
A General Approach to Speci�city in Default Reasoning

James P. Delgrande

School of Computing Science

Simon Fraser University

Burnaby, B.C.

Canada V5A 1S6

jim@cs.sfu.ca

Torsten H. Schaub

IRISA

Campus de Beaulieu

35042 Rennes cedex

France

torsten@irisa.fr

Abstract

We present an approach addressing the no-

tion of speci�city, or of preferring a more spe-

ci�c default sentence over a less speci�c one,

in commonsense reasoning. Historically, ap-

proaches have either been too weak to pro-

vide a full account of defeasible reasoning

while accounting for speci�city, or else have

been too strong and fail to enforce speci�city.

Our approach is to use the techniques of a

weak system, as exempli�ed by System Z,

to isolate minimal sets of con
icting defaults.

From the speci�city information intrinsic in

these sets, a default theory in a target lan-

guage is speci�ed. In this paper we primar-

ily deal with theories expressed (ultimately)

in Default Logic. However other approaches

would do just as well, as we illustrate by also

considering Autoepistemic Logic and variants

of Default Logic. In our approach, the prob-

lems of weak systems, such as lack of ade-

quate property inheritance and (occasional)

unwanted speci�city relations, are avoided.

Also, di�culties inherent with stronger sys-

tems, in particular, lack of speci�city are ad-

dressed. This work di�ers from previous work

in specifying priorities in Default Logic, in

that we obtain a theory expressed in Default

Logic, rather than ordered sets of rules re-

quiring a modi�cation to Default Logic.

1 Introduction

A general problem in nonmonotonic reasoning is that

speci�city among default assertions is di�cult to ob-

tain in a fully satisfactory manner. Consider for ex-

ample where birds 
y, birds have wings, penguins are

birds, and penguins don't 
y. We can write this as:

B ! F; B !W; P ! B; P ! :F: (1)

From this theory, given that P is true, one would want

to conclude :F by default. Intuitively, being a pen-

guin is a more speci�c notion than that of being a bird,

and, in the case of a con
ict, we would want to use the

more speci�c default. Also, given that P is true one

would want to conclude that W was true, and so pen-

guins have wings by virtue of being birds.

Autoepistemic Logic

[

Moore, 1985

]

, Circumscription

[

McCarthy, 1980

]

, and Default Logic

[

Reiter, 1980

]

are

examples of approaches that are overly permissive. For

example, in the obvious representation of the above

theory in Default Logic, we obtain one extension (i.e.

a set of default conclusions) in which :F is true and

another one in which F is true. One is required to use

so-called semi-normal defaults

1

to eliminate the second

extension.

[

Reiter and Criscuolo, 1981

]

, for example,

gives a list of ways of transforming default theories so

that unwanted extensions arising from speci�c \inter-

actions" are eliminated.

In the past few years there has been some consen-

sus as to what should constitute a basic system of

default properties. This, arguably, is illustrated by

the convergence (or at least similarity among) sys-

tems such as those developed in

[

Delgrande, 1987;

Kraus et al., 1990; Pearl, 1990; Boutilier, 1992a;

Ge�ner and Pearl, 1992

]

, yet which are derived ac-

cording to seemingly disparate intuitions. A general

problem with these accounts however is that they are

too weak. Thus in a conditional logic, even though

a bird may be assumed to 
y by default (i.e. in the

preceding theory, we only derive F but not :F ), a

green bird cannot be assumed to 
y by default (since

it is conceivable that greenness is relevant to 
ight).

In these systems some mechanism is required to assert

that properties not known to be relevant are irrelevant.

This is done in conditional logics by meta-theoretic

assumptions, and in probabilistic accounts by inde-

pendence assumptions. In other approaches there are

problems concerning property inheritance, and so one

may not obtain the inference that a penguin has wings.

While various solutions have been proposed, none are

entirely satisfactory.

1

See Section 2.2 for a de�nition of semi-normal defaults

and the way they deal with unwanted extensions.



Our approach is to use the speci�city information

given by a \weak" system to generate a default the-

ory in a \strong" system, where speci�city and prop-

erty inheritance are satisfactorily handled. Hence we

address two related but essentially independent ques-

tions:

1. How can a (so-called) weak system be used to iso-

late speci�c interacting defaults?

2. How can this information be uniformly incorpo-

rated in a theory expressed in a (so-called) strong

system?

For concreteness, we develop the approach by consid-

ering System Z

[

Pearl, 1990

]

as an example of a weak

system of defeasible reasoning, and Default Logic (DL)

[

Reiter, 1980

]

as a strong system; however in Section 6

we consider the application of the approach to other

systems. The general idea is to combine the techniques

of System Z and DL in a principled fashion to obtain

a general hybrid approach for defeasible reasoning.

We begin with a set of default conditionals R = fr j

�

r

! �

r

g where each �

r

and �

r

are arbitrary proposi-

tional formulas. By means of System Z we isolate min-

imally con
icting sets of defaults with di�ering speci-

�cities; intuitively the defaults in such a set should

never be simultaneously applicable. Notably we do not

use the full ordering given by System Z (which has dif-

�culties of its own, as described in the next section),

but rather appeal to the techniques of this approach to

isolate con
icting subsets of the defaults. In a second

step, we use the derived speci�city information to pro-

duce a set of semi-normal default rules in DL from the

rules in R, in such a way that speci�city is suitably

handled. The framework described here is intended

to be a general approach to \compiling" default theo-

ries expressed by a set of conditionals, using intuitions

from a weak approach (exempli�ed by System Z), into

a strong approach (exempli�ed by DL). The choice

of DL is of course not arbitrary, since it is very well

studied and there exist implementations of DL.

The speci�c approach then can be looked at from two

perspectives. First, DL is used to circumvent prob-

lems in System Z, including the facts that inheritance

isn't possible across con
icting subclasses and that un-

wanted speci�city information may be obtained. Sec-

ond, System Z is used to address problems in DL that

arise from interacting defaults. That is, using Sys-

tem Z, we construct theories in DL wherein speci�city

is appropriately handled. Hence, this paper might in

some respects be looked on as a successor to

[

Reiter

and Criscuolo, 1981

]

, in that the situations addressed

here subsume the set of modi�cations suggested in that

paper. Moreover, the present approach provides a jus-

ti�cation for these modi�cations.

Speci�city information is thus obtained by appeal to

an extant theory of defaults (here, System Z), and not

some a priori ordering. In addition, and in contrast to

previous approaches, speci�city is added to DL with-

out changing the machinery of DL. That is, the resul-

tant default theory is a theory in DL, and not a set

of ordered default rules requiring modi�cations to DL.

Finally, we do not produce a \global" partial order (or

orders) of rules but rather \locally" distinguish con-


icting rules. Lastly, speci�city con
icts are resolved,

leaving unchanged other con
icts (as are found for ex-

ample in a \Nixon diamond").

In the next section we brie
y introduce System Z, De-

fault Logic, and related work. Section 3 introduces and

develops our approach, while Sections 4 and 5 provide

the formal details. Section 6 considers the application

of the approach to other systems. Section 7 gives a

brief summary.

