
Belief Revision of Logic Programs under Answer Set Semantics∗

James Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6

Torsten Schaub†

Institut für Informatik
Universität Potsdam
August-Bebel-Str. 89

D–14482 Potsdam, Germany

Hans Tompits and Stefan Woltran
Institut für Informationssysteme

Technische Universität Wien,
Favoritenstraße 9–11

A–1040 Vienna, Austria

Abstract

We address the problem of belief revision in (nonmonotonic)
logic programming under answer set semantics: given logic
programs P and Q, the goal is to determine a program R that
corresponds to the revision of P by Q, denoted P ∗ Q. Un-
like previous approaches in logic programming, our formal
techniques are analogous to those of distance-based belief re-
vision in propositional logic. In developing our results, we
build upon the model theory of logic programs furnished by
SE models. Since SE models provide a formal, monotonic
characterisation of logic programs, we can adapt well-known
techniques from the area of belief revision to revision in logic
programs. We investigate two specific operators: (logic pro-
gram) expansion and a revision operator based on the distance
between the SE models of logic programs. It proves to be the
case that expansion is an interesting operator in its own right,
unlike in classical AGM-style belief revision where it is rel-
atively uninteresting. Expansion and revision are shown to
satisfy a suite of interesting properties; in particular, our revi-
sion operators satisfy the majority of the AGM postulates for
revision. A complexity analysis reveals that our revision op-
erators do not increase the complexity of the base formalism.
As a consequence, we present an encoding for computing the
revision of a logic program by another, within the same logic
programming framework.

Introduction
Answer set programming (ASP) (Baral 2003) has emerged
as a major area of research in knowledge representation and
reasoning (KRR). On the one hand, ASP has an elegant
and conceptually simple theoretical foundation, while on the
other hand efficient implementations of ASP solvers exist
which have been finding application to practical problems.
At its heart, ASP exploits negation as failure with respect to
a fixed-point semantics; this enables the specification of a
wide variety of problems. Consequently, ASP provides an
appealing approach for representing problems in KRR.

Given that knowledge is continually evolving and always
subject to change, there is also a need to be able to revise
∗This work was partially supported by the Austrian Science

Fund (FWF) under grant P18019.
†Affiliated with Simon Fraser University, Canada, and Griffith

University, Australia.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

logic programs as new information is received. In KRR, the
area of belief revision (Alchourrón, Gärdenfors, and Makin-
son 1985; Gärdenfors 1988) addresses just such change to
a knowledge base. In AGM belief revision (named after the
aforecited developers of the approach) one has a knowledge
baseK and a formula α, and the issue is how to consistently
incorporate α inK to obtain a new knowledge baseK ′. The
interesting case is when K ∪ {α} is inconsistent, since be-
liefs have to be dropped from K before α can be consis-
tently added. Hence a fundamental issue concerns how such
change should be managed.

In classical propositional logic, specific belief revision
operators have been proposed based on the distance between
models of a knowledge base and a formula for revision. That
is, a characterisation of the revision of a knowledge base K
by formula α is to set the models of the revised knowledge
base K ′ to be the models of α that are “closest” to those
of K. Of course the notion of “closest” needs to be pinned
down, but natural definitions based on the Hamming dis-
tance (Dalal 1988; Satoh 1988) are well known. Clearly,
also the set of models of a knowledge base gives an abstract
characterisation of the knowledge base, suppressing irrele-
vant syntactic details.

It is natural then to consider belief change in the context of
logic programs. Indeed, there has been substantial effort in
developing approaches to so-called logic program updating
under answer set semantics (we discuss previous work in
the next section). Unfortunately, given the nonmonotonic
nature of answer set programs, the problem of change in
logic programs has appeared to be intrinsically more difficult
than in a monotonic setting.

In this paper, our goal is to reformulate belief change in
logic programs in a manner analogous to belief revision in
classical propositional logic, and to investigate specific be-
lief revision operators for extended logic programs. Central
for our approach are SE models (Turner 2003), which are se-
mantic structures characterising strong equivalence between
programs (Lifschitz, Pearce, and Valverde 2001). This par-
ticular kind of equivalence plays a major role for different
problems in logic programming—in particular, in program
simplifications and modularisation. This is due to the fact
that strong equivalence gives rise to a substitution principle
in the sense that, for all programs P,Q, P∪R andQ∪R have
the same answer sets, for any program R. As is well known,

ordinary equivalence between programs (which holds if two
programs have the same answer sets) does not yield a sub-
stitution principle. Hence, strong equivalence can be seen as
the logic programming analogue of ordinary equivalence in
classical logic. The important aspect of strong equivalence
is that it coincides with equivalence in a specific monotonic
logic, the logic of here and there (HT), which is intermediate
between intuitionistic logic and classical logic. As shown by
Turner (2003), equivalence between programs in HT corre-
sponds in turn to equality between sets of SE models. De-
tails on these concepts are given in the next section; the key
point is that logic programs can be expressed in terms of a
non-classical but monotonic logic, and it is this point that we
exploit here.

More specifically, given this monotonic characterisation
(via sets of SE models) of strong equivalence, we adapt tech-
niques for revision in propositional logic to revision in logic
programs. Hence we come up with specific operators for be-
lief change in ASP analogous to operators in propositional
logic. We first consider an expansion operator. In classi-
cal logic, the expansion of knowledge base K by formula α
amounts to the deductive closure ofK∪{α}. Hence it is not
a very interesting operator, serving mainly as a tool for ex-
pressing concepts in belief revision and its dual, contraction.
In logic programs however, expansion appears to be a more
useful operator, perhaps due to the apparent “looser” no-
tion of satisfiability provided by SE models. As well, it has
appealing properties. We also develop a revision operator
based on a notion of distance between SE models and show
that it satisfies the majority of the corresponding AGM pos-
tulates. Curiously, in our approaches there is effectively no
mention of answer sets; rather definitions of expansion and
revision are given entirely with respect to logic programs.
Notably too, our operators are syntax independent, which is
to say, they are independent of how a logic program is ex-
pressed; hence, our operators deal with the logical content
of a logic program.

Following an introductory background section, we show
that there is a ready mapping between concepts in belief re-
vision in classical logic and in ASP; this serves to place be-
lief revision in ASP firmly in the “standard” belief revision
camp. After this we describe our approaches to belief expan-
sion and revision in ASP. The next section covers complexity
issues and shows how we can in fact express the process of
belief change in ASP. We conclude with a discussion. Proofs
of our results are relegated to an appendix.

Background and Formal Preliminaries
Answer Set Programming
A (generalised) logic program1 (GLP) over an alphabetA is
a finite set of rules of the form

a1; . . . ; am;∼bm+1; . . . ;∼bn ←
cn+1, . . . , co,∼do+1, . . . ,∼dp, (1)

1Such programs were first considered by Lifschitz and Woo
(1992) and coined generalised disjunctive logic programs by In-
oue and Sakama (1998).

where ai, bj , ck, dl ∈ A are atoms, for 1 ≤ i ≤ m ≤ j ≤
n ≤ k ≤ o ≤ l ≤ p. Operators ‘;’ and ‘,’ express dis-
junctive and conjunctive connectives. A default literal is an
atom a or its (default) negation ∼a. A rule r as in (1) is
called a fact if p = 1, normal if n = 1, positive if m = n
and o = p, disjunctive if m = n, and an integrity con-
straint if n = 0, yielding an empty disjunction denoted by
⊥. Accordingly, a program is called disjunctive (or a DLP),
etc., if it consists of disjunctive, etc., rules only. We fur-
thermore defineH(r) = {a1, . . . , am,∼bm+1, . . . ,∼bn} as
the head of r and B(r) = {cn+1, . . . , co,∼do+1, . . . ,∼dp}
as the body of r. Moreover, given a set X of literals,
X+ = {a ∈ A | a ∈ X}, X− = {a ∈ A | ∼a ∈ X},
and ∼X = {∼a | a ∈ X ∩ A}. For simplicity, we some-
times use a set-based notation, expressing a rule as in (1) as
H(r)+;∼H(r)−← B(r)+,∼B(r)−.

In what follows, we restrict ourselves to a finite alphabet
A. An interpretation is represented by the subset of atoms
in A that are true in the interpretation. A (classical) model
of a program P is an interpretation in which all of the rules
in P are true according to the standard definition of truth
in propositional logic, and where default negation is treated
as classical negation. By Mod(P) we denote the set of all
classical models of P . An answer set Y of a program P is a
subset-minimal model of

{H(r)+← B(r)+ | r ∈ P,H(r)− ⊆ Y,B(r)− ∩ Y = ∅}.

