

In a derivation, every link is thus to be identified
with an instance of an inference rule (which in turn is
uniquely determined by the identifier of the link under
consideration).

At some point, we will need to consider normal deriva-
tions [Prawitz,1965] where the intuitive meaning of a
normal derivation is that no node in it is both an as-
sumption of the elimination rule yielding its parent
node and the conclusion of the corresponding intro-
duction rule yielding one of its child nodes:

Formally, a maximum segment in a derivation is a
sub-branch {A1, . . . , Ak} (starting with A1 and ending
with Ak) such that

1. A1 is the consequence of an introduction rule.

2. For each i < k, Ai is a minor assumption of a
(E ∨) rule.

3. Ak is a major assumption of an elimination rule.

Ak is a maximum formula and k is the length of the
maximum segment.

A closer look at the following inference system reveals
that the introduction and elimination rule referred to



in 1. and 3. are necessarily applied to the same con-
nective.

Finally, a derivation is normal iff it contains no max-
imum segment.

4 NATURAL DEDUCTION FOR
SIGNIFICANT REASONING

We adopt a restricted set of logical symbols: ⊥ (absur-
dity), ∨ (disjunction), → (implication). First of all,
there is no negation. Formulas ϕ → ⊥ are then used
to overcome the absence of explicit negation. Second,
there is no conjunction. Instead, sets of formulas are
to be interpreted conjunctively. Then, the disjunc-
tion of two sets of formulas Φ = {ϕ1, . . . , ϕn} and
Ψ = {ψ1, . . . , ψm} can be given the form of the set

{ϕi ∨ ψj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

And, ϕ1 → (. . .→ (ϕn → ψi) . . .) (for i = 1..m) is the
way for a series of formula to state that each ψi (for
i = 1..m) follows from ϕ1, . . . , ϕn taken together (in
any order, actually).

In order to avoid heavy notation, we follow the con-
vention that ∨ binds stronger than →.

We adapt a system due to Prawitz [1965] with its no-
tion of a minor assumption for an inference rule (it
is either of ϕ,ψ1, ψ2 in the list below) and of a major
assumption for an inference rule (any other assump-
tion).

Our system consists of the following five inference
rules:

Introduction rules

(I →)
ψ0

ϕ0 → ψ0
(§0)

(Il∨)
ϕ1

ϕ1 ∨ ϕ2
(†) (Ir∨)

ϕ2

ϕ1 ∨ ϕ2
(†)

Elimination rules

(E →)
ϕ ϕ→ ψ

ψ

(E ∨)
ϕ1 ∨ ϕ2 ψ1 ψ2

ψ
(‡) (§1)

Simplification rule

(El ∨⊥)
ψ ∨ ⊥
ψ

(Er ∨⊥)
⊥ ∨ ψ
ψ

The symbols (†), (‡), and (§n) indicate that the rules
are subject to the following provisos:

Proviso (†): It must be the case that ϕ1 ∨ ϕ2 is a
minor assumption of (E ∨).

Proviso (‡): It must be the case that ψ = ψ1 = ψ2.
Moreover, if ψ1 and ψ2 are conclusions of (I∨)
rules then one of these must be a (Il∨) rule and
the other must be a (Ir∨) rule.

Proviso (§n): For i = n..2n, it must be the case that
ϕi is an hypothesis for ψi. Then, any occurrence
of ϕi as an hypothesis for ψi inherits the identifier
of the current instance of the inference rule as its
discharge mark.

The application of these provisos is discussed in Sec-
tion 5.

Axioms for associativity of ∨ can be introduced freely:

((ϕ0 ∨ ϕ1) ∨ ϕ2)→ (ϕ0 ∨ (ϕ1 ∨ ϕ2))

and

(ϕ0 ∨ (ϕ1 ∨ ϕ2))→ ((ϕ0 ∨ ϕ1) ∨ ϕ2) .

A classical extension for the above intuitionistic ver-
sion can be obtained by adding the axiom for excluded
middle: ϕ ∨ (ϕ→ ⊥).

Observe that all introduction and elimination rules
are standard except for the provisos. However, the
above system is unusual in several respects. First,
there is a ⊥-related simplification rule for ∨. Second,
as can be seen from the examples in Section 5, subtrees
in a derivation, when taken in isolation, need not be
derivations themselves.

