
Conflict-Driven Disjunctive Answer Set Solving

Christian Drescher and Martin Gebser and Torsten Grote and Benjamin Kaufmann and
Arne König and Max Ostrowski and Torsten Schaub

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract

We elaborate a uniform approach to computing answer
sets of disjunctive logic programs based on state-of-the-
art Boolean constraint solving techniques. Starting from
a constraint-based characterization of answer sets, we de-
velop advanced solving algorithms, featuring backjumping
and conflict-driven learning using the First-UIP scheme as
well as sophisticated unfounded set checking. As a final re-
sult, we obtain a competitive solver for ΣP

2 -complete prob-
lems, taking advantage of Boolean constraint solving tech-
nology without using any legacy solvers as black boxes.

Introduction
Answer Set Programming (ASP; (Baral 2003)) has become
an attractive tool for Knowledge Representation and Rea-
soning (KRR). In fact, many important problems in KRR
have an elevated degree of complexity, calling for expres-
sive solving paradigms being able to capture problems at
the second level of the polynomial hierarchy (cf. (Schae-
fer & Umans 2002) for a survey). One possibility to deal
with such a problem consists in expressing it as a Quantified
Boolean Formula (QBF) and then to use some QBF solver
to compute its solutions.1 Another approach is furnished by
ASP solvers dealing with disjunctive logic programs, that
is, logic programs allowing for disjunction in the heads and
(default) negation in the bodies of rules.

As regards knowledge representation, the semantics un-
derlying ASP allows for specifying problems in a uni-
form way through pairs of an instance-independent encoding
(containing schematic rules with first-order variables) and a
set of facts (cf. (Schlipf 1995; Marek & Truszczyński 1999;
Niemelä 1999)). The computation of answer sets, corre-
sponding to problem solutions, is then divided into two
phases: first, the grounding of the encoding relative to the
given instance, which is done by grounders like (the ground-
ing component of) dlv (Ricca, Faber, & Leone 2006), gringo
(Gebser, Schaub, & Thiele 2007), or lparse (Syrjänen); sec-
ond, the computation of answer sets of the ground logic pro-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The satisfiability problem for general QBFs is PSPACE -
complete (see, e.g., (Papadimitriou 1994)), while it is ΣP

2 -complete
for 2QBFs. General QBF solving methods and ones specialized to
2QBFs have been investigated in (Ranjan, Tang, & Malik 2004).

gram resulting from the first phase by some ASP solver. In
this paper, we deal with the second phase: the solving of
ground programs in disjunctive ASP.

The first efficient disjunctive ASP solver, dlv (Leone et al.
2006), was developed just about a decade ago. Since then,
only two further disjunctive ASP solvers have emerged,
namely, gnt (Janhunen et al. 2006) and cmodels (Lierler
2005). The rareness of available solvers is mainly due to the
elevated complexity of the underlying solving process along
with the resulting implementation difficulties.

We address this gap by proposing a uniform approach to
disjunctive ASP solving based on advanced Boolean con-
straint solving techniques (Mitchell 2005), as applied for in-
stance in the area of Boolean Satisfiability (SAT). Our ap-
proach builds upon and extends the one developed in (Geb-
ser et al. 2007b) for normal logic programs. We start from
a logical characterization of answer sets based on loop for-
mulas due to (Lee 2005). In turn, we develop a correspond-
ing characterization in terms of Boolean constraints, spec-
ified via the generic concept of nogoods (Dechter 2003),
that is, sets of literals not contained in any solution. Based
on this, we devise constraint-based algorithms for disjunc-
tive ASP solving, featuring backjumping and conflict-driven
learning using the First-UIP scheme as well as elaborate un-
founded set checking. As a final result, we obtain a compet-
itive ASP solver for ΣP2 -complete problems, taking advan-
tage of Boolean constraint solving technology without using
any legacy solvers (for either SAT or ASP) as black boxes.

Background
A (disjunctive) logic program over an alphabet A is a finite
set of rules r of the form

a1; . . . ; al ← bl+1, . . . , bm,∼cm+1, . . . ,∼cn ,

where ai, bj , ck ∈ A are atoms for 1≤ i≤ l < j≤m<k≤
n. Let H(r) = {a1, . . . , al} be the head of r and B(r) =
{bl+1, . . . , bm,∼cm+1, . . . ,∼cn} the body of r. The set of
atoms occurring in a logic program Π is denoted by A(Π),
and B(Π) = {B(r) | r ∈ Π} is the set of bodies in Π.

Following (Lee 2005), we characterize the answer sets of
a logic program by its (classical) models satisfying all loop
formulas. A program Π is then represented by the set RFΠ

of formulas defined as follows:

RFΠ =
{(∧

b∈B(r)∩A

b ∧
∧

∼c∈B(r)

¬c
)
→

∨
a∈H(r)

a | r ∈ Π
}
.