The set of all answer sets of a program P is denoted by
AS (P). For example, the program P = {a ←, c; d ←
a,∼b} has answer sets AS (P) = {{a, c}, {a, d}}.

As defined by Turner (2003), an SE interpretation is a
pair (X,Y) of interpretations such that X ⊆ Y ⊆ A. An
SE interpretation is an SE model of a program P if Y |= P
and X |= PY . The set of all SE models of a program P is
denoted by SE (P). Note that Y is an answer set of P iff
(Y, Y) ∈ SE (P) and no (X,Y) ∈ SE (P) with X ⊂ Y
exists. Also, we have (Y, Y) ∈ SE (P) iff Y ∈ Mod(P).

A program P is satisfiable just if SE (P) 6= ∅. Two
programs P and Q are strongly equivalent, symbolically
P ≡s Q, iff SE (P) = SE (Q). Alternatively, P ≡s Q
holds iff AS (P ∪ R) = AS (Q ∪ R), for every program
R (Lifschitz, Pearce, and Valverde 2001). We also write
P ⊆s Q iff SE (P) ⊆ SE (Q). For simplicity, we often drop
set-notation within SE interpretations and simply write, e.g.,
(a, ab) instead of ({a}, {a, b}).

A set S of SE interpretations is well-defined if, for each
(X,Y) ∈ S, also (Y, Y) ∈ S. A well-defined set S of
SE interpretations is complete if, for each (X,Y) ∈ S, also
(X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S. We have the
following properties:
• For each GLP P , SE (P) is well defined.
• For each DLP P , SE (P) is complete.
Furthermore, for each well defined set S of SE interpreta-
tions, there exists a GLP P such that SE (P) = S, and for
each complete set S of SE interpretations, there exists a DLP
P such that SE (P) = S. Programs meeting these condi-
tions can be constructed thus (Eiter, Tompits, and Woltran
2005; Cabalar and Ferraris 2007): In case S is a well-defined

set of SE interpretations over a (finite) alphabet A, define P
by adding

1. the rule rY : ⊥ ← Y,∼(A \ Y), for each (Y, Y) /∈ S,
and

2. the rule rX,Y : (Y \ X);∼Y ← X,∼(A \ Y), for each
X ⊆ Y such that (X,Y) /∈ S and (Y, Y) ∈ S.

In case S is complete, define P by adding

1. the rule rY , for each (Y, Y) /∈ S, as above, and

2. the rule r′X,Y : (Y \X)← X,∼(A \ Y), for eachX ⊆ Y
such that (X,Y) /∈ S and (Y, Y) ∈ S.

We call the resulting programs canonical.
For illustration, consider

S = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, p)}

overA = {p, q}. Note that S is not complete. The canonical
GLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q;∼q ← ∼p;
r∅,pq : p; q;∼p;∼q ← .

For obtaining a complete set, we have to add (∅, pq) to S.
Then, the canonical DLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q ← ∼p.

One feature of SE models is that they contain “more in-
formation” than answer sets, which makes them an appeal-
ing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong
equivalence is about). We illustrate this issue with the fol-
lowing well-known example, involving programs

P = {p; q ←} and Q =
{
p← ∼q
q ← ∼p

}
.

Here, we have AS (P) = AS (Q) = {{p}, {q}}. However,
the SE models (we list them for A = {p, q}) differ:

SE (P)={(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE (Q)={(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, since P and Q behave differently
with respect to program extension (and thus are not strongly
equivalent). Consider R = {p← q, q ← p}. Then AS (P ∪
R) = {{p, q}}, while AS (Q ∪R) has no answer set.

Belief Revision
The AGM Approach The best known and, indeed, sem-
inal work in belief revision is the AGM approach (Al-
chourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988), in which standards for belief revision and contraction
functions are given. In belief revision, a formula is added to
a knowledge base such that the resulting knowledge base
is consistent (unless the formula to be added is not). Be-
lief contraction is a dual notion, in which information is re-
moved from a knowledge base; given that it is of limited
interest with respect to our approach, we do not consider it

further. In the AGM approach it is assumed that a knowl-
edge base is receiving information concerning a static2 do-
main. Belief states are modeled by logically closed sets of
sentences, called belief sets. A belief set is a set K of sen-
tences which satisfies the constraint

if K logically entails β, then β ∈ K.

K can be seen as a partial theory of the world. For belief set
K and formula α, K + α is the deductive closure of K ∪
{α}, called the expansion of K by α. K⊥ is the inconsistent
belief set (i.e., K⊥ is the set of all formulas).

Subsequently, Katsuno and Mendelzon (1992) reformu-
lated the AGM approach so that a knowledge base was also
represented by a formula in some language L. The follow-
ing postulates comprise Katsuno and Mendelzon’s reformu-
lation of the AGM revision postulates, where ∗ is a function
from L × L to L:

R1: ψ ∗ µ ` µ.
R2: If ψ ∧ µ is satisfiable, then ψ ∗ µ↔ ψ ∧ µ.
R3: If µ is satisfiable, then ψ ∗ µ is also satisfiable.
R4: If ψ1 ↔ ψ2 and µ1 ↔ µ2, then ψ1 ∗ µ1 ↔ ψ2 ∗ µ2.
R5: (ψ ∗ µ) ∧ φ ` ψ ∗ (µ ∧ φ).
R6: If (ψ∗µ)∧φ is satisfiable, then ψ∗(µ∧φ) ` (ψ∗µ)∧φ.

Thus revision is successful (R1), and corresponds to con-
junction when the knowledge base and formula for revision
are jointly consistent (R2). Revision leads to inconsistency
only when the formula for revision is unsatisfiable (R3). Re-
vision is also independent of syntactic representation (R4).
Last, (R5) and (R6) express that revision by a conjunction is
the same as revision by a conjunct conjoined with the other
conjunct, when the result is satisfiable.

Specific Belief Revision Operators In classical belief
change, the revision of a knowledge base represented by for-
mula ψ by a formula µ, ψ ∗ µ, is a formula φ such that the
models of φ are just those models of µ that are “closest”
to those of ψ. There are two main specific approaches to
distance-based revision. Both are based on the Hamming
distance between two interpretations, that is on the set of
atoms on which the interpretations disagree. The first, due to
Dalal (1988), uses a distance measure based on the number
of atoms with differing truth values in two interpretations.
The second, by Satoh (1988), is based on set containment.
A set containment-based approach seems more appropriate
in the context of ASP, since answer sets are defined in terms
of subset-minimal interpretations. Hence, we focus on Satoh
(1988) here.

The Satoh revision operator, ψ ∗sµ, is defined as follows.
Let4 be the symmetric difference of two sets. For formulas
α and β, define4min(α, β) as

min⊆({w4w′ | w ∈ Mod(α), w′ ∈ Mod(β)}).
2 Note that “static” does not imply “with no mention of time”.

For example, one could have information in a knowledge base
about the state of the world at different points in time, and revise
information at these points in time.

Furthermore, define Mod(ψ ∗s µ) as

{w ∈ Mod(µ) | ∃w′∈Mod(ψ) s.t. w4w′ ∈ 4min(ψ, µ)}.

Belief Change in Logic Programming
Most previous work on belief change for logic programs
goes under the title of update (Foo and Zhang 1997; Przy-
musinski and Turner 1997; Zhang and Foo 1998; Alferes
et al. 1998; 2000; Leite 2003; Inoue and Sakama 1999;
Eiter et al. 2002; Zacarı́as et al. 2005; Delgrande, Schaub,
and Tompits 2007). Strictly speaking, however, such ap-
proaches often do not address “update” as used in the belief
revision community, in that the requirement that the under-
lying domain being modelled has changed is not taken into
account. Following the investigations of the Lisbon group
of researchers (Alferes et al. 1998; 2000; Leite 2003), a
common feature of most update approaches is to consider
a sequence P1, P2, . . . , Pn of programs where each Pi is a
logic program. For Pi, Pj , i > j, the intuition is that Pi
has higher priority or precedence. Given such a sequence,
a set of answer sets is determined that in some sense re-
spects the ordering. This may be done by translating the
sequence into a “flat” logic program that contains an encod-
ing of the priorities, or by treating the sequence as a priori-
tised logic program, or by some other appropriate method.
The net result, one way or another, is to obtain a set of an-
swer sets from such a program sequence, and not a single
new program expressed in the language of the original logic
programs. Hence, these approaches fall outside the general
AGM belief revision paradigm.

However, various principles have been proposed for such
approaches to logic program update. In particular, Eiter et
al. (2002) consider the question of what principles the up-
date of logic programs should satisfy. This is done by re-
interpreting different AGM-style postulates for revising or
updating classic knowledge bases, as well as introducing
new principles. Among the latter, let us note the following:

Initialisation: ∅ ∗ P ≡ P .