5 EXAMPLES AND MAIN RESULT

An illustrative derivation involving discharge is the
following one:

(1)ϕ ϕ→ ψ

ψ
(E→)

(1)ϕ ϕ→ (ψ → ⊥)
ψ → ⊥

(E→)

⊥
(E→)

ϕ→ ⊥
(1) (I→)



The derivation “starts” with letting ϕ → ψ and ϕ →
(ψ → ⊥) as well as two occurrences of ϕ (at first,
ignore the superscript in front of these) be hypotheses
(for the time being). Now, the rule (E →) “is applied”
to yield ψ on the one hand and ψ → ⊥ on the other.
Then, (E →) is applied once more to yield ⊥. Next,
the rule (I →) is applied to yield ϕ → ⊥. All in
all, the final conclusion ϕ → (ϕ → ⊥) depends on
the non-discharged hypotheses, which are ϕ→ ψ and
ϕ→ (ψ → ⊥). As for notation, we write ϕ→ ψ,ϕ→
(ψ → ⊥) ` ϕ→ (ϕ→ ⊥).

The fact that the occurrences of ϕ are discharged when
applying the rule (I →) is indicated by (1) next to the
(I →) bar and by (1) as a superscript in front of the
occurrences of ϕ. That is, (1) is the identifier for that
instance of (I →) and is also the discharge mark for
the occurrences of ϕ.

Still regarding discharge, the proviso for the (I →)
rule discriminates

(1)ϕ
ϕ→ ϕ

(1) (I→)

which is a derivation in our system, from

ψ

ϕ→ ψ
(I→)

which is not derivable in our system.

The proviso for the (I∨) rule lets

ψ ∨ ϕ
(1)ψ

ϕ ∨ ψ
(Ir∨)

(1)ϕ

ϕ ∨ ψ
(Il∨)

ϕ ∨ ψ
(1) (E∨)

be a derivation in our system, whereas

ϕ

ϕ ∨ ψ
(Il∨)

is not derivable in our system.

For the record, here is a derivation of disjunctive syl-
logism:

ϕ ∨ ψ

(1)ϕ ϕ→ ⊥
⊥

(E→)

ψ ∨ ⊥
(Ir∨)

(1)ψ

ψ ∨ ⊥
(Il∨)

ψ ∨ ⊥
(1) (E ∨)

ψ
(El ∨⊥)

Apart from disjunctive syllogism, the following deriv-
able inferences are of interest:

ϕ1 ∨ ϕ2 ϕ1 → ψ1 ϕ2 → ψ2

ψ1 ∨ ψ2

ϕ→ (ψ → χ)
ψ → (ϕ→ χ)

ϕ→ ψ ψ → χ

ϕ→ χ

ϕ→ ψ ψ → ⊥
ϕ→ ⊥

In fact, the last inference is modus tollens. Similarly,
one may derive all other forms of reasoning by contra-
position.

As common with natural deduction systems, the most
fundamental property is that of normalization (be-
cause it corresponds to cut-elimination in sequent cal-
culi):

Theorem 1 (Normalization) Every derivation can
be transformed into a normal derivation (with the
same premises and conclusion).

In our case, normalization yields additionally the fol-
lowing salient features:

Corollary 1 (Transitivity) ϕ ` ψ and ψ ` χ im-
plies ϕ ` χ for all ϕ,ψ, χ.

Corollary 2 (Paraconsistency) For all ϕ there ex-
ists ψ such that ϕ,ϕ→ ⊥ 6` ψ.

Corollary 2 is usually expressed as ϕ,¬ϕ 6` ψ.

Furthermore, observe that

ϕ ∨ ψ,ϕ→ ⊥ ` ψ,
ϕ, ϕ→ ⊥ 6` ψ,

ϕ, ϕ ∨ ψ,ϕ→ ⊥ ` ψ.

6 DISCUSSION

All rules in our system are either restricted forms of
rules for classical logic or rules derivable in classical
logic. Thus, our system is a subsystem of natural



deduction for classical logic. Let us look at some of
the inferences that are no longer derivable.

First, tautologies corresponding to conditionalization
and disjunctive weakening are no longer derivable in
our system:

6` ϕ→ (ϕ ∨ ψ),

6` ϕ→ (ψ → ϕ).

The latter comes together with the non-derivability of
the classical tautology

6` (ϕ→ ψ) ∨ (ψ → ϕ),

for which it has then no reason to be supported, since
it relies on arbitrary conditionalization.