2 Background

2.1 System Z

In System Z a set of rules R representing default con-

ditionals is partitioned into an ordered list of mutu-

ally exclusive sets of rules R

0

; : : : ; R

n

: Lower ranked

rules are considered more normal (or less speci�c)

than higher ranked rules. Rules appearing in lower-

ranked sets are compatible with those appearing in

higher-ranked sets, whereas rules appearing in higher-

ranked sets con
ict in some fashion with rules appear-

ing in lower-ranked sets. One begins then with a set

R = fr j �

r

! �

r

g where each �

r

and �

r

are proposi-

tional formulas over a �nite alphabet.

2

A set R

0

� R

tolerates a rule r if f�

r

^ �

r

g [ R

0

is satis�able. We

assume in what follows that R is Z-consistent,

3

i.e. for

every non-empty R

0

� R, some r

0

2 R

0

is tolerated by

R

0

� fr

0

g. Using this notion of tolerance, an ordering

on the rules in R is de�ned:

1. First, �nd all rules tolerated by R, and call this

subset R

0

.

2. Next, �nd all rules tolerated by R �R

0

, and call

this subset R

1

.

3. Continue in this fashion until all rules have been

accounted for.

In this way, we obtain a partition (R

0

; : : : ; R

n

) of R,

where R

i

= fr j r is tolerated by R�R

0

� : : :�R

i�1

g

for 1 � i � n. More generally, we write R

i

to denote

the ith set of rules in the partition of a set of condition-

als R. A set of rules R is called trivial i� its partition

consists only of a single set of rules.

The rank of rule r, written Z(r), is given by: Z(r) =

i i� r 2 R

i

: Every model M of R is given a Z-rank,

Z(M ), according to the highest ranked rule it falsi�es:

Z(M ) = minf n jM j= �

r

� �

r

; Z(r) � ng:

2

The inclusion of strict rules is straightforward

[

Del-

grande and Schaub, 1993

]

but for simplicity is omitted here.

3

Pearl uses the term consistent

[

Pearl, 1990

]

.



For our initial set of rules in (1), we obtain the ordering

R

0

= fB ! F;B !Wg; (2)

R

1

= fP ! B;P ! :Fg: (3)

So the Z rank of the model in which B, :F , W , and P

are true is 1, since the rule B ! F is falsi�ed. The Z

rank of the model in which B, F , W , and P are true

is 2, since the rule P ! :F is falsi�ed.

The rank of an arbitrary formula ' is de�ned as the

lowest Z-rank of all models satisfying ': Z(') =

minfZ(M ) j M j= 'g: Finally we can de�ne a form

of default entailment, which is called 1-entailment, as

follows: A formula' is said to 1-entail � in the context

R, written ' `

1

�, i� Z(' ^ �) < Z(' ^ :�):

This gives a form of default inference that is weaker

than Default Logic, yet has some very nice properties.

In the preceding example, we obtain that P `

1

:F ,

and P `

1

B and so penguins don't 
y, but are birds.

Unlike DL, we cannot infer that penguins 
y, i.e. P 6`

1

F . Irrelevant facts are also handled well (unlike con-

ditional logics), and for example we have B ^G `

1

F ,

so green birds 
y. There are two weaknesses with this

approach. First, one cannot inherit properties across

exceptional subclasses. So one cannot conclude that

penguins have wings (even though penguins are birds

and birds have wings), i.e. P 6`

1

W . Second, undesir-

able speci�cities are sometimes obtained. For exam-

ple, consider where we add to our initial example (1)

the default that large animals are calm. We get the

Z-ordering:

R

0

= fB ! F; B !W; L! Cg; (4)

R

1

= fP ! B; P ! :Fg: (5)

Intuitively L ! C is irrelevant to the other defaults,

yet one obtains the default conclusion that penguins

aren't large, since Z(L ^ :P ) < Z(L ^ P ).

[

Goldszmidt and Pearl, 1990

]

has shown that 1-

entailment is equivalent to rational closure

[

Kraus et

al., 1990

]

;

[

Boutilier, 1992a

]

has shown that CO

�

is

equivalent to 1-entailment and that N

[

Delgrande,

1987

]

and CT4 are equivalent to the more basic notion

of 0-entailment, proposed in

[

Pearl, 1989

]

as a \conser-

vative core" for default reasoning. Consequently, given

this \locus" of closely-related systems, each based on

distinct semantic intuitions, these systems (of which

we have chosen System Z as exemplar) would seem to

agree on a principled minimal approach to defaults.

2.2 Default Logic

In Default Logic, classical logic is augmented by de-

fault rules of the form

� : �

!

: Even though almost all

\naturally occurring" default rules are normal, i.e. of

the form

� : �

�

; semi-normal default rules, of the form

� : �^!

�

; are required for establishing precedence in the

case of \interacting" defaults

[

Reiter and Criscuolo,

1981

]

(see below). Default rules induce one or more

extensions of an initial set of facts. Given a set of facts

W and a set of default rules D, any such extension E

is a deductively closed set of formulas containing W

such that, for any

� : �

!

2 D; if � 2 E and :� 62 E

then ! 2 E:

De�nition 1 Let (D;W ) be a default theory and let

E be a set of formulas. De�ne E

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� : �

!

2 D;� 2 E

i

;:� 62 E

o

:

Then E is an extension for (D;W ) i� E =

S

1

i=0

E

i

.

The above procedure is not strictly iterative since E

appears in the speci�cation of E

i+1

.

Consider our birds example (1); in DL, it can be

expressed as:

4
B :F

F

;

B :W

W

;

P :B

B

;

P ::F

:F

: Given that

P is true, we obtain two extensions: one in which

P;B;W; and F are true and another one in which

P;B;W; and :F are true. Intuitively we want only the

last extension, since the more speci�c default

P ::F

:F

should take precedence over the less speci�c default

B :F

F

: The usual �x is to establish a precedence among

these two interacting defaults by adding the exception

P to the justi�cation of the less speci�c default rule.

This amounts to replacing

B :F

F

by

B :F^:P

F

which then

yields the desired result, namely a single extension con-

taining P;B;W; and :F .

2.3 Related Work

Arguably speci�city per se was �rst speci�cally ad-

dressed in default reasoning in

[

Poole, 1985

]

, although

it has of course appeared earlier. Of the so-called

\weak" approaches, as mentioned, we could have as

easily used approaches described in

[

Boutilier, 1992a

]

or

[

Kraus et al., 1990

]

as that of System Z; however

speci�city, as it appears in System Z is particularly

straightforwardly describable. Other approaches are

too weak to be useful here. For example conditional

entailment

[

Ge�ner and Pearl, 1992

]

does not support

full inheritance reasoning; while

[

Delgrande, 1988

]

is

unsatisfactory since it gives a syntactic, albeit general,

approach in the framework of conditional logics.

In Default Logic,

[

Reiter and Criscuolo, 1981

]

consid-

ers patterns of speci�city in interacting defaults, and

describes how speci�city may be obtained via appro-

priate semi-normal defaults. This work in fact may be

regarded as a pre-theoretic forerunner to the present

approach, since the situations addressed therein all

constitute instances of what we call (in the next sec-

tion) minimal con
icting sets.

[

Etherington and Re-

iter, 1983

]

also considers a problem that �ts within

the (overall) present framework: speci�city informa-

tion is given by an inheritance network; this network

is compiled into a default theory in DL.

4

For coherence, we avoid strict implications which

might be more appropriate for some of the rules.