Idempotency: (P ∗ P) ≡ P .

Tautology: If Q is tautologous, then P ∗Q ≡ P .

Absorption: If Q = R, then ((P ∗Q) ∗R) ≡ (P ∗Q).

Augmentation: If Q ⊆ R, then ((P ∗Q) ∗R) ≡ (P ∗R).

In view of the failure of several of the discussed postulates
in the approach of Eiter et al. (2002) (as well as in others),
Osorio and Cuevas (2007) noted that for re-interpreting the
standard AGM postulates in the context of logic programs,
the logic underlying strong equivalence should be adopted.
Since they studied programs with strong negation, in their
case this logic is N2, an extension of HT by allowing strong
negation.3 They also introduced a new principle, which they
called weak independence of syntax (WIS), which they pro-
posed any update operator should satisfy:

WIS: If Q ≡s R, then (P ∗Q) ≡ (P ∗R).

3N2 itself traces back to an extension of intuitionist logic with
strong negation first studied by Nelson (1949).

Indeed, following this spirit, the above absorption and
augmentation principles can be accordingly changed by re-
placing their antecedents by “Q ≡s R” and “Q ⊆s R”,
respectively. We note that the WIS principle was also dis-
cussed in an update approach based on abductive programs
(Zacarı́as et al. 2005).

Turning our attention to the few works on revision of
logic programs, early work in this direction includes a se-
ries of investigations dealing with restoring consistency for
programs possessing no answer sets (cf., e.g., Witteveen,
van der Hoek, and de Nivelle (1994)). Other work uses
logic programs under a variant of the stable semantics to
specify database revision, i.e., the revision of knowledge
bases given as sets of atomic facts (Marek and Truszczyński
1998). Finally, an approach following the spirit of AGM
revision is discussed by Kudo and Murai (2004). In their
work, they deal with the question of constructing revisions
of form P ∗A, where P is an extended logic program and A
is a conjunction of literals. They give a procedural algorithm
to construct the revised programs; however no properties are
analysed.

Belief Change in ASP based on SE Models
In AGM belief change, an agent’s beliefs may be abstractly
characterised in various different ways. In the classical
AGM approach an agent’s beliefs are given by a belief set, or
deductively-closed set of sentences. As well, an agent’s be-
liefs may also be characterised abstractly by a set of interpre-
tations or possible worlds; these would correspond to mod-
els of the agent’s beliefs. Last, as proposed in the Katsuno-
Mendelzon formulation, and given the assumption of a finite
language, an agent’s beliefs can be specified by a formula.
Given a finite language, it is straightforward to translate be-
tween these representations.

In ASP, there are notions analogous to the above for spec-
ifying an agent’s beliefs. Though we do not get into it here,
the notion of strong equivalence of logic programs can be
employed to define a (logic program) belief set. Indeed,
SE models characterise a class of equivalent logic programs.
Hence the set of SE models of a program can be considered
as the proposition expressed by the program. Continuing
this analogy, a specific logic program can be considered to
correspond to a formula or set of formulas in classical logic.

Belief Expansion in Logic Programs
Belief expansion is a belief change operator that is much
more basic than revision or contraction, and in a certain
sense is prior to revision and contraction (since in the AGM
approach revision and contraction postulates make reference
to expansion). Hence it is of interest to examine expansion
from the point of view of logic programs. As well, it proves
to be the case that expansion in logic programs is of interest
in its own right.

The next definition corresponds model-theoretically with
the usual definition of expansion in AGM belief change.

Definition 1 For logic programs P andQ, define the expan-
sion of P and Q, P +Q, to be a logic program R such that
SE (R) = SE (P) ∩ SE (Q).

For illustration, consider the following examples:4

1. {p←}+ {⊥ ← p} has no SE models.

2. {p← q}+ {⊥ ← p} has SE model (∅, ∅).

3. {p←}+ {q ← p} ≡s {p←}+ {q ←} ≡s {p←, q ←}.

4. {p← ∼q}+ {q ← ∼p} ≡s
{
p← ∼q
q ← ∼p

}
.

5.
{
p← ∼q
q ← ∼p

}
+ {p← q} ≡s

{
p← q
p← ∼q

}
.

6.
{
p← ∼q
q ← ∼p

}
+ {p; q ←} ≡s {p; q ←}.

7. {p; q ←}+ {⊥ ← q} ≡s
{

p←
⊥← q

}
.

8. {p; q ←}+ {⊥ ← p, q} ≡s
{
p; q←
⊥← p, q

}
.

Belief expansion has desirable properties. The following
all follow straightforwardly from the definition of expansion
with respect to SE models.

Theorem 1 Let P and Q be logic programs. Then:

1. P +Q is a logic program (belief set).
2. P +Q ⊆s P .
3. If P ⊆s Q, then P +Q ≡s P .
4. If P ⊆s Q, then P +R ⊆s Q+R.
5. If SE (P) and SE (Q) are defined, then so is SE (P +Q).
6. If SE (P) and SE (Q) are complete, then so is SE (P+Q).
7. If Q ≡s ∅, then P +Q ≡s P .

While these results are indeed elementary, following as they
do from the monotonicity of the SE interpretations frame-
work, they are still of interest. Notably, virtually every pre-
vious approach to updating logic programs has trouble with
the last property, expressing a tautology postulate. Here, ex-
pansion by a tautologous program presents no problem, as
it corresponds to an intersection with the set of all SE in-
terpretations. We note also that the other principles men-
tioned earlier—initialisation, idempotency, absorption, and
augmentation—are trivially satisfied by expansion.

In classical logic, the expansion of two formulas can be
given in terms of the intersection of their models. It should
be clear from the preceding that the appropriate notion of
the set of “models” of a logic program is given by a set
of SE models, and not by a set of answer sets. Hence,
there is no natural notion of expansion that is given in
terms of answer sets. For instance, in Example 3, we have
AS ({p ←}) = {{p}} and AS ({q ← p}) = {∅} while
AS ({p ←, q ← p}) = {{p, q}}. Likewise, in Exam-
ple 4, the intersection of AS ({{p ← ∼q}}) = {{p}} and
AS ({{q ← ∼p}}) = {{q}} is empty, whereas AS ({p ←
∼q, q ← ∼p}) = {{p}, {q}}.

4Unless otherwise noted, we assume that the language of dis-
course in each example consists of just the atoms mentioned.

Belief Revision
We next turn to a specific operator for belief revision. As dis-
cussed earlier, for a revision P ∗Q, we suggest that the most
natural distance-based notion of revision for logic programs
uses set containment as the appropriate means of relating SE
interpretations. Hence, P ∗ Q is a logic program whose SE
models are a subset of the SE models of Q, comprising just
those models of Q that are closest to those of P . We note
however that any reasonable notion of distance will do, for
example an operator defined in terms of a cardinality-based
distance measure.

To begin with, we extend the definition of symmetric
difference so that it can be used with SE interpretations:
If (X1, X2) and (Y1, Y2) are two SE interpretations, then
(X1, X2)4(Y1, Y2) is defined as follows:

(X1, X2)4(Y1, Y2) = (X14Y1, X24Y2)
= ((X1 \ Y1) ∪ (Y1 \X1), (X2 \ Y2) ∪ (Y2 \X2)).

Similarly, (X1, X2) ⊆ (Y1, Y2) iff X1 ⊆ Y1 and X2 ⊆ Y2,
and moreover, (X1, X2) ⊂ (Y1, Y2) iff (X1, X2) ⊆ (Y1, Y2)
and either X1 ⊂ Y1 or X2 ⊂ Y2.

Given this, we next define, for two sets E1, E2 of inter-
pretations, the subset of E1 that is closest to E2, where the
notion of “closest” is given in terms of symmetric difference.

Definition 2 Let E1, E2 be two sets of either classical or
SE interpretations. Then:

σ(E1, E2) = {A ∈ E1 | ∃B ∈ E2 such that
∀A′ ∈ E1,∀B′ ∈ E2, A

′∆B′ 6⊂ A∆B}.

It might seem that we could now define the SE models
of P ∗ Q to be given by σ(SE (Q),SE (P)). However, for
our revision operator to be meaningful, it must also pro-
duce a well-defined set of SE models. Unfortunately, it
proves to be the case that Definition 2 does not preserve
well-definedness. For an example, consider P = {⊥ ← p}
and Q = {p ← ∼p}. Then, SE (P) = {(∅, ∅)} and
SE (Q) = {(∅, p), (p, p)}, and so σ(SE (Q),SE (P)) =
{(∅, p)}. However {(∅, p)} is not well-defined.