As was to be expected from the discussion at the end
of Section 2,

ϕ1 (ϕ1 ∨ ϕ2)→ ψ

ψ

is not derivable. Analogously, the following inference
is not valid in our system:

ϕ1 (ϕ2 → ϕ1)→ ψ

ψ

Similarly to the case of disjunction, where (ϕ∨ψ)→ χ
is not related to ϕ→ χ and ψ → χ, we must therefore
distinguish between (ψ → ϕ) → χ and ϕ → χ. In
accord with the discussion at the end of Section 2,
we differentiate between a formula q and a formula
p→ q that links information about q with that about
p. Therefore, we also distinguish between inferences
drawn from q and p→ q.

The most surprising case is presumably the failure of

ϕ→ ψ

ϕ→ (ϕ→ ψ)

but more relaxed technical conditions may turn it into
a valid scheme (this is further discussed in the conclu-
sion).

Adapting traditional natural deduction had us make
an implicit decision and that is that the system is
monotonic although this property did not arise from
our discussion about significant reasoning. Consider a

tautology such as p→ p. It certainly is significant in-
formation to conclude when no premise is given. This
is no longer the case, should the premise p be given.
Does this mean that p→ p must then be withdrawn?
We think it would be too strict a principle. Rather,
we prefer to consider as significant any conclusion that
could be viewed as such for some reason (in particular,
in light of part of the given premises). The philoso-
phy here would rather be that we can dispense with
drawing some inferences but not to rule them out al-
together.

Our system seems promising whenever it comes to
knowledge representation problems involving (some
extent of) relevance. Let us illustrate this by con-
sidering a classically valid yet counterintuitive in-
ference that has been identified by Stephen Read
in [Read,1989].

“Roy has claimed that John was in Edin-
burgh on a certain day, and Crispin has de-
nied it.”

Now, consider

1. “If John was in Edinburgh, Roy was right.”

2. “It is not the case that if Crispin was right, so
was Roy.”

3. “If John was in Edinburgh, Crispin was right.”

The latter sentence is false but the former two are true.
This gives us an invalid argument (all its premises
are true and its conclusion is false). However, the
argument is classically valid because

ϕ→ ψ,¬(χ→ ψ) ` ϕ→ χ

holds in classical logic. To see this, consider the fol-
lowing derivation.

(χ→ ψ)→ ⊥

(3)ϕ ϕ→ ψ

ψ
(E→)

χ→ ψ
(1) (I→)

⊥
(E→)

(χ→ ⊥)→ ⊥
(2) (I→)

χ
(E¬¬)

ϕ→ χ
(3) (I→)

This derivation is invalid in our systems since it vi-
olates proviso (§0) at (1) (I →) and (2) (I →). In
a classical natural deduction system the inference



ϕ → ψ,¬(χ → ψ) ` ϕ → χ is always established
by applying arbitrary conditionalization, which is dis-
allowed in our system as in relevance logics.

However, relevance logics only overlap with the re-
quirements of a notion of significant inference. On
the one hand, disjunctive syllogism is valid in our sys-
tem but is invalid in relevance logics. On the other
hand, disjunctive weakening is invalid in our system
but is valid in relevance logics (including first-degree
entailment [Anderson and Belnap,1975]).

Our system also bears some connections with relat-
edness [Epstein,1979; Krajewski,1986] but it is closer
to Parry’s [1989] and even closer to Tennant’s [1987].
However, Tennant is strongly concerned with rele-
vance when implication is involved and he ignores the
matter when it comes to disjunction. Also, Tennant’s
system fails transitivity but ours satisfies it (namely,
ϕ ` ψ and ψ ` χ yields ϕ ` χ).

As already mentioned, negation can be introduced in
our system by way of the usual implication to absur-
dity. In fact, if we take

¬ϕ def= ϕ→ ⊥

then the usual inferences hold (except that the de-
generate case where ⊥ does not depend on (1)ϕ is not
allowed here):

(1)ϕ....
⊥

ϕ→ ⊥
(1) (I→)

⇐⇒

(1)ϕ....
⊥
¬ϕ (1) (I¬)

and

ϕ→ ⊥ ϕ

⊥
(E→) ⇐⇒

¬ϕ ϕ

⊥
(E¬)

Turning to conjunction,

ϕ ∧ ψ def= ((ϕ→ ⊥) ∨ (ψ → ⊥))→ ⊥

only the usual intuitionistic inference holds, as shown
in Figure 1, and the result is not as meaningful as
in the case of negation, since the corresponding elim-
ination rule is not derivable in our system. As with
intuitionistic logic [Dummett,1977], there is no way of
deriving ϕ from ¬(¬ϕ ∨ ¬ψ). Among others, this is
a reason why we advocate modeling conjunctions by
appeal to sets, as described at the start of Section 4.