Of recent work that develops priority orderings on de-

fault theories, we focus on the approaches of

[

Boutilier,

1992b; Baader and Hollunder, 1993a; Brewka, 1993

]

.

We note however that these approaches obtain speci-

�city by requiring modi�cations toDL. In contrast, we

describe transformations that yield classical DL theo-

ries. Since the last two approaches are also described

in Section 5, they are only brie
y introduced here.

[

Boutilier, 1992b

]

uses the correspondence between a

conditional �

r

! �

r

of System Z and defaults of the

form

:�

r

��

r

�

r

��

r

to produce partitioned sets of default

rules. For rules in System Z, there is a correspond-

ing set of prerequisite-free normal defaults. One can

reason in DL by applying the rules in the highest set,

and working down. Again, however, speci�city is ob-

tained by meta-theoretic considerations, in that one

steps outside the machinery of DL. Also the order in

which defaults are applied depends on the original Z-

order; this order may be \upset" by the addition of

irrelevant conditionals.

[

Baader and Hollunder, 1993a

]

addresses speci�city in

terminological reasoners. In contrast to the present

work, this approach does not rely on con
icts between

\levels". Rather a subsumption relation between ter-

minological concepts is mapped onto a set of partially

ordered defaults in DL.

[

Brewka, 1993

]

has adopted

the idea of minimal con
icting sets described here, but

in a more restricted setting. In common with

[

Baader

and Hollunder, 1993a

]

, partially ordered defaults in

DL are used; however, for inferencing all consistent

strict total orders of defaults must be considered.

3 The Approach: Intuitions

As described previously, information in a Z-ordering

is used to generate a default theory: The Z-ordering

provides speci�city information, and so for example,

tells us that P ! :F is a more speci�c rule than

B ! F . However, we do not use the full Z-ordering,

since it may introduce unwanted speci�cities (see Sec-

tion 2.1). Rather we determine minimal sets of rules

that con
ict, and use these sets to sort out speci�city

information. The generated default theory (in DL)

will be such that some inferences will be blocked (and

so a penguin does not 
y), while other inferences will

go through (and so, penguins have wings).

Consider for example the following theory, already ex-

pressed as a Z-ordering:

R

0

= fAn!WB;An! :Fe;An!Mg

R

1

= fB ! An;B ! F;B ! Fe;B !Wg

R

2

= fP ! B;P ! :F;E! B;E ! :F;

P t! B;P t! :Fe; P t! :WBg

That is, in R

0

, animals are warm-blooded, don't have

feathers, but are mobile. In R

1

, birds are animals that


y, have feathers, and have wings. In R

2

, penguins

and emus are birds that don't 
y, and pterodactyls are

birds that have no feathers and are not warm-blooded.

First we locate the minimal sets of conditionals, such

that there is a non-trivial Z-ordering for this set of

conditionals. In our example these consist of:

C

0

= fAn! :Fe;B ! An;B ! Feg

C

1

= fB ! F; P ! B;P ! :Fg (6)

C

2

= fB ! F;E! B;E ! :Fg (7)

C

3

= fB ! Fe; P t! B;P t! :Feg

C

4

= fAn!WB;B ! An;P t! B;P t! :WBg

Any such set is called a minimal con
icting set (MCS)

of defaults. Such a set has a non-trivial Z-ordering,

but for any subset there is no non-trivial Z-ordering.

What this in turn means is that if all the rules in such

a set are jointly applicable, then, one way or another

there will be a con
ict.

5

We show below that each

such Z-ordering of a set C consists of a binary partition

(C

0

; C

1

); furthermore the rules in the set C

0

are less

speci�c than those in C

1

. Consequently, if the rules in

C

1

are applicable, then we would want to insure that

some rule in C

0

was blocked.

Hence, for our initial example (1), we obtain one MCS,

corresponding to (6), with the following Z-order:

C

0

= fB ! Fg (8)

C

1

= fP ! B;P ! :Fg (9)

So there are two issues that need to be addressed:

1. What rules should be selected as candidates to be

blocked?

2. How can the application of a rule be blocked?

For the �rst question, it turns out that there are dif-

ferent ways in which we can select rules. However,

arguably the selection criterion should be independent

of the default theory in which the rules are embedded,

in the following fashion. For default theories R and R

0

,

where R � R

0

, if r 2 R is selected, then r should also

be selected in R

0

. Thus, if we wish to block the default

B ! F in the case of P in default theory R, then we

will also want to block this rule in any superset R

0

.

In the sequel, we do this as follows: For a MCS C, we

select those defaults in C

0

and C

1

that actually con-


ict and hence cause the non-triviality of C. The rules

selected in this way from C

0

and C

1

are referred to as

the minimal con
icting rules and maximal con
icting

rules respectively. Then, the minimal con
icting rules

constitute the candidates to be blocked.

Consider where we have a chain of rules, and where

transitivity is explicitly blocked, such as may be found

in an inheritance network:

A! B

1

; B

1

! B

2

; : : : ; B

n

! C but A! :C:

5

If the rules were represented as normal default rules in

DL for example, one would obtain multiple extensions.



In this case, given A we need only block some rule in

A ! B

1

; B

1

! B

2

; : : : ; B

n

! C to ensure that we do

not obtain an inference from A to C. However, things

are typically not so simplistic. Consider instead the

MCS C

4

from above, expressed as a Z-ordering:

C

0

= fAn!WB;B ! Ang (10)

C

1

= fPt! B;P t! :WBg

IntuitivelyAn is less speci�c than Pt. Hence if we were

given that An, Pt, :B were true, then in a transla-

tion into default logic, we would want the default rule

corresponding to Pt ! :WB to be applicable over

An ! WB, even though the \linking" rule Pt ! B

has been falsi�ed. This in turn means that, for a

MCS, we want the more speci�c rules to be applicable

over the less speci�c con
icting rules, independently

of the other rules in the MCS. We do this by locat-

ing those rules whose joint applicability would lead to

an inconsistency. In the above, this would consist of

An!WB, and Pt! :WB since An^WB^Pt^:WB

is inconsistent. Also we have that An ! WB 2 C

0

and Pt ! :WB 2 C

1

and so the rules have di�ering

speci�city.

For the second question, we have the following transla-

tion of rules into DL: The default theory correspond-

ing to R consists of normal defaults, except for those

defaults representing minimal con
icting rules, which

will be semi-normal. For these latter default rules, the

prerequisite is the antecedent of the original rule (as

expected). The justi�cation consists of the consequent

together with an assertion to the e�ect that the max-

imal con
icting rules in the MCS hold.

Consider the set C

0

in (10), along with its minimal

con
icting rule An ! WB. We replace B ! An,

Pt ! B, Pt ! :WB with

B :An

An

;

Pt :B

B

;

Pt ::WB

:WB

re-

spectively. For An!WB, we replace it with

An :WB^(Pt�:WB)

WB

;

which can be simpli�ed to

An :WB^:Pt

WB

: The rule An!

WB is translated into a semi-normal default since it is

the (only) minimal con
icting rule of C

4

(and of no

other C

i

). On the other hand, the rule Pt ! WB is

translated into a normal default since it does not occur

as a minimal con
icting rule elsewhere.