Furthermore, for a set Y of atoms, we let

supΠ(Y) = {r ∈ Π | H(r) ∩ Y 6= ∅,B(r) ∩ Y = ∅}

be the set of rules from Π that can externally support Y . The
(disjunctive) loop formula (Lee 2005) of Y , LFΠ(Y), is:∨
a∈Y

a →
∨

r∈supΠ(Y)

(∧
b∈B(r)∩A

b ∧
∧

∼c∈B(r)

¬c ∧
∧

a∈H(r)\Y

¬a
)
. (1)

According to (Lee 2005), a set X ⊆ A is an answer set of a
program Π, if X |= RFΠ ∪{LFΠ(Y) | Y ⊆ A}. However,
the set of loop formulas can be further restricted: We call
a nonempty set L ⊆ A a loop of Π, if for all nonempty
K ⊂ L, there is some r ∈ Π such that H(r) ∩K 6= ∅ and
B(r) ∩ (L \ K) 6= ∅ (cf. (Gebser, Lee, & Lierler 2006)).
Note that every singleton contained in A is a loop of Π, and
if all loops of Π are singletons, then Π is called tight (Erdem
& Lifschitz 2003). Finally, let loop(Π) denote the set of all
loops of Π and LFΠ = {LFΠ(L) | L ∈ loop(Π)}. Then,
X is an answer set of Π iff X |= RFΠ ∪ LFΠ (Lee 2005).

A Boolean assignment A over a domain, dom(A), is a
sequence (σ1, . . . , σn) of (signed) literals σi of form Tp
or Fp for p ∈ dom(A) and 1 ≤ i ≤ n; Tp expresses that
p is true and Fp that it is false. We denote the complement
of a literal σ by σ, that is, Tp = Fp and Fp = Tp. Fur-
thermore, A ◦B denotes the sequence obtained by concate-
nating assignments A and B. We sometimes abuse nota-
tion and identify an assignment with the set of its contained
literals. Given this, we access the true and false proposi-
tions in A via AT = {p ∈ dom(A) | Tp ∈ A} and
AF = {p ∈ dom(A) | Fp ∈ A}.

For a canonical representation of Boolean constraints, we
use the CSP concept of a nogood (Dechter 2003). In our
setting, a nogood is a set {σ1, . . . , σm} of literals, express-
ing a constraint violated by any assignment A containing
σ1, . . . , σm. Given a set ∆ of nogoods, we adopt the conven-
tion that dom(A) =

⋃
δ∈∆({p | Tp ∈ δ} ∪ {p | Fp ∈ δ}).

Finally, an assignment A such that AT∪AF = dom(A) and
AT ∩AF = ∅ is a solution for ∆, if δ 6⊆ A for all δ ∈ ∆.

Nogoods
Our approach to disjunctive ASP solving is centered around
lookback techniques relying on conflict analysis, primarily
tracking the reasons for unit propagation. In order to iden-
tify such reasons, we specify the constraints underlying unit
propagation in terms of nogoods (Dechter 2003). This pro-
vides us with a uniform framework for describing propaga-
tion via a program, its completion, and loop formulas.

We start by considering programs as sets of implications.
To abstract from default negation, for a default literal `, let

t` =
{

T` if ` ∈ A
Fa if ` = ∼a and f` =

{
F` if ` ∈ A
Ta if ` = ∼a .

The following set γ(C) of nogoods then defines whether
a set C of default literals must be assigned T or F in terms
of the conjunction of its elements:

γ(C) =
{
{FC} ∪ {t` | ` ∈ C}

}
∪
{
{TC,f`} | ` ∈ C

}
.

This allows us to characterize the implications expressed by
a program Π via the following nogoods:

∆Π =
⋃
r∈Π

(
γ(B(r))∪

{
{TB(r)}∪{Fa | a ∈ H(r)}

})
.

For a program Π containing rule a; b← c,∼d, the nogoods
in γ({c,∼d}) =

{
{F{c,∼d},Tc,Fd}, {T{c,∼d},Fc},

{T{c,∼d},Td}
}

and {T{c,∼d},Fa,Fb} belong to ∆Π.
The solutions for ∆Π, projected to A(Π), correspond to

the models of Π.
Proposition 1 Let Π be a logic program and X ⊆ A(Π).

Then, X |= RFΠ iff X = AT ∩ A(Π) for a (unique)
solution A for ∆Π.

In order to describe the completion of a program Π via
nogoods, we make use of “shifting” (Gelfond et al. 1991):

~Π =
{
ai ← B(r),∼a1, . . . ,∼ai−1,∼ai+1, . . . ,∼al |
r ∈ Π, H(r) = {a1, . . . , ai−1, ai, ai+1, . . . , al}

}
.