The problem is that for programs P and Q, there may be
an SE model (X,Y) of Q with X ⊂ Y such that (X,Y) ∈
σ(SE (Q),SE (P)) but (Y, Y) 6∈ σ(SE (Q),SE (P)). So,
in defining P ∗ Q in terms of σ(SE (Q),SE (P)), we must
modify the set σ(SE (Q),SE (P)) in some fashion to obtain
a well-defined set of models.

In view of this, our approach is based on the following
idea to obtain a well-defined set of models of P ∗ Q based
on our notion of distance given in σ:

1. Determine the “closest” models ofQ to P of form (Y, Y).

2. Determine the “closest” models ofQ to P limited to mod-
els (X,Y) of Q where (Y, Y) was found in the first step.

Thus, we give preference to potential answer sets, in the
form of models (Y, Y), and then to general models.

Definition 3 For logic programs P and Q, define the revi-
sion of P by Q, P ∗Q, to be a logic program such that:

if SE (P) = ∅, then SE (P ∗Q) = SE (Q);

otherwise

SE (P ∗Q) = {(X,Y) | Y ∈ σ(Mod(Q),Mod(P))
and if X ⊂ Y then (X,Y) ∈ σ(SE (Q),SE (P))}.

As is apparent, SE (P ∗ Q) is well-defined, and thus is rep-
resentable through a canonical logic program. Furthermore,
over classical models, the definition of revision reduces to
Satoh revision. As we show below, the result of revising P
by Q is identical to that of expanding P by Q whenever P
and Q possess common SE models. Hence, all previous ex-
amples of expansions (when the result is non-empty) are also
valid program revisions. We have the following examples of
revision that do not reduce to expansion.5

1. {p← ∼p} ∗ {⊥ ← p} ≡s {⊥ ← p}.
Over the language {p, q}, ⊥ ← p has SE models (∅, ∅),
(∅, q), and (q, q).

2.
{
p←
q←

}
∗ {⊥ ← q} ≡s

{
p←
⊥← q

}
.

The first program has a single SE model, (pq, pq), while
the second has three, (∅, ∅), (∅, p), and (p, p). Among
the latter, (p, p) has the least pairwise symmetric differ-
ence to (pq, pq). The program induced by the singleton
set {(p, p)} of SE models is {p←, ⊥ ← q}.

3.
{
p←
q←

}
∗ {⊥ ← p, q} ≡s

{
p; q←
⊥← p, q

}
.

Thus, if one originally believes that p and q are true, and
revises by the fact that one is false, then the result is that
precisely one of p, q is true.

4.
{
⊥← ∼p
⊥← ∼q

}
∗ {⊥ ← p, q} ≡s

{
⊥←∼p,∼q
⊥← p, q

}
.

Observe that the classical models in the programs here
are exactly the same as above. This example shows that
the use of SE models provides finer “granularity” com-
pared to using classical models of programs together with
known revision techniques.

5.
{
⊥← p
⊥← q

}
∗ {p; q ←} ≡s

{
p; q←
⊥← p, q

}
.

We next rephrase the Katsuno-Mendelzon postulates for
belief revision. Here, ∗ is a function from ordered pairs of
logic programs to logic programs.
RA1: P ∗Q ⊆s Q.
RA2: If P +Q is satisfiable, then P ∗Q ≡s P +Q.
RA3: If Q is satisfiable, then P ∗Q is satisfiable.
RA4: If P1≡sP2 and Q1≡sQ2, then P1 ∗Q1≡sP2 ∗Q2.
RA5: (P ∗Q) +R ⊆s P ∗ (Q+R).
RA6: If (P ∗ Q) + R is satisfiable, then P ∗ (Q + R) ⊆s

(P ∗Q) +R.
We obtain that logic program revision as given in Defini-

tion 3 satisfies the first five of the revision postulates.6

5Note that {p← ∼p} has SE models but no answer sets.
6We note in passing that this is analogous to set-containment

based approaches in propositional logic.

Theorem 2 The logic program revision operator ∗ from
Definition 3 satisfies postulates RA1 – RA5.

That our revision operator does not satisfy RA6 can be
seen by the following example: Consider

P = {p;∼p, q ← p, r ← p, s← p, ⊥ ← ∼p, q,
⊥ ← ∼p, r, ⊥ ← ∼p, s},

Q = {p; r, ⊥ ← q, ⊥ ← p, r, ⊥ ← p, s, s;∼s← r},
R = {p; r, ⊥ ← q, ⊥ ← p, r, ⊥ ← p, s, s← r}.

Straightforward computations show that

SE (P ∗ (Q+R)) = {(rs, rs), (p, p)} while
SE ((P ∗Q) +R) = {(p, p)}.

So, P ∗(Q+R) 6⊆s (P ∗Q)+R. Since SE ((P ∗Q)+R) 6= ∅,
this shows that RA6 indeed fails.

Last, we have the following result concerning other prin-
ciples for updating logic programs listed earlier:
Theorem 3 Let P and Q be logic programs. Then, P ∗ Q
satisfies initialisation, idempotency, tautology, and absorp-
tion with respect to strong equivalence.

Augmentation however does not hold, nor would one
expect it to hold in a distance-based approach. For ex-
ample, consider the case where P , Q, and R are charac-
terised by models SE (P) = {(a, a), (ab, ab)}, SE (Q) =
{(ab, ab), (ac, ac), (b, b)}, and SE (R) = {(ac, ac), (b, b)}.
Thus SE (R) ⊆ SE (Q) and so Q ⊆ R for the underlying
programs. We obtain that SE (P ∗ Q) = SE (P + Q) =
{(ab, ab)}, and thus SE ((P ∗Q) ∗R) = {(b, b)}. However
SE (P ∗R) = {(b, b), (c, c)}, contradicting augmentation.

Definition 3 is certainly not the only possibility to con-
struct a revision operator. Let us now briefly discuss an al-
ternative definition for revision.
Definition 4 For logic programs P and Q, define the weak
revision of P by Q to be a logic program P ∗w Q such that:

if SE (P) = ∅, then SE (P ∗w Q) = SE (Q);
otherwise

SE(P ∗w Q) = σ(SE (Q),SE (P))∪
{(Y, Y) | ∃X s.t. (X,Y) ∈ σ(SE (Q),SE (P))}.

The main drawback to this approach is that it introduces
possibly irrelevant interpretations in order to obtain well-
definedness. As well, Definition 3 appears to be the more
natural. Consider the following example, which also serves
to distinguish Definition 3 from Definition 4. Let

P = {⊥ ← p, ⊥ ← q, ⊥ ← r},
Q = { r, p← q, p← ∼q }.

Then, we get the following SE models:

SE (P) = {(∅, ∅)},
SE (Q) = {(r, pqr), (pr, pr), (pr, pqr), (pqr, pqr)},

and

SE (P ∗Q) = {(pr, pr)},
SE (P ∗w Q) = SE (Q) \ {(pr, pqr)}.

Consequently, P ∗Q is given by the program {p,⊥ ← q, r}.
Thus, in this example, P ∗ Q gives the desired result, pre-
serving the falsity of q from P , while incorporating the truth
of r and p from Q. This then reflects the assumption of
minimal change to the program being revised, in this case
P . P ∗w Q on the other hand represents a very cautious
approach to program revision.

Finally, we have that our definition of revision is strictly
stronger than the alternative given by ∗w:

Theorem 4 Let P and Q be programs. Then, P ∗ Q ⊆s
P ∗w Q.

For completeness, let us mention that enforcing well-
definedness by simply determine the “closest” models of Q
to P of form (Y, Y) is inadequate. For our motivating ex-
ample, we would obtain SE ({p ← ∼p} ∗ {⊥ ← p}) = ∅,
violating the key postulate RA3, that the result of revising
by a satisfiable program results in a satisfiable revision.

Computational Aspects
We first consider the worst-case complexity of our approach
to revision. The standard decision problem for revision in
classical logic is: Given formulas P , Q, R, does P ∗ Q en-
tail R? Eiter and Gottlob (1992) showed that approaches to
classical propositional revision are ΠP

2 -complete. The next
result shows that this property carries over to our approach
for program revision.

Theorem 5 Deciding whether P ∗Q ⊆s R holds, for given
GLPs P , Q, R, is ΠP

2 -complete. Moreover, hardness holds
already for P being a set of facts, Q being positive or nor-
mal, and R being a single fact.

Although we do not show it here, we mention that the same
results holds for the cautious revision operator ∗w.