So, for the minimal con
icting rules we obtain semi-

normal defaults; all other defaults are normal. Ac-

cordingly, we give below only the semi-normal default

rules constructed from the MCSs C

0

; C

1

; C

2

; and C

3

:

C

0

:

An ::Fe^:B

:Fe

C

1

+C

2

:

B :F^(P�:F )^(E�:F )

F

or

B :F^:P^:E

F

C

3

:

B :Fe^(Pt�:Fe)

Fe

or

B :Fe^:Pt

Fe

:

The conditional B ! F occurs in C

1

and C

2

as a min-

imal con
icting rule. In this case we have two MCSs

sharing the same minimal con
icting rule, and we com-

bine the maximal con
icting rules of both sets.

So why does this approach work? The formal details

are given in the following sections. However, infor-

mally, consider �rst where we have a MCS of defaults

C with a single minimal con
icting rule �

0

! �

0

and

a single maximal con
icting rule �

1

! �

1

. If we

are able to prove that �

0

(and so in DL can prove

the antecedent of the conditional), then we would

want �

0

to be a default conclusion|provided that no

more speci�c rule applies. But what should constitute

the justi�cation? Clearly, �rst that �

0

is consistent.

But also that \appropriate", more speci�c, con
icting

conditionals not be applicable. Hence we add these

more speci�c conditionals as part of the justi�cation.

Now, in our simpli�ed setting, �

0

! �

0

is such that

f�

0

^�

0

g is satis�able, but for the conditional�

1

! �

1

,

f�

0

^�

0

g[f�

1

^�

1

g is unsatis�able. Hence it must be

that f�

0

^�

0

g[f�

1

� �

1

g j= :�

1

for these condition-

als. Thus if a minimal con
icting rule is applicable,

then the maximal rule cannot be applicable.

This suggests that we might simply add the negation

of the antecedent of the higher-level con
icting condi-

tional. However the next example illustrates that this

strategy does not work whenever aMCS has more than

one minimal con
icting rule. Consider for example the

following theory, already expressed as a Z-ordering:

R

0

= fA! :B;C ! :Dg (11)

R

1

= fA ^ C ! B _Dg (12)

If we were to represent this as a normal default theory,

then with fA;Cg we would obtain three extensions,

containing f:B;Dg, fB;:Dg, f:B;:Dg. The last

extension is unintuitive since it prefers the two less

speci�c rules over the more speci�c one in R

1

.

Now observe that the rules in R

0

[ R

1

form a MCS

with two minimal con
icting rules. In our approach,

this yields two semi-normal defaults

6

A ::B^(A^C�B_D)

:B

or

A ::B^(C�D)

:B

and

C ::D^(A^C�B_D)

:D

or

C ::D^(A�B)

:D

along with the normal default rule

A^C :B_D

B_D

: Given

fA;Cg, we obtain only the two more speci�c exten-

sions, containing f:B;Dg and fB;:Dg. In both

cases, we apply the most speci�c rule, along with one

of the less speci�c rules.

Note that if we add either only the negated antecedent

of the maximal con
icting rule (viz. :A _ :C) or all

remaining rules (e.g. C � :D and A ^ C � B _D in

the case of the �rst default) to the justi�cation of the

two semi-normal defaults, then in both cases we ob-

tain justi�cations that are too strong. For instance, for

A! :B we would obtain either

A : :B^(:A_:C)

:B

which

simpli�es to

A ::B^:C

:B

or

A ::B^(A^C�B_D)^(C�:D)

:B

6

We simplify justi�cations by replacing each occurrence

of the prerequisite by true. The correctness for arbitrary

prerequisites is shown in

[

Delgrande and Schaub, 1993

]

.



which also simpli�es to

A ::B^:C

:B

: Given fA;C;Dg

there is, however, no reason why the rule A ! :B

should not apply. In contrast, our construction yields

the default

A ::B^(C�D)

:B

; which blocks the second

semi-normal default rule in a more subtle way, and

additionally allows us to conclude :B from fA;C;Dg.

One can also show that con
icts that do not result

from speci�city (as found for example, in the \Nixon

diamond") are handled correctly. These and other ex-

amples are discussed further following the presentation

of the formal details.

4 Minimal Con
icting Sets

In what follows, we consider a Z-consistent set of de-

fault conditionals R = fr j �

r

! �

r

g where each �

r

and �

r

are propositional formulas over a �nite alpha-

bet. We write Prereq(R) for f�

r

j �

r

! �

r

2 Rg; and

Conseq(R) for f�

r

j �

r

! �

r

2 Rg:

For a set of rules R, the set of its MCSs represents

con
icts among rules in R due to disparate speci�city.

Each MCS is a minimal set of conditionals having a

non-trivial Z-ordering.

De�nition 2 Let R be a Z-consistent set of rules.

C � R is a minimal con
icting set (MCS) in R i�

C has a non-trivial Z-ordering and any C

0

� C has a

trivial Z-ordering.

Observe that adding new rules to R cannot alter or

destroy any existing MCSs. That is, for default theo-

ries R and R

0

, where C � R � R

0

, we have that if C

is a MCS in R then C is a MCS in R

0

.

The next theorem shows that any MCS has a binary

partition:

7

Theorem 1 Let C be a MCS in R. Then, the Z-

ordering of C is (C

0

; C

1

) for some non-empty sets C

0

and C

1

with C = C

0

[ C

1

:

Moreover, a MCS entails the negations of the an-

tecedents of the higher-level rules:

Theorem 2 Let C be a MCS in R. Then, if �! � 2

C

1

then C j= :�:

Hence, given the rule set in (1),

R = fB ! F; B !W; P ! B; P ! :Fg;

there is one MCS

C = fB ! F; P ! B; P ! :Fg:

As shown in (8/9), the �rst conditional constitutes C

0

and the last two C

1

in the Z-order of C. The set

fB ! F; P ! :Fg for example, is not a MCS since

alone it has a trivial Z-order. It is easy to see that

C j= :P .

7

Proofs are omitted for space limitations, but can be

found in

[

Delgrande and Schaub, 1993

]

.

Intuitively, a MCS consists of three mutually exclusive

sets of rules: the least speci�c or minimal con
icting

rules in C, min(C); the most speci�c or maximal con-


icting rules in C, max (C); and the remaining rules

providing a minimal inferential relation between these

two sets of rules, inf (C). The following de�nition pro-

vides a very general formal frame for these sets:

De�nition 3 Let R be a set of rules and let C � R

be a MCS in R. We de�ne max (C) and min(C) to be

non-empty subsets of R such that

min(C) � C

0

max (C) � C

1

inf (C) = C � (min(C) [max (C))

We observe that min, max, and inf are exclusive sub-

sets of C such that C = min(C) [ inf (C) [max (C):

We show below that the rules in max (C) and min(C)

are indeed con
icting due to their di�erent speci�city.

Note however that the following three theorems are

independent of the choice of min(C), inf (C), and

max (C). Yet after these theorems we argue in De�ni-

tion 4 for a speci�c choice for these sets that complies

with the intuitions described in the previous section.

First, the antecedents of the most speci�c rules in

min(C) imply the antecedents of the least speci�c rules

in max (C) modulo the \inferential rules":

Theorem 3 Let C be a MCS in a set of rules

R. Then, inf (C) [ max (C) j= Prereq(max (C)) �

Prereq(min(C)):

In fact, inf (C) [max (C) is the weakest precondition

under which the last entailment holds. This is impor-

tant since we deal with a general setting for MCSs.