Note that every answer set of ~Π is also an answer set of Π,
but not vice versa.

However, shifting retains the loop formulas of singletons.
Proposition 2 Let Π be a logic program.

For every a ∈ A, we have LFΠ({a}) ≡ LF ~Π({a}).
This property allows us to check the support of singletons
on the shifted version of a program.

To this end, the following nogood δ(a,D) excludes that
a ∈ A is assigned T while all elements of D are false:

δ(a,D) = {Ta} ∪ {Fd | d ∈ D} .
For singletons, the nogoods in Θ~Π then regulate support:

Θ~Π =
⋃
~r∈~Πγ(B(~r))∪{δ(a,B(sup~Π({a}))) | a ∈ A(~Π)} .

For instance, if supΠ({a}) = {a; b← c,∼d, a← e,∼f},
we have sup~Π({a}) = {a← c,∼d,∼b, a← e,∼f}, so that
Θ~Π contains the nogoods in γ({c,∼d,∼b}), γ({e,∼f}), and
δ(a, {{c,∼d,∼b},{e,∼f}})={Ta,F{c,∼d,∼b},F{e,∼f}}.

Similar to Proposition 1, we obtain the following result.
Proposition 3 Let Π be a logic program and X ⊆ A.

Then, X |= {LFΠ({a}) | a ∈ A} iff X = AT ∩ A(Π)
for a (unique) solution A for Θ~Π.

Given that, for a tight program Π, every loop of Π is a
singleton, the answer sets of Π (or models of RFΠ ∪ LFΠ,
respectively) coincide with the solutions for ∆Π ∪Θ~Π.
Theorem 4 Let Π be a tight logic program and X ⊆ A.

Then, X is an answer set of Π iff X = AT ∩ A(Π) for a
(unique) solution A for ∆Π ∪Θ~Π.
The last result still holds after replacing ∆Π by ∆~Π. We
further discuss this alternative in the system section below.

Note that ∆Π ∪ Θ~Π amounts to the completion (Ben-
Eliyahu & Dechter 1994; Lee & Lifschitz 2003) of Π, pro-
vided that Π does not contain any tautological rules r where

H(r) ∩ B(r) 6= ∅. Notably, conjunctions expressed by the
bodies in B(Π) or B(~Π), respectively, are represented by
propositions in ∆Π∪Θ~Π. For normal programs (being prim-
itive disjunctive programs), this has been shown to exponen-
tially reduce proof complexity (Gebser & Schaub 2006).

We now consider non-tight programs where loops are not
necessarily singletons. In contrast to tight programs, in the
worst case, exponentially many loop formulas are required
to single out the answer sets among the models of a pro-
gram’s completion (Lifschitz & Razborov 2006). The no-
goods associated to such loop formulas are thus not meant
to be determined a priori. Rather, we below use them to
explain why assignments do not correspond to answer sets.

In order to identify the nogoods arising from loop for-
mulas, reconsider LFΠ(Y) given in (1). For a particular
r ∈ supΠ(Y), observe that r is satisfied and, hence, does
not support Y wrt an interpretation if either B(r) is false or
some a ∈ H(r) \ Y is true. Accordingly, satr(Y) contains
all literals that would satisfy r independently from Y :

satr(Y) = {FB(r)} ∪ {Ta | a ∈ H(r) \ Y } .

We call a set Y of atoms unfounded by Π wrt an assign-
ment A, if for each r ∈ supΠ(Y), A contains some literal
from satr(Y). In this case, all atoms in Y must be false,
which is expressed by the following set of nogoods:

λΠ(Y) =
{
{σ1, . . . , σm} | (σ1, . . . , σm) ∈

{Ta | a ∈ Y } ×
∏
r∈supΠ(Y)satr(Y)

}
.

Note that the number of nogoods in λΠ(Y) is exponential in
|supΠ(Y)|. However, as mentioned above, we do not intend
to construct λΠ(Y) a priori. Rather, in the next section, we
detail how violations of λΠ(Y) can be checked on Π itself.

As an example, consider supΠ({a, e}) = {a; b← c,∼d,
e; f ← d}. We have sata;b←c,∼d({a, e}) = {F{c,∼d},Tb}
and sate;f←d({a, e}) = {F{d},Tf}. Thus, we get
λΠ({a, e}) =

{
{σ,F{c,∼d},F{d}}, {σ,F{c,∼d},Tf},

{σ,Tb,F{d}}, {σ,Tb,Tf} | σ ∈ {Ta,Te}
}

.
Given that singletons are already dealt with via the no-

goods in Θ~Π, additional nogoods, mainly aiming at the ex-
ternal support of loops, can concentrate on non-singletons:

ΛΠ =
⋃
Y⊆A(Π),|Y |>1λΠ(Y) .