It is not difficult to come up with an algorithm imple-
menting our approaches to expansion and revision: given
programs P andQ, the set of SE models of each can be gen-
erated straightforwardly (Turner 2003). The resulting SE
models for expansion or revision can be determined by an
appropriate implementation of Definition 1 or 3. Then, given
the resulting set of SE models, a corresponding GLP can be
determined using the method of canonical programs.

Rather, our interest now is to consider the question of
computing revisions more abstractly. We address the fol-
lowing issue: Can we find an encoding schema S such that,
for all programs P , Q, there is a one-to-one correspondence
between the answer sets of the program S[P,Q] and ele-
ments in SE (P ∗ Q)? By our complexity result, efficient
construction of S[P,Q], given P , Q, is possible, although
disjunction is required in S[P,Q].

It is well known how classical models or SE models can
be characterized by means of answer sets (see, e.g., Eiter et
al. (2004)). However, the encodings of the checks for con-
tainment in σ(·, ·) are a bit cumbersome. Therefore, instead
of a full formal proof, we introduce S[P,Q] step-by-step and
describe the functioning of the different parts in some detail.
Basically, the programs follows the argumentation used in
the membership part of the proof of Theorem 5.

In what follows, we make use of the universeA, but men-
tion that for S[P,Q], A can always be set to var(P ∪ Q).
Moreover, we need to make several copies of A: Therefore,
for j ∈ {1, . . . , 5} and w ∈ {h, t}, denote by Ajw the set
{ajw | a ∈ A}, and by Ājw the set {ājw | a ∈ A}. All these
new atoms are mutually distinct. The role of these sets in the
subsequent encoding is that, for each j,Ajh together withAjt
are used to guess two sets X (viaAjh) and Y (viaAjt) which
are then checked for being an SE model (X,Y) and for fur-
ther properties. The sets Ājh and Ājt are used to support the
guess as usual. The superscript j will allow us to deal with
several SE interpretations at once in a single program.

We also need a corresponding renaming schema for the
rules from the original programs P and Q. In what follows,
rjw denotes the rule r after replacing each atom a by ajw.
Accordingly, r̄jw replaces atoms a by ājw.

Finally, to link arbitrary interpretations over I ⊆
⋃
j A

j
h∪

Ajt back to SE interpretations over A, we use the follow-
ing mappings: For an interpretation I and an index j, let
πj(I) = {(X,Y) | X,Y ⊆ A, Xj

h = I∩Ajh, Y
j
t = I∩Ajt},

and, for a set I of interpretations, let Πj(I) =
⋃
I∈I π

j(I).
We define a first module as follows:

M [P, j] = {ajw; ājw ←, ⊥ ← ajw, ā
j
w, ⊥ ← ajh, ā

j
t |

a ∈ A, w ∈ {h, t}}∪
{⊥ ← H+(r̄jt), H−(rjt), B+(rjt), B−(r̄jt),

⊥ ← H+(r̄jh), H−(rjt), B+(rjh), B−(r̄jt) | r ∈ P}.
Then, we have for any program P and any index j,

Πj(AS (M [P, j])) = SE (P).

To avoid an additional module for classical models, we
will sometimes use SE models (U, V) where only the V -
part comes into play. Our goal now is to filter those
(X1, Y1) ∈ SE (Q) such that (X1, Y1) ∈ SE (P ∗ Q).
To this end, we first compute all possible combinations
(X1, Y1) ∈ SE (Q), (X2, Y2) ∈ SE (P), and (X3, Y3) ∈
SE (P) (via M [Q, 1], M [P, 2], M [P, 3]) and then check:
(i) whether for each further pairs of SE models (X4, Y4) ∈
SE (Q), (X5, Y5) ∈ SE (P) it holds that Y44Y5 6⊂ Y14Y2

and (X4, Y4)4(X5, Y5) 6⊂ (X1, Y1)4(X3, Y3) (this is just
along the lines of Definition 3). Our second module is
used to guess such further pairs (X4, Y4) ∈ SE (Q) and
(X5, Y5) ∈ SE (P). However, compared to M [P, j], we
now use a spoiling technique rather than constraints to ex-
clude SE interpretations which are not SE models of the re-
spective program. This spoiling technique is important in
the final program, which has to ensure that no such further
pair (X4, Y4), (X5, Y5) exists satisfying Y44Y5 ⊂ Y14Y2

or (X4, Y4)4(X5, Y5) ⊂ (X1, Y1)4(X3, Y3).
We use the same renaming concepts as before plus a fur-

ther new atom z, and define:

N [P, j] = {ajw; ājw ←, z ← ajw, ā
j
w, a

j
w ← z, ājw ← z,

z ← ajh, ā
j
t | a ∈ A, w ∈ {h, t}}∪

{⊥ ← H+(r̄jt), H−(rjt), B+(rjt), B−(r̄jt),

⊥ ← H+(r̄jh), H−(rjt), B+(rjh), B−(r̄jt) | r ∈ P}}.

Instead of answer sets, we investigate the classical mod-
els of N [P, j] (over var(N [P, j])): First, we have that the
spoiled interpretation Oj = {z} ∪

⋃
w∈{h,t}Ajw is a model

of N [P, j]. The remaining models are in relation to the SE
models again, i.e., Πj(Mod(N [P, j]) \Oj) = SE (P).

We need two final modules to compare: (i) Y44Y5 with
Y14Y2; (ii) (X4, Y4)4(X5, Y5) with (X1, Y1)4(X3, Y3).
Let us first give the comparison module for (i): The basic
idea hereby is as follows: If Y44Y5 6⊂ Y14Y2 holds, we
derive the dedicated atom z, already used in modulesN [·, ·]:
C1 = {z ← a1

t , a
2
t , a

4
t , ā

5
t , z ← a1

t , a
2
t , ā

4
t , a

5
t ,

z ← ā1
t , ā

2
t , a

4
t , ā

5
t , z ← ā1

t , ā
2
t , ā

4
t , a

5
t ,

aδt ← a1
t , ā

2
t , a

4
t , ā

5
t , a

δ
t ← ā1

t , a
2
t , a

4
t , ā

5
t ,

aδt ← a1
t , ā

2
t , ā

4
t , a

5
t , a

δ
t ← ā1

t , a
2
t , ā

4
t , a

5
t ,

aδt ← a1
t , a

2
t , a

4
t , a

5
t , a

δ
t ← a1

t , a
2
t , ā

4
t , ā

5
t ,

aδt ← ā1
t , ā

2
t , a

4
t , a

5
t , a

δ
t ← ā1

t , ā
2
t , ā

4
t , ā

5
t |a ∈ A}

∪ {z ← Aδt },

where Aδt is a set of new atoms. The appearance of set Aδt
in a rule body stands for the sequence of all its elements.

The second comparison module C2 is obtained from C1

as follows: replace each atom a2
t (resp., ā2

t) by a3
t (resp.,

ā3
t); make a copy of each rule except z ← Aδt and exchange

in the copy each subscript t by h; finally, replace z ← Aδt
by z ← Aδh,Aδt .

Now it can be observed that z is derived for a guess
of (X4, Y4), (X5, Y4) if neither Y44Y5 ⊂ Y14Y2 nor
(X4, Y4)4(X5, Y5) ⊂ (X1, Y1)4(X3, Y3). If this is the
case for all such guesses, we get that (X1, Y1) ∈ SE (P ∗Q)
and thus the corresponding answer set should survive. On
the other hand if some guess does not require w to be in the
model, the corresponding answer set for (X1, Y1) should not
survive. Due to the spoiling technique, this behaviour is ex-
actly matched by adding a single constraint ⊥ ← ∼z. Thus,
we put our modules as follows together:

S[P,Q] = M [Q, 1] ∪M [P, 2] ∪M [P, 3] ∪N [Q, 4] ∪
N [P, 5] ∪ C1 ∪ C2 ∪ {⊥ ← ∼z},

and obtain as result:
Theorem 6 For all programs P and Q, SE (P ∗ Q) =
Π1(AS (S[P,Q])).

Discussion
We have addressed the problem of belief revision in logic
programming under the answer set semantics. Our approach
is based on a monotonic characterisation of logic programs,
given in terms of the set of SE models of a program. Based
on the latter, we defined and examined operators for logic
program expansion and revision. As well as giving prop-
erties of these operators, we also considered the complex-
ity and an encoding scheme for revision. This work is
novel, in that it addresses belief change in terms famil-
iar to researchers in belief revision: expansion is charac-
terised in terms of intersections of models, and revision is
characterized in terms of minimal distance between mod-
els. While we considered set-containment-based revision

here, cardinality-based revision can be defined also. In fu-
ture work we will consider more general notions of distance;
as well we will separately address the issue of general char-
acterisations and representation results for logic programs,
again via SE models and the logic of here and there.