Observe that omitting max (C) would eliminate rules

that may belong to max (C), yet provide \inferential

relations". The next theorem shows that the converse

of the previous does not hold in general.

Theorem 4 Let C be a MCS in a set of rules R.

Then, for any set of rules R

0

such that C � R

0

and any set of rules R

00

� min(C) such that R

0

[

Prereq(R

00

) is satis�able, we have: R

0

6j= Prereq(R

00

) �

Prereq(max (C)):

The reason for considering consistent subsets of

min(C) is that its entire set of prerequisites might

be equivalent to those in max (C). Then, however,

C [Prereq(min(C)) and so R

0

[Prereq(min(C)) is in-

consistent. This is, for instance, the case in Equation

(11/12). In fact, R

0

is the strongest precondition under

which the above theorem holds. Finally, we demon-

strate that these rules are indeed con
icting.

Theorem 5 Let C be a MCS in a set of rules R.

Then, for any � ! � 2 max (C); we have: inf (C) [

f�g j= :(Conseq(min(C)) ^ Conseq(max (C))):

As above, inf (C) [ f�g is the weakest precondition

under which the last entailment holds. In all, the last



three theorems demonstrate that the general frame-

work given for MCSs (already) provides an extremely

expressive way of isolating rule con
icts due to their

speci�city.

4.1 Speci�c Minimal and Maximal

Con
icting Rules

As indicated in Section 3, we require further restric-

tions on the choice of min(C) and max (C) for our

translation into DL. For aMCS C = (C

0

; C

1

), we have

the information that the rules in C

0

are less speci�c

than those in C

1

. However we wish to isolate those

rules in C

0

whose application would con
ict with ap-

plications of rules in C

1

. Such a set is referred to as a

con
icting core of aMCS. This leads us to the following

de�nition:

De�nition 4 Let C = (C

0

; C

1

) be a MCS. A con-


icting core of C is a pair of least non-empty sets

(min(C);max (C)) where

1. min(C) � C

0

,

2. max (C) � C

1

,

3. f�

r

^ �

r

j r 2 max (C) [min(C)g j= ?:

This de�nition specializes the general setting of De�-

nition 3. So, �

r

! �

r

is in min(C) if its application

con
icts with the application of a rule (or rules) in C

1

.

In the extended example of Section 3 the con
icting

cores are

C

0

: (fAn! :Feg; fB ! Feg)

C

1

: (fB ! Fg; fP ! :Fg)

C

2

: (fB ! Fg; fE! :Fg)

C

3

: (fB ! Feg; fPt! :Feg)

C

4

: (fAn!WBg; fPt! :WBg)

respectively. The con
icting core of our initial example

in (1) corresponds to the one for C

1

. For a comple-

ment consider the example given in (11/12), where the

con
icting core contains two minimal and one maximal

con
icting rules:

(fA! :B;C ! :Dg; fA^ C ! B _Dg):

Note that a con
icting core need not necessarily exist

for a speci�c MCS. For example, consider the MCS

(expressed as a Z-order):

C

0

= fQ! P;R! :Pg

C

1

= fQ ^R! PAg

Thus Quakers are paci�sts while republicans are not;

Quakers that are republicans are politically active.

Here the con
ict is between two defaults at the same

level (viz. Q ! P and R! :P ) that manifests itself

when a more speci�c default is given.

We do have the following result however.

Theorem 6 For MCS C in a set of rules R, if f�

r

^

�

r

j r 2 min(C)g 6j= ? and f�

r

^ �

r

j r 2 max (C)g 6j=

? then C has a con
icting core.

5 Compiling Speci�city into Default

Theories

In the previous section, we proposed an approach for

isolating minimal sets of rules that con
ict because of

their di�erent speci�city. We also showed how to iso-

late speci�c minimal and maximal rules. In this sec-

tion, we use this information for specifying blocking

conditions or, more generally, priorities among con-


icting defaults in Default Logic. To this end, we

envisage two di�erent possible approaches. First, we

could determine a strict partial order on a set of rules

R from the MCSs in R. That is, for two rules r; r

0

2 R;

we can de�ne r < r

0

i� r 2 min(C) and r

0

2 max (C)

for someMCS C in R. In this way, r < r

0

is interpreted

as \r is less speci�c than r

0

". Then, one could inter-

pret each rule � ! � in R as a normal default

� : �

�

and use one of the approaches developed in

[

Baader

and Hollunder, 1993a

]

or

[

Brewka, 1993

]

for comput-

ing the extensions of ordered normal default theories,

i.e. default theories enriched by a strict partial order

on rules. These approaches however have the disad-

vantage that they step outside the machinery of DL

for computing extensions.

This motivates an alternative approach that remains

inside the framework of classical DL, where we auto-

matically transform rules with speci�city information

into semi-normal default theories.

5.1 Z-Default Logic

This section describes a strategy, based on the notions

of speci�city and con
ict developed in the previous

section, for producing a standard semi-normal default

theory, and which provable maintains this notion of

speci�city. The transformation is succinctly de�ned:

De�nition 5 Let R be a set of rules and let hC

i

i

i2I

be the family of all MCSs in R. For each r 2 R; we

de�ne

�

r

=

�

r

: �

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

r

(13)

where R

r

= fr

0

2 max (C

i

) j r 2 min(C

i

) for i 2 Ig:

We de�ne D

R

= f�

r

j r 2 Rg:

In what follows, we adopt the latter notation and write

D

R

0

= f�

r

j r 2 R

0

g for any subset R

0

of R.

The most interesting point in the preceding de�nition

is the formation of the justi�cations of the (sometimes)

semi-normal defaults. Given a rule r, the justi�cation

of �

r

is built by looking at all MCS, C

i

, in which r oc-

curs as a least speci�c rule (i.e. r 2 min(C

i

)). Then,



the consequent of r is conjoined with the strict coun-

terparts of the most speci�c rules in the same sets (viz.

(�

r

0

� �

r

0

) for r

0

2 max (C

i

)). Hence, for the minimal

con
icting rules we obtain semi-normal defaults; all

other defaults are normal (since then R

r

= ;). So for

any MCS C in R, we transform the rules in min(C)

into semi-normal defaults, whereas we transform the

rules in inf (C) [ max (C) into normal defaults, pro-

vided that they do not occur elsewhere as a minimal

con
icting rule.

As suggested in Section 4.1, we are only interested

in minimal and maximal con
icting rules forming a

con
icting core. That is, given a MCS C, we stipulate

that (min(C);max(C)) forms a con
icting core of C.

In the extended example of Section 3 the con
icting

cores for (6) and (7) are

(fB ! Fg; fP ! :Fg) and (fB ! Fg; fE! :Fg)

respectively. According to De�nition 5, we get

R

B!F

= fP ! :F;E! :Fg: This results in a single

semi-normal default rule

B :F^(P�:F )^(E�:F )

F

; or

B :F^:P^:E

F

:

Observe that we obtain

P :B

B

and

P : :F

:F

for P ! B,

and P ! :F since these rules do not occur elsewhere

as minimal rules in a con
icting core. Other examples

were given at the end of Section 3.