7 CONCLUSION

With significant reasoning, we have elaborated upon a
new notion of reasoning that is distinct from existing
approaches, although there are close ties to relevance
logic and intuitionistic logic.

Our contribution can thus be looked at from two per-
spectives: First, we have identified and elaborated
upon the notion of significant reasoning. And sec-
ond, we have defined a version of natural deduction
for significant reasoning.

Of course, the notion of significance is intuitive so that
not everything is clear-cut about significant conclu-
sions. There are several places where another choice
could make sense. In fact, our choices were motivated
by the strict realization of our intuitions discussed in
Section 2. For instance, we could be less strict about
the policy for discharging hypotheses so that ϕ → ψ
yields ϕ → (ϕ → ψ). (Although this is characteristic
for linear logic [Girard,1987], it should be clear that
our system has nothing in common with resource log-
ics.) Also, we could consider to get closer to familiar
practice so that ϕ and (ϕ∨ ψ)→ χ yield χ (although
we still disapprove of such an inference).

As discussed in Section 5, our system seems promising
whenever it comes to knowledge representation prob-
lems involving (some extent of) relevance. As pointed
out by one of the anonymous referees, this is of in-
terest for the definition of reasoning capabilities for
agents in a multi agent systems.

An important issue of future research consists of
elaborating appropriate semantical underpinnings. A
promising starting point could be to adapt the se-
mantics of relatedness logic [Epstein,1979]. That is,
models would be equipped with relations reflecting a
notion of significance among propositions.

A SOME TECHNICALITIES

Let F be the set of all formulas of the language.

A tree of formulas is a triple 〈I, T, f〉 where

1. I is a finite initial portion of the numerals
{1, 2, 3, . . .} for the natural numbers

2. T is a subset of the free monoid I∗ such that:

(a) if uv ∈ T then u ∈ T
(b) if un ∈ T then um ∈ T for m < n

3. f is a function from T to F



(2)((ϕ→ ⊥) ∨ (ψ → ⊥))

(1)(ϕ→ ⊥) ϕ

⊥

(1)(ψ → ⊥) ψ

⊥
⊥

(1) (E ∨)

((ϕ→ ⊥) ∨ (ψ → ⊥))→ ⊥
(2) (I→)

⇐⇒ ϕ ψ

ϕ ∧ ψ
(I∧)

Figure 1: Derivation of adjunction.

Each w ∈ T is a node of the tree. The tree is finite
iff it only has finitely many nodes (i.e., T is finite).
The empty tree has no node (i.e., T = ∅). The empty
word ε is the root of the tree (on condition that the
tree is non-empty, T 6= ∅). A leaf of the tree is a node
w such that w1 6∈ T . If w ∈ T and wn ∈ T then wn
is a child node of w and w is the parent node of wn.

A branch of the tree 〈I, T, f〉 is any B ⊆ T such that:

1. ε ∈ B

2. if u ∈ B and u1 ∈ T then there exists exactly one
n ∈ I such that un ∈ B

Given a branch B of the tree 〈I, T, f〉, a sub-branch
starting with u ∈ B and ending with v ∈ B is any
non-empty B′ ⊆ B such that w ∈ B is a member of
B′ iff w is a (possibly improper) suffix of u and v is a
(possibly improper) prefix of w.

Let 〈I, T, f〉 with u ∈ T . The subtree rooted at u is
the tree 〈I, T ′, f ′〉 where T ′ = {v | uv ∈ T} and
f ′(v) = f(uv) for all v ∈ T ′.

B PROOF OF NORMALIZATION,
PARACONSISTENCY, AND
TRANSITIVITY

Theorem 1 (Normalization) Every derivation can
be transformed into a normal derivation (with the
same premises and conclusion).

Corollary 1 (Transitivity) ϕ ` ψ and ψ ` χ im-
plies ϕ ` χ for all ϕ,ψ, χ.

Corollary 2 (Paraconsistency) For all ϕ there ex-
ists ψ such that ϕ,¬ϕ 6` ψ.