We finally note that previous work on logic program revi-
sion was formulated at the level of the individual program,
and not in terms of an abstract characterisation (via strong
equivalence or sets of SE interpretations). The net result is
that such previous work is generally difficult to work with:
properties are difficult to come by, and often desirable prop-
erties (such as tautology) are lacking. The main point of
departure for the current approach then is to lift the problem
of logic program revision from the program (or syntactic)
level to an abstract (or semantic) level.

Appendix
Proof of Theorem 1
Most of the parts follow immediately from the fact that
SE (P +Q) = SE (P) ∩ SE (Q).

1. We need to show that Definition 1 results in a well-defined
set of SE models.
For SE (P)∩ SE (Q) = ∅ we have that ∅ is trivially well-
defined (and R can be given by ⊥ ←).
Otherwise, for SE (P)∩SE (Q) 6= ∅, we have the follow-
ing: If (X,Y) ∈ SE (P)∩SE (Q), then (X,Y) ∈ SE (P)
and (X,Y) ∈ SE (Q); whence (Y, Y) ∈ SE (P) and
(Y, Y) ∈ SE (Q) since SE (P) and SE (Q) are well-
defined by virtue of P and Q being logic programs.
Hence, (Y, Y) ∈ SE (P) ∩ SE (Q). Since this holds
for arbitrary (X,Y) ∈ SE (P) ∩ SE (Q) we have that
SE (P) ∩ SE (Q) is well-defined.

2. Immediate from the definition of +.
3. If P ⊆s Q, then SE (P) ⊆ SE (Q). Hence, SE (P) ∩

SE (Q) = SE (P), or P +Q ≡s P .
4. Similar to the previous part.
5. This was established in the first part.
6. To show completeness, we need to show that for any

(X,Y) ∈ SE (P+Q) and (Y ∪Y ′, Y ∪Y ′) ∈ SE (P+Q)
that (X,Y ∪ Y ′) ∈ SE (P +Q).
If (X,Y) ∈ SE (P + Q) and (Y ∪ Y ′, Y ∪ Y ′) ∈
SE (P + Q), then (X,Y) ∈ SE (P) ∩ SE (Q) and (Y ∪
Y ′, Y ∪Y ′) ∈ SE (P)∩SE (Q). Hence, (X,Y) ∈ SE (P)
and (Y ∪ Y ′, Y ∪ Y ′) ∈ SE (P), and so, since SE (P) is
complete by assumption, we have (X,Y ∪Y ′) ∈ SE (P).
The same argument gives that (X,Y ∪ Y ′) ∈ SE (Q),
whence (X,Y ∪ Y ′) ∈ SE (P) ∩ SE (Q) and (X,Y ∪
Y ′) ∈ SE (P +Q).

7. If Q ≡s ∅, then SE (Q) = {(X,Y) | X ⊆ Y ⊆ A} from
which the result follows immediately. 2

Proof of Theorem 2
RA1: This postulate is an immediate consequence of Def-

inition 3. Note that (X,Y) ∈ SE (P ∗ Q) only if Y ∈
σ(Mod(Q),Mod(P)). Therefore, we get that (Y, Y) ∈
σ(SE (Q),SE (P)). So, SE (P ∗Q) is well-defined.

RA2: If P +Q is satisfiable, then σ(Mod(Q),Mod(P)) 6=
∅ and σ(SE (Q),SE (P)) 6= ∅.
Further, for Y ∈ Mod(Q) (or (X,Y) ∈ SE (Q)) we have
that there is Y ′ ∈ Mod(P) (resp., (X ′, Y ′) ∈ SE (P))
such that Y∆Y ′ = ∅ ((X,Y)∆(X ′, Y ′) = ∅), from
which our result follows.

RA3: From Definition 3 we have that, if P is unsatisfiable,
then Q is satisfiable iff P ∗Q is satisfiable.
Otherwise, if P is satisfiable and Q is satisfiable, then
there is some (Y, Y) ∈ σ(Mod(Q),Mod(P)) (since
SE (Q) is well-defined and given Definition 2). Hence,
SE (P ∗Q) 6= ∅.

RA4: Immediate from Definition 3.

RA5: If SE (P) = ∅, then the result follows immediately
from the first part of Definition 3.
Otherwise, we show that, if (X,Y) is an SE model of
(P ∗Q) +R, then (X,Y) is an SE model of P ∗ (Q+R).
Let (X,Y) ∈ SE ((P ∗Q)+R). Then, (X,Y) ∈ SE (P ∗
Q) and (X,Y) ∈ SE (R). Since (X,Y) ∈ SE (P ∗ Q),
by RA1 we have that (X,Y) ∈ SE (Q), and so (X,Y) ∈
SE (Q) ∩ SE (R), or (X,Y) ∈ SE (Q+R).
There are two cases to consider:

X = Y : Since (X,Y) = (Y, Y) ∈ SE (P ∗Q), we have
that Y ∈ σ(Mod(Q),Mod(P)). Hence, from Defini-
tion 2, Y ∈ Mod(Q) and there is some Y ′ ∈ Mod(P)
such that there is no Y1 ∈ Mod(Q) and no Y2 ∈
Mod(P) such that Y1∆Y2 ⊂ Y∆Y ′.
We established at the outset that (X,Y) ∈ SE (Q+R).
Hence, Y ∈ Mod(Q + R). This gives us that Y ∈
Mod(Q + R) and there is some Y ′ ∈ Mod(P) such
that no Y1, Y2 exist with Y1 ∈ Mod(Q), Y2 ∈ Mod(P),
and Y1∆Y2 ⊂ Y∆Y ′.
Clearly, in the above, if there is no Y1 ∈ Mod(Q) such
that the above condition holds, then there is no Y1 ∈
Mod(Q+R) such that the above condition holds.
Thus, we have Y ∈ Mod(Q + R) and there is some
Y ′ ∈ Mod(P) for which no Y1 ∈ Mod(Q+R) and no
Y2 ∈ Mod(P) exists such that Y1∆Y2 ⊂ Y∆Y ′.
Thus, from Definition 2, we get Y ∈ σ(Mod(Q +
R),Mod(P)), hence (Y, Y) ∈ SE (P ∗ (Q+R)).

X ⊂ Y : We have Y ∈ σ(Mod(Q),Mod(P)) by virtue
of (X,Y) ∈ SE (P ∗Q). In the previous part we estab-
lished that Y ∈ σ(Mod(Q+R),Mod(P)).
As well, (X,Y) ∈ σ(SE (Q),SE (P)) since (X,Y) ∈
SE (P ∗Q). Thus, from Definition 2, we have that there
is some (X ′, Y ′) ∈ SE (P) such that no U, V, U ′, V ′
exist such that (U, V) ∈ SE (Q), (U ′, V ′) ∈ SE (P),
and (U, V)∆(U ′, V ′) ⊂ (X,Y)∆(X ′, Y ′).
Therefore, there is no (U, V) ∈ SE (Q + R) and
no (U ′, V ′) ∈ SE (P) such that (U, V)∆(U ′, V ′) ⊂
(X,Y)∆(X ′, Y ′).
We previously showed that (X,Y) ∈ SE (Q+R). Con-
sequently, from Definition 3, we obtain that (X,Y) ∈
σ(SE (Q + R),SE (P)). Hence, (X,Y) ∈ SE (P ∗
(Q+R)).

Thus, in either case, we get (X,Y) ∈ SE (P ∗ (Q+R)),
which was to be shown. 2

Proof of Theorem 3
For initialisation, idempotency, and tautology, in the left-
hand side of the given equivalence, revision corresponds
with expansion via RA2, from which the result is immediate.

For absorption, we have Q = R, and so ((P ∗Q) ∗R) =
((P ∗ Q) ∗ Q). Since SE (P ∗ Q) ⊆ SE (Q), then from
Theorem 1, Part 3, we have that (P ∗Q) +Q ≡s P ∗Q. As
well, ((P ∗Q)∗Q) = ((P ∗Q) +Q), from which our result
follows. 2

Proof of Theorem 4
We need to show that SE (P ∗Q) ⊆ SE (P ∗wQ). First of all,
if SE (P) = ∅, then SE (P ∗Q) = SE (Q) = SE (P ∗w Q).
Otherwise, there are two cases to consider:
1. (X,Y) ∈ SE (P ∗Q), whereX ⊂ Y . By Definition 3, we

get (X,Y) ∈ σ(SE (P),SE (Q)), and, by Definition 4,
(X,Y) ∈ SE (P ∗w Q).