For a more general example, consider the case where,

given a rule r, R

r

is a singleton set containing a rule r

0

.

Thus r is less speci�c than r

0

. This results in the de-

fault rules

�

r

: �

r

^(�

r

0
��

r

0
)

�

r

and

�

r

0
: �

r

0

�

r

0

: Our intended

interpretation is that r and r

0

con
ict, and that r is

preferable over r

0

(because of speci�city). Thus, as-

sume that �

r

and �

r

0

are not jointly satis�able. Then,

the second default takes precedence over the �rst one,

whenever both prerequisites are derivable (i.e. �

r

2 E

and �

r

0

2 E), and both �

r

and �

r

0

are individually

consistent with the �nal extension E (i.e. :�

r

62 E

and :�

r

0

62 E). That is, while the justi�cation of the

second default is satis�able, the justi�cation of the �rst

default, �

r

^ (�

r

0

� �

r

0

); is unsatis�able.

In general, we obtain the following results. GD(E;D)

stands for the generating defaults of E with respect to

D, i.e. GD(E;D) = f

� : �

!

2 D; j � 2 E;:� 62 Eg: Note

that Theorem 7 is with respect to the general theory of

MCSs while Theorem 8 is with respect to the speci�c

development involving con
icting cores.

Theorem 7 Let R be a set of rules and let W be a

set of formulas. Let C be a MCS in R. Let E be a

consistent extension of (D

R

;W ). Then,

1. if D

max(C)

[D

inf (C)

� GD(E;D) then D

min(C)

6�

GD(E;D);

2. if D

min(C)

[D

inf (C)

� GD(E;D) then D

max(C)

6�

GD(E;D):

Let us relate this theorem to the underlying idea

of speci�city: Observe that in the �rst case, where

D

max(C)

[D

inf (C)

� GD(E;D); we also have

Prereq(min(C)) � E

by Theorem 3. That is, even though the prerequisites

of the minimal con
icting defaults are derivable, they

do not contribute to the extension at hand. This is

so because some of the justi�cations of the minimal

con
icting defaults are not satis�ed. In this way, the

more speci�c defaults in D

max(C)

take precedence over

the less speci�c defaults in D

min(C)

: Conversely, in the

second case, where D

min(C)

[D

inf (C)

� GD(E;D); the

less speci�c defaults apply only if the more speci�c

defaults do not contribute to the given extension.

Theorem 8 Let R be a set of rules and let W be a

set of formulas. Let (min(C);max (C)) be a con
ict-

ing core of some MCS C in R. Let E be a consistent

extension of (D

R

;W ). Then,

1. if D

max(C)

� GD(E;D) then D

min(C)

6�

GD(E;D);

2. if D

min(C)

� GD(E;D) then D

max(C)

6�

GD(E;D):

Thus in this case we obtain that the defaults in a

con
icting core are not applicable, independent of the

\linking defaults" in D

inf (C)

.

Given a set of formulas W representing our world

knowledge and a set of default conditionals R, we can

apply De�nition 5 in order to obtain a so-called Z-

default theory (D

R

;W ): The following theorem gives

an alternative characterization for extensions of Z-

default theories. In particular, it clari�es further the

e�ect of the set of rules R

r

associated with each rule

r. Recall that in general, however, such extensions are

computed in the classical framework of DL.

Theorem 9 Let R be a set of rules, let D

N

=

n

�

r

: �

r

�

r

�

�

�

�

r

! �

r

2 R

o

; and let W and E be sets of

formulas. De�ne E

0

= W and for i � 0 (and R

r

as in

De�nition 5)

E

i+1

= Th(E

i

) [

n

�

r

�

�

�

�

r

: �

r

�

r

2 D

N

; �

r

2 E

i

;

E [ f�

r

g [

S

r

0

2R

r

(�

r

0

� �

r

0

) 6` ?

	

Then, E is an extension of (D

R

;W ) i� E =

S

1

i=0

E

i

:

5.2 Properties of Z-Default Theories

We now examine the formal properties of Z-default

theories. In regular DL, many appealing properties

are only enjoyed by restricted subclasses. For instance,

normal default theories guarantee the existence of ex-

tensions and enjoy the property of semi-monotonicity.

Transposed to our case, the latter stipulates that if

R

0

� R for two sets of rules, then if E

0

is an ex-

tension of (D

R

0

;W ) then there is an extension E of



(D

R

;W ) where E

0

� E. Arguably, this property is

not desirable if we want to block less speci�c defaults

in the presence of more speci�c defaults. In fact, this

property does not hold for Z-default theories. For in-

stance, from the rules B ! F; P ! B; we obtain the

defaults

B :F

F

;

P :B

B

: Given P; we conclude B and F .

However, adding the rule P ! :F makes us add the

default

P ::F

:F

and replace the default

B :F

F

by

B :F^:P

F

:

Obviously, the resulting theory does not support our

initial conclusions. Rather we conclude now B and

:F , which violates the aforementioned notion of semi-

monotonicity.

8

Also, the existence of extensions is not guaranteed for

Z-default theories. To see this, consider the rules:

A ^Q ! :P B ^R ! :Q C ^ P ! :R

A ! P B ! Q C ! R

Each column gives a MCS in which the upper rule is

more speci�c than the lower rule. We obtain the rules

A^Q ::P

:P

B^R ::Q

:Q

C^P ::R

:R

A :P^:Q

P

B :Q^:R

Q

C :R^:P

R

Given A;B;C; we get no extension.

Arguably, the non-existence of extensions indicates

certain problems in the underlying set of rules.

[

Zhang

and Marek, 1990

]

shows that a default theory has no

extension i� it contains certain \abnormal" defaults;

these can be detected automatically. However, we can

also avoid the non-existence of extensions by translat-

ing rules into variants of default logic that guarantee

the existence of extensions, as discussed in Section 6.

Another important property is cumulativity. The in-

tuitive idea is that if a theorem is added to the set

of premises from which the theorem was derived, then

the set of derivable formulas should remain unchanged.

This property is only enjoyed by prerequisite-free nor-

mal default theories in regular DL. It does not hold

for Z-default theories, as the next example illustrates.

Consider the conditionals fD! A;A! B;B ! :Ag:

The last two conditionals form a MCS. Transforming

these rules into defaults, yields two normal,

D :A

A

;

A :B

B

;

and one (semi-)normal default,

B ::A^(A�B)

:A

; or

B ::A

:A

:

Given D, there is one extension containing fD;A;Bg:

Hence this extension contains B. Now, given D and B,

we obtain a second extension containing fD;:A;Bg:

This violates cumulativity.

Note that in this case we obtained a normal default

theory from the original set of rules. This is intu-

itively plausible, since the two con
icting defaults are

mutually canceling, i.e. if one applies then the other

does not.

8

This di�ers from the notion of semi-monotonicity de-

scribed in

[

Reiter, 1980

]

. The latter is obtained by replac-

ing R and D

R

by D and R

0

and D

R

0
by D

0

.