We prove that if a formula ψ concludes a derivation in
which a maximal formula ϕ occurs then there exists a
normal derivation of ψ.

We first show how to reduce the length of maximum
segments when necessary: Considering a maximum

segment whose maximum formula is lowest in a branch
(cf. the lowest occurrence of T below), apply the fol-
lowing permutation

∆
X ∨ Y

Σ1

T
Σ2

T
T
Π
Z
Θ

=⇒ ∆
X ∨ Y

Σ1

T
Π
Z

Σ2

T
Π
Z

Z
Θ

In the resulting derivation, there can be no maxi-
mal segment through X ∨ Y . Therefore, there can
be no new maximum segment in the leftmost branch.
Similarly with the other two branches. However, the
length of the maximum segment we considered is now
decreased by one. The process can be iterated until
the desired length is obtained for any maximal seg-
ment(s) we consider.

When considering a maximal segment of length 1
whose maximal formula is X → Y , we apply the fol-
lowing transformation:

(1)X
Σ2

Y
X → Y

(1) (I→) Σ1

X
Y
Π
Z

=⇒

Σ1

X
Σ2

Y
Π
Z

Note that all formulas discharged in Σ1 or Σ2 are
still discharged in the resulting derivation (if n oc-
currences of X are discharged within Σ2 then the
resulting derivation is to display n additional copies
of Σ1). Of course, no new discharge is introduced.
Clearly, every other proviso of the rules is also satis-
fied. Therefore, we have obtained a derivation with
the same hypotheses and the same conclusion.

Observe that there can be a new maximal segment (in
the resulting derivation) only if X or Y is involved in
it. Further observe that there can be a new maximal
segment involving X only if either X or a formula
in Σ2 is a maximal formula. Whatever is the case,
the definition of a maximal segment forces the new



maximal formula to be an occurrence of X. The same
applies to Y wrt Π. All in all, the (at most two) new
maximal formulas X and Y are sub-formulas of the
initial maximal formula X → Y .

When considering a maximal segment of length 2 (cf.
(†)) whose maximal formula is X ∨ Y , we apply the
following transformation:

∆
W

Σ1

X
X ∨ Y

Σ2

Y
X ∨ Y

X ∨ Y

(1)X
Θ1

T

(1)Y
Θ2

T
T

(1) (E∨)

Π
Z

=⇒ ∆
W

Σ1

X
Θ1

T

Σ2

Y
Θ2

T
T
Π
Z

Note that all formulas discharged in Σ1 or Σ2 are still
discharged in the resulting derivation (observe that, in
the original derivation, discharging within any Θi an
hypothesis introduced in some Σj is incorrect). Also,
all formulas introduced in Θ1 and Θ2, if discharged,
are still discharged in the resulting derivation. Simi-
larly, every other proviso of the rules is also satisfied.
Again, we obtain a derivation with the same hypothe-
ses and the same conclusion.

Observe that there can be a new maximal segment (in
the resulting derivation) only if X or Y is involved in
it. Further observe that there can be a new maximal
segment involving X only if either X or a formula
in Θ1 is a maximal formula. Whatever is the case,
the definition of a maximal segment forces the new
maximal formula to be an occurrence of X. The same
applies to Y wrt Θ2. All in all, the (at most two) new
maximal formulas X and Y are sub-formulas of the
initial maximal formula X ∨ Y .

In the resulting derivation, only X and Y can be new
maximal formulas (whether the initial maximal for-
mula is X → Y or X ∨ Y ). So, the transformation
either decreases the number of maximal formulas or
replaces a maximal formula ϕ by simpler maximal for-
mulas (actually, one or two sub-formulas of ϕ). Of
course, formulas have a finite number of occurrences
of the connectives and atomic formulas never are max-
imal formulas. Repeatedly applying the transforma-
tion is then a finite process, ending with a derivation
in which no maximal formula occurs.

For the purpose of applying this theorem together
with a result due to Tennant, we consider the case
where the (E∨) rule followed by the simplification rule
can be normalized in a special (E∨) rule as follows:
When some minor assumption ψ1 or ψ2 of (E∨) is ⊥,
then the conclusion ψ is a copy of the other minor
assumption. Clearly, the above transformation still
gives us the desired outcome and the proof is over.

In view of the system defined by Tennant in [1987, p.
672], this theorem yields the desired result that our
system is paraconsistent.
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