2. (Y, Y) ∈ SE (P ∗ Q). From Definition 3, we have that
Y ∈ σ(Mod(Q),Mod(P)). Y ∈ σ(Mod(Q),Mod(P))
implies that (Y, Y) ∈ σ(SE (Q),SE (P)). Hence, accord-
ing to Definition 4, (Y, Y) ∈ SE (P ∗w Q).
Therefore, (X,Y) ∈ SE (P ∗ Q) implies that (X,Y) ∈

SE (P ∗w Q), whence SE (P ∗Q) ⊆ SE (P ∗w Q). 2

Proof of Theorem 5
Since we deal with a globally fixed language, we first need
a few lemmata.

Lemma 1 Let P,Q be programs, Y an interpretation, and
x ∈ Y \ var(P ∪ Q). Then, Y ∈ σ(Mod(Q),Mod(P))
implies Y \ {x} ∈ σ(Mod(Q),Mod(P)).

Proof. Since Y ∈ σ(Mod(Q),Mod(P)), so Y ∈ Mod(Q)
and there exists some Z ∈ Mod(P) such that, for each
Y ′ ∈ Mod(Q) and Z ′ ∈ Mod(P), Y ′4Z ′ 6⊂ Y4Z.
We show that x ∈ Z holds. Suppose this is not the
case: Then, x ∈ Y4Z, since x ∈ Y . Now, since
x /∈ var(P), also Z ∪ {x} ∈ Mod(P). But then
x /∈ Y4(Z ∪ {x}) which yields Y4(Z ∪ {x}) ⊂ Y4Z,
a contradiction to our assumption. Hence, x ∈ Z. Now,
since Y ∈ Mod(Q), obviously Y \ {x} ∈ Mod(Q) as
well. We obtain Y4Z = (Y \ {x})4(Z \ {x}), thus
Y \ {x} ∈ σ(Mod(Q),Mod(P)) holds. 2

Lemma 2 Let P,Q be programs, let (X,Y) be an SE in-
terpretation, and assume x ∈ Y \ var(P ∪ Q). Then,
(X,Y) ∈ σ(SE (Q),SE (P)) implies (X \ {x}, Y \ {x}) ∈
σ(SE (Q),SE (P)).

Proof. Since (X,Y) ∈ σ(SE (Q),SE (P)), we
have that (X,Y) ∈ SE (Q) and there exists some
(U,Z) ∈ SE (P) such that, for each (X ′, Y ′) ∈ SE (Q) and
(U ′, Z ′) ∈ SE (P), (X ′, Y ′)4(U ′, Z ′) 6⊂ (X,Y)4(U,Z).
We show that the following relations hold: (1) x ∈ Z and
(2) x ∈ U iff x ∈ X . Towards a contradiction, first suppose
that x /∈ Z. Then, we have x ∈ Y4Z, since x ∈ Y .

Now, since x /∈ var(P), also (U,Z ∪ {x}) ∈ SE (P) and
(U ∪ {x}, Z ∪ {x}) ∈ SE (P). We have x /∈ Y4(Z ∪ {x})
which yields Y4(Z ∪ {x}) ⊂ Y4Z. Therefore,
(X,Y)4(U,Z ∪ {x}) ⊂ (X,Y)4(U,Z), which would be
a contradiction to the assumption. Hence, x ∈ Z follows.
If (2) does not hold, we get x ∈ X4U . Now, in case
x ∈ X and x /∈ U , we have (X,Y)4(U ∪ {x}, Z) ⊂
(X,Y)4(U,Z). In case x ∈ U and x /∈ X , we have
(X,Y)4(U \ {x}, Z) ⊂ (X,Y)4(U,Z). Again both
cases yield a contradiction. Clearly, (X,Y) ∈ SE (Q)
implies (X \ {x}, Y \ {x}) ∈ SE (Q), and we obtain
(X,Y)4(U,Z) = (X \{x}, Y \{x})4(U \{x}, Z \{x}).
(X \ {x}, Y \ {x}) ∈ σ(SE (Q),SE (P)) thus follows. 2

Lemma 3 For any programs P , Q, R, P ∗Q 6⊆s R iff there
existX ⊆ Y ⊆ var(P ∪Q∪R) such that (X,Y) ∈ SE (P ∗
Q) and (X,Y) /∈ SE (R).

Proof. The if-direction is by definition.
As for the only-if direction, since P ∗ Q 6⊆s R, there

exists a pair (X,Y) such that (X,Y) ∈ SE (P ∗ Q)
and (X,Y) /∈ SE (R). Let V = var(P ∪ Q ∪ R).
We first show that (X ∩ V, Y ∩ Y) ∈ SE (P ∗ Q).
By definition, (X,Y) ∈ SE (Q). If SE (P) = ∅, then
SE (P ∗ Q) = SE (Q), and since (X,Y) ∈ SE (Q)
obviously implies (X ∩ V, Y ∩ Y) ∈ SE (Q),
(X ∩ V, Y ∩ Y) ∈ SE (P ∗Q) thus follows in this case. So,
suppose SE (P) 6= ∅. Then, Y ∈ σ(Mod(Q),Mod(P)).
By iteratively applying Lemma 1, we obtain that also
Y ∩ V ∈ σ(Mod(Q),Mod(P)). Analogously us-
ing Lemma 2, (X,Y) ∈ σ(SE (Q),SE (P)) yields
(X ∩ V, Y ∩ V) ∈ σ(SE (Q),SE (P)). By Definition 3, we
get (X ∩ V, Y ∩ V) ∈ SE (P ∗ Q). Finally, it is clear that
(X,Y) /∈ SE (R) implies (X ∩ V, Y ∩ V) /∈ SE (R). 2

We now proceed with the proof of Theorem 5.
We first show membership in ΣP2 for the complemen-

tary problem. From Lemma 3, the complementary problem
holds iff there exist X,Y ⊆ var(P ∪ Q ∪ R) such that
(X,Y) ∈ SE (P ∗ Q) and (X,Y) /∈ SE (R). In what fol-
lows, let V = var(P ∪ Q ∪ R). We first state the follow-
ing observation: Recall that Y ∈ σ(Mod(Q),Mod(P)) iff
Y ∈ Mod(Q) and there exists a W ∈ Mod(P) such that
W ⊆ V and, for each Y ′ ∈ Mod(Q) and W ′ ∈ Mod(P),
Y ′4W ′ 6⊂ Y4W . Now, if Y ⊆ V , then there is also a
W ⊆ V satisfying the above test (this is seen by the argu-
ments used in the proof of Lemma 1). A similar observation
holds for (X,Y) ∈ σ(SE (Q),SE (P)).

Thus, an algorithm to decide P ∗ Q 6⊆s R is as follows.
We guess interpretations X,Y,W,U,Z ⊆ V and start with
checking (X,Y) ∈ SE (Q) and (X,Y) /∈ SE (R). Then,
we check whether SE (P) = ∅, which can be done via a
single call to an NP-oracle. If the answer is yes, we already
have found an SE interpretation (X,Y), such that (X,Y) ∈
SE (P ∗ Q) and (X,Y) /∈ SE (R), and thus the comple-
mentary problem holds. If the answer is no, we next check
(U,Z) ∈ SE (P),W ∈ Mod(P). Then, (1) given Y andW ,
we check whether for each Y ′ ⊆ V and each W ′ ⊆ V such
that Y ′ ∈ Mod(Q) and W ′ ∈ Mod(P), Y ′4W ′ 6⊂ Y4W

holds. It is easy to see that then the same relation holds for
arbitrary models Y ′ and W ′. From that we can conclude
that Y ∈ σ(Mod(Q),Mod(P)). Next, (2) given (X,Y) and
(U,Z), we check whether for each X ′ ⊆ Y ′ ⊆ V and each
U ′ ⊆ Z ′ ⊆ V such that (X ′, Y ′) ∈ SE (Q), (U ′,W ′) ∈
SE (P), (X ′, Y ′)4(U ′,W ′) 6⊂ (X,Y)4(U,W). Again, it
is easy to see that in this case (X,Y) ∈ σ(SE (Q),SE (P))
follows. But then we obtain (X,Y) ∈ SE (P ∗ Q) by Def-
inition 3, which together with (X,Y) /∈ SE (R) solves the
complementary problem.

We recall that model checking as well as SE model check-
ing are in P. So, most of the checks used above are in P (ex-
cept the already mentioned call to an NP-oracle) and it re-
mains to settle the complexity of the checks (1) and (2). As
well they can be done by an NP-oracle. This can be seen by
considering the respective complementary problems, where
one guesses the sets Y ′,W ′ (resp., X ′, Y ′, U ′, Z ′) and then
performs model checking or SE model checking together
with some other simple tests which are all in P. Thus,
the overall algorithm runs in nondeterministic polynomial
time with access to an NP-oracle. This shows the ΣP2 -
membership as desired.