5.3 Exchangeability and Related Work

At the start of this section we described how to ex-

tract a strict partial order from a family of MCSs for

using other approaches (such as

[

Baader and Hollun-

der, 1993a; Brewka, 1993

]

) to compute extensions of

ordered default theories, i.e. theories with a strict par-

tial order < on the defaults. In fact, one can view

partial orders on rules as general interfaces between

approaches. In particular, we can use also our ap-

proach for compiling ordered normal default theories

into semi-normaldefault theories. To this end, we have

to incorporate the order < into the speci�cation of R

r

in De�nition 5. We do this by associating with each

normal default

� : �

�

a rule � ! � and de�ne for each

such rule r that R

<

r

= fr

0

j r < r

0

g; where < is a

strict partial order on the set of rules. Then, we can

use transformation (13) for turning ordered normal de-

fault theories into semi-normal default theories.

We can now compare how priorities are dealt with

in our and the aforementioned approaches. In both

[

Baader and Hollunder, 1993a

]

and

[

Brewka, 1993

]

the

iterative speci�cation of an extension in DL is modi-

�ed. In brief, a default is only applicable at an itera-

tion step if no more speci�c (or <-greater) default is

applicable.

9

The di�erence between both approaches

(roughly) rests on the number of defaults applicable

at each step. While Brewka allows only for applying a

single default that is maximal with respect to a total

extension of <, Baader and Hollunder allow for apply-

ing all <-maximal defaults at each step.

As a �rst example, consider the default rules

:A

A

;

:B

B

;

B :C

C

;

A : :C

:C

(for short �

1

; �

2

; �

3

; �

4

), along

with �

4

< �

3

; taken from

[

Baader and Hollunder,

1993b

]

. With no facts Baader and Hollunder ob-

tain one extension containing fA;B;Cg: Curiously,

Brewka obtains an additional extension containing

fA;B;:Cg: In our approach, we generate from <

a single nonempty set R

<

�

4

= f�

3

g; all other such

sets are empty. Consequently we replace �

4

by

A ::C^(B�C)

:C

or

A ::C^:B

:C

: In regular DL, the resul-

tant default theory yields only the �rst extension con-

taining fA;B;Cg:

As a second example, again from

[

Baader and Hollun-

der, 1993b

]

, consider the rules

:A

A

;

B ::A

:A

;

:B

B

;

A ::B

:B

(for short �

1

; �

2

; �

3

; �

4

), along with �

1

< �

2

; �

3

< �

4

:

They show that in Brewka's approach two extensions

are obtained, one containing fA;:Bg and another con-

taining f:A;Bg: However an additional extension is

obtained in Baader and Hollunder's approach, contain-

ing fA;Bg: In our approach, we produce from < the

nonempty sets R

<

�

1

= f�

2

g; and R

<

�

3

= f�

4

g; all other

such sets are empty. Then, we replace �

1

and �

3

by

:A^(B�:A)

A

or

:A^:B

A

and

:B^(A�:B)

B

or

:B^:A

B

;

9

In

[

Baader and Hollunder, 1993a; Brewka, 1993

]

< is

used in the reverse order.



which yields only the �rst two extensions in DL.

Even though these examples appear to be arti�cial,

they can be extended to express reasonable speci�city

orderings. In all, we observe that in both examples our

approach yields the fewer and, in terms of speci�city,

more intuitive extensions.

Note that the general approach of compiling partial

orders into semi-normal default theories makes sense

whenever we deal with partial orders that only con-

sider priorities due to speci�city where we have truly

con
icting rules. Otherwise, the resulting default the-

ory may be overly strong. Consider the case where

we extract priorities from subsumption relations, as

is done in

[

Baader and Hollunder, 1993a

]

for termi-

nological logics. Consider terms stating that \birds


y", B ! F; and \young birds need special care",

Y ! C; along with the usual subsumption relation

between \birds" and \young birds". This subsump-

tion amounts to a priority between the two rules even

though there is no con
ict: (B ! F ) < (Y ! C):

Thus these rules would result in two default rules

B :F^(Y �C)

F

and

Y :C

C

since the �rst default would

\take priority" over the second, according to the given

partial order. Such a priority is unnecessary however

as regards avoiding con
icts stemming from more spe-

ci�c information. Obviously, this problem does not

arise in the general approach taken by MCSs. In this

case, in addition to a speci�city di�erence, we also re-

quire explicitly con
icting rules. In the above example

there is no MCS and so we would obtain the two nor-

mal rules

B :F

F

and

Y :C

C

:

Finally we note that the preceding exposition was

dominated by the view that rules, like �! �; are as-

sociated with defaults having prerequisite � and con-

sequent �. This view underlies the approaches in

[

Baader and Hollunder, 1993a

]

and

[

Brewka, 1993

]

.

That is, they rely on the existence of prerequisites. In

contrast, we can treat rules also as strict implications,

and so compile them into a prerequisite-free defaults,

as we show in the next section.

6 Alternative Translations

So far we have focused on translating speci�city infor-

mation into Reiter's default logic. In this section, we

show how the speci�city information extracted from

a family of minimal con
icting sets (or even a strict

partial order) can be incorporated into alternative ap-

proaches to default reasoning.

As mentioned earlier, we can also interpret a rule

� ! � as a strict implication, namely � � �: To

this end, we turn rules like � ! � into prerequisite-

free default rules. However, as discussed in

[

Delgrande

et al., 1994

]

, the problem of controlling interactions

among such rules is more acute than in the regular

case. Consider our initial example (1), translated into

prerequisite-free DL:

:B�F

B�F

;

:B�W

B�W

;

:P�B

P�B

;

:P�:F

P�:F

(14)

Given P , we obtain three extensions, containing

fP;:F;B;Wg; fP; F;B;Wg; and fP;:F;:Bg:

10

The

�rst two extensions correspond to the ones obtained

in regular DL. Clearly, we can apply the techniques

developed in the previous sections for eliminating the

second extension. The third extension yields also the

more speci�c result in that we obtain :F . This ex-

tension, however, does not account for property in-

heritance, since we cannot conclude that birds have

wings. This is caused by the contraposition of B � F:

That is, once we have derived :F , we derive :B by

contraposition, which prevents us from concluding W .

This problem can be addressed in two ways, either

by strenthening the blocking conditions for minimal

con
icting rules or by blocking the contraposition of

minimal con
icting rules. In the �rst case, we could

turn B ! F into

: (B�F )^:P

B�F

by adding the negated

antecedants of the maximal con
icting rules, here :P .

While this looks appealing, we have already seen in

Section 3 that this approach is too strong in the pres-

ence of multiple minimal con
icting rules. To see this,

consider the rules given in (11/12). For A ! :B;

we would obtain

: (A�:B)^(:A_:C)

A�:B

or

:A�(:B^:C)

A�:B

:

However, as argued in Section 3, there is no reason

why A ! :B should not be applied given the facts

fA;C;Dg. Also, in general it does not make sense

to address a problem stemming from contrapositions

by altering the way speci�city is enforced. Rather we

should address an independent problem by means of

other measures.

So, in the second case, we turn B ! F into

: (B�F )^F^(P�:F )

B�F

or

:F^:P

B�F

: That is, we add the con-

sequent of B ! F in order to block its contraposi-

tion. As before, we add the strict counterparts of the

maximal con
icting rules, here P � :F . In the birds

example, the resulting justi�cation is strengthened as

above. In particular, we block the contribution of the

rule B � F to the �nal extension if either :F or P

is derivable. For A ! :B in (11/12), we now ob-

tain,

: (A�:B)^:B^(A^C�B_D))

A�:B

or

::B^(A^C�D)

A�:B

: In

contrast to the previous proposal, this rule is appli-

cable to the facts fA;C;Dg. Moreover, this approach

is in accord with System Z, where rules are classi�ed

according to their \forward chaining" behaviour.