As for the hardness-part, we use a reduction from (∀, 2)-
QSAT, which is the prototypical complete problem for ΠP

2 .
Let Φ = ∀Y ∃Xϕ be a QBF where ϕ is a CNF over X ∪ Y .
In what follows, let, for each z ∈ X ∪ Y , z′ be a new atom,
and, for each clause c = z1∨· · ·∨zk∨¬zk+1∨· · ·∨¬zm in
ϕ, let ĉ be the sequence z′1, . . . , z

′
k, zk+1, . . . , zm. Moreover,

let w be a further new atom and V = X ∪ Y ∪ {z′ | z ∈
X ∪ Y } ∪ {w}. We define the following programs: PΦ =
{v ←| v ∈ V }, RΦ = {w ←}, and

QΦ = {y ← ∼y′; y′ ← ∼y; ⊥ ← y, y′ | y ∈ Y } ∪
{x← ∼x′, w; x′ ← ∼x,w; w ← x; w ← x′;
⊥ ← x, x′ | x ∈ X} ∪

{⊥ ← ĉ, w | c a clause in ϕ}.

The SE models over V of these programs are as follows
(for a set Z of atoms, Z ′ stands for {z′ | z ∈ Z}):

SE (PΦ) = {(V, V)};
SE (QΦ) = {(S, S) | S = I ∪ (Y \ I)′, I ⊆ Y } ∪

{(S, T), (T, T) | S = I ∪ (Y \ I)′,
T = {w} ∪ S ∪ J ∪ (X \ J)′,
I ⊆ Y, J ⊆ X, I ∪ J |= ϕ};

SE (RΦ) = {(W1,W2) | {w} ⊆W1 ⊆W2 ⊆ V }.

We show that Φ is true iff PΦ ∗QΦ ⊆s RΦ holds.

Only-if direction: Suppose PΦ∗QΦ ⊆s RΦ does not hold.
By Lemma 3, there exist S ⊆ T ⊆ var(PΦ∪QΦ∪RΦ) = V
such that (S, T) ∈ SE (PΦ∗QΦ) and (S, T) /∈ SE (RΦ). In-
specting the SE models of RΦ, we obtain that w /∈ S. From
(S, T) ∈ SE (PΦ ∗QΦ), (S, T) ∈ SE(QΦ), and thus S has
to be of the form I ∪ (Y \ I)′ for some I ⊆ Y . Recall that
(V, V) is the only SE model of PΦ over V . Hence, S = T
holds, since otherwise (T, T)4(V, V) ⊂ (S, T)4(V, V),
which is in contradiction to (S, T) ∈ SE (PΦ ∗ QΦ). Now
we observe that for each U with S = T ⊂ U ⊆ V ,

(U,U) /∈ SE (QΦ) has to hold (otherwise (U,U)4(V, V) ⊂
(S, S)4(V, V)). Inspecting the SE models of SE (QΦ), this
only holds if, for each J ⊆ X , I ∪ J 6|= ϕ. But then Φ is
false.

If direction: Suppose Φ is false. Then, there exists an
I ⊆ Y such that for all J ⊆ X , I ∪ J 6|= ϕ. We know that
(S, S) = (I∪(Y \I)′, I∪(Y \I)′) ∈ SE (QΦ) and (V, V) ∈
SE (PΦ). Next, to obtain (S, S) ∈ SE (PΦ ∗ QΦ), we show
S ∈ σ(Mod(QΦ),Mod(PΦ)). Suppose this is not the case.
Since S ⊂ V and V is the minimal model of PΦ, there has
to exist an U with S ⊂ U ⊆ V such that U ∈ Mod(QΦ).
Recall that S = I ∪ (Y \ I)′ and, by assumption, for all
J ⊆ X , I ∪ J 6|= ϕ. By inspecting the SE models of QΦ,
it is clear that no such U ∈ Mod(QΦ) exists. By essentially
the same arguments, (S, S) ∈ σ(SE (QΦ),SE (PΦ)) can be
shown. Therefore, (S, S) ∈ SE (PΦ ∗QΦ) and since w /∈ S,
PΦ ∗QΦ ⊆s RΦ does not hold.

This shows ΠP
2 -hardness for normal programs Q. The

result for positive programs Q is obtained by replacing in
QΦ rules y ← ∼y′, y′ ← ∼y by y; y′ ←, and likewise
rules x ← ∼x′, w, x′ ← ∼x,w by x;x′ ← w. Due to
the presence of constraints ⊥ ← y, y′ and ⊥ ← x, x′, this
modification does not change the program’s SE models.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet functions
for contraction and revision. Journal of Symbolic Logic
50(2):510–530.
Alferes, J.; Leite, J.; Pereira, L.; Przymusinska, H.; and
Przymusinski, T. 1998. Dynamic logic programming. In
Proc. KR ’98, 98–109. Morgan Kaufmann.
Alferes, J.; Leite, J.; Pereira, L.; Przymusinska, H.;
and Przymusinski, T. 2000. Dynamic updates of non-
monotonic knowledge bases. Journal of Logic Program-
ming 45(1–3):43–70.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs. Theory and Practice
of Logic Programming 7(6):745–759.
Dalal, M. 1988. Investigations into theory of knowledge
base revision. In Proc. AAAI ’88, 449–479.
Delgrande, J.; Schaub, T.; and Tompits, H. 2007. A pref-
erence-based framework for updating logic programs. In
Proc. LPNMR 2007, 71–83. Springer.
Eiter, T., and Gottlob, G. 1992. On the complexity of
propositional knowledge base revision, updates, and coun-
terfactuals. Artificial Intelligence 57(2-3):227–270.
Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.
On properties of update sequences based on causal rejec-
tion. Theory and Practice of Logic Programming 2(6):711–
767.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. In Proc. LPNMR 2004, 87–99. Springer.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solu-
tion correspondences in answer-set programming. In Proc.
IJCAI 2005, 97–102. Professional Book Center.
Foo, N., and Zhang, Y. 1997. Towards generalized rule-
based updates. In Proc. IJCAI ’97, 82–88. Morgan Kauf-
mann.
Gärdenfors, P. 1988. Knowledge in Flux: Modelling the
Dynamics of Epistemic States. The MIT Press.
Inoue, K., and Sakama, C. 1998. Negation as failure in the
head. Journal of Logic Programming 35(1):39–78.
Inoue, K., and Sakama, C. 1999. Updating extended logic
programs through abduction. In Proc. LPNMR ’99, 147–
161. Springer.
Katsuno, H., and Mendelzon, A. 1992. On the difference
between updating a knowledge base and revising it. In Be-
lief Revision, 183–203. Cambridge University Press.
Kudo, Y., and Murai, T. 2004. A method of belief base
revision for extended logic programs based on state transi-
tion diagrams. In Proc. KES 2004, 1079–1084. Springer.
Leite, J. 2003. Evolving Knowledge Bases: Specification
and Semantics. IOS Press.
Lifschitz, V., and Woo, T. 1992. Answer sets in general
nonmonotonic reasoning (Preliminary report). In Proc. KR
’92, 603–614. Morgan Kaufmann.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Compu-
tational Logic 2(4):526–541.
Marek, V. W., and Truszczyński, M. 1998. Revision pro-
gramming. Theoretical Computer Science 190:241–277.
Nelson, D. 1949. Constructible falsity. Journal of Symbolic
Logic 14(2):16–26.
Osorio, M., and Cuevas, V. 2007. Updates in answer
set programming: An approach based on basic structural
properties. Theory and Practice of Logic Programming
7(4):451–479.
Przymusinski, T., and Turner, H. 1997. Update by means of
inference rules. Journal of Logic Programming 30(2):125–
143.
Satoh, K. 1988. Nonmonotonic reasoning by minimal be-
lief revision. In Proc. FGCS ’88, 455–462. Springer.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints. Theory and Practice
of Logic Programming 3(4-5):609–622.
Witteveen, C.; van der Hoek, W.; and de Nivelle, H. 1994.
Revision of non-monotonic theories: Some postulates and
an application to logic programming. In Proc. JELIA ’94,
137–151. Springer.
Zacarı́as, F.; Osorio, M.; Acosta Guadarrama, J. C.; and
Dix, J. 2005. Updates in answer set programming based
on structural properties. In Proc. COMMONSENSE 2005,
213–219. TUD–FI05–04, TU Dresden.
Zhang, Y., and Foo, N. Y. 1998. Updating logic programs.
In Proc. ECAI ’98, 403–407. IOS Press.