So for translating rules along with their speci�city into

prerequisite-free default theories, we replace the de�-

nition of �

r

in De�nition 5 by

11

�

r

=

: (�

r

� �

r

) ^ �

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

(�

r

� �

r

)

: (15)

10

The third extension would not be present if P � B

were a strict rule.

11

Observe that (�

r

� �

r

) ^ �

r

is equivalent to �

r

:



Applying this transformation to our birds example in

(1), we obtain:

:F^:P

B�F

;

:B�W

B�W

;

:P�B

P�B

;

:P�:F

P�:F

Now, given P , we obtain a single extension containing

fP;:F;B;Wg:

Note that blocking the contraposition of minimal con-


icting rules is an option outside the presented frame-

work. The purpose of the above transformation is

to preserve inheritance over default statements, like

P ! B: Inheritance over strict statements, likeP � B,

however can be done without blocking contrapositions.

In this case, the following transformation is su�cient:

�

0

r

=

: (�

r

� �

r

) ^

V

r

0

2R

r

(�

r

0

� �

r

0

)

(�

r

� �

r

)

(16)

As an example, let us turn the default P ! B into its

strict counterpart P � B: As detailed in

[

Delgrande

and Schaub, 1993

]

, our birds example then yields with

transformation (16) the defaults

: (B�F )^(P�:F )

B�F

;

:B�W

B�W

;

:P�:F

P�:F

:

Now, given P and P � B; we obtain a single extension

containing fP;:F;B;Wg: The details on integrating

strict rules are given in

[

Delgrande and Schaub, 1993

]

.

Transformations (15/16) o�er some interesting bene-

�ts, since prerequisite-free defaults allow for reason-

ing by cases and reasoning by contraposition (apart

from minimal con
icting rules). That is, such de-

faults behave like usual conditionals unless explicitly

blocked. Nonetheless, the counterexamples for semi-

monotonicity, cumulativity, and the existence of ex-

tensions carry over to prerequisite-free Z-default theo-

ries. Thus none of these properties is enjoyed by these

theories in DL. Finally, note that this approach di�ers

from

[

Boutilier, 1992b

]

, where a ranking on defaults is

obtained from the original Z-order; this may introduce

unwanted priorities due to irrelevant conditionals.

Another alternative is the translation into variants

of DL that guarantee the existence of extensions

[

 Lukaszewicz, 1988; Brewka, 1991; Delgrande et al.,

1994

]

. This can be accomplished by means of both

translation (13) and (15/16). Moreover, the result-

ing Z-default theories enjoy cumulativity when apply-

ing translation (13) and (15/16) in the case of Cu-

mulative Default Logic and when applying translation

(15/16) in the case of Constrained Default Logic. The

corresponding results can be found in

[

Brewka, 1991;

Delgrande et al., 1994

]

. Although none of these vari-

ants enjoys semi-monotonicity with respect to the un-

derlying conditionals, all of them enjoy this property

with respect to the default rules. As shown in

[

Brewka,

1991

]

, this may lead to problems in blocking a rule, like

B :F^:P

F

; in the case :P is a default conclusion. For

details on this we refer the reader to

[

Brewka, 1991

]

.

Similarly we can compile prioritized rules into The-

orist

[

Poole, 1988

]

or other approaches, such as Au-

toepistemic Logic

[

Moore, 1985

]

or even Circumscrip-

tion

[

McCarthy, 1980

]

. The latter translation is de-

scribed in a forthcoming paper.

For the translation into Theorist, we refer the reader to

[

Delgrande et al., 1994

]

, where it is shown that The-

orist systems correspond to prerequisite-free default

theories in Constrained Default Logic and vice versa.

Accordingly, we may obtain a Theorist system from

a set of prioritized rules by �rst applying transforma-

tion (15/16) and then the one given in

[

Delgrande et

al., 1994

]

for translating prerequisite-free default the-

ories in Constrained Default Logic into Theorist.

Autoepistemic Logic

[

Moore, 1985

]

aims at formaliz-

ing an agent's reasoning about her own beliefs. To this

end, the logical language is augmented by a modal op-

erator L. Then, a formula L� is to be read as \� is

believed". For a set W of such formulas, an autoepis-

temic extension E is de�ned as

Th(W [ fL� j � 2 Eg [ f:L� j � 62 Eg):

As discussed in

[

Konolige, 1988

]

, we can express a

statement like \birds 
y" either as B ^ :L:F � F

or LB ^ :L:F � F: Given B and one of these rules,

we obtain in both cases an extension containing F .

Roughly speaking, the former sentence corresponds to

the default

:B�F

B�F

while the latter is close to

B :F

F

:

This motivates the following translations into Au-

toepistemic Logic. Let R be a set of rules and let

R

r

� R, for each r 2 R we de�ne:

�

r

= �

r

^ :L:

�

�

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

� �

r

;

%

r

= L�

r

^ :L:

�

�

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

� �

r

:

Applying the �rst transformation to our initial exam-

ple, we obtain for B ! F the modal sentence

B^:L:(F^(P � :F )) � F or B^:L:(F^:P ) � F;

along with B ^ :L:W � W;P ^ :L:B � B; and

P ^ :LF � :F for B ! W;P ! B; and P ! :F:

Now, given P along with the four modal defaults, we

obtain a single autoepistemic extension containing :F

and W . In this way, we have added speci�city to Au-

toepistemic Logic while preserving inheritance.

7 Discussion

This paper has described a hybrid approach address-

ing the notion of speci�city in default reasoning. We

begin with a set of rules that express default condi-

tionals, where the goal is to produce a default theory

expressed in a \target" formalism, and where con
icts

arising from di�ering speci�cities are resolved. The

approach is to use the techniques of a weak system,

as exempli�ed by System Z, to isolate minimal sets

of con
icting defaults. From the speci�city informa-

tion intrinsic in these sets, a default theory in a target

language (here primarily Default Logic) is derived. In

our approach, the problems of weak systems, such as



lack of adequate property inheritance and undesirable

speci�city relations, are avoided. In addition, di�cul-

ties inherent in stronger systems, in particular, lack

of speci�city, are addressed. In contrast to previous

work, the approach avoids stepping outside the ma-

chinery of DL. Thus we do not obtain an explicit

global partial order on default rules, but rather a clas-

sical default theory where local con
icts are resolved

by semi-normal defaults.

This approach is modular, in that we separate the de-

termination of con
icts from the resolution of con
icts

among rules. Thus either module could be replaced by

some other approach. For example, one could use an

inheritance network to determine con
ict relations and

then use the mapping described in this paper to obtain

a default theory. Alternately, con
icts could be deter-

mined using MCSs via System Z, and then an ordered

default theory as described in

[

Baader and Hollunder,

1993a

]

could be generated. The approach may be seen

as generalising that of

[

Reiter and Criscuolo, 1981

]

.

Also, for example,

[

Etherington and Reiter, 1983

]

and

[

Brewka, 1993

]

may be seen as falling into the same

general framework.
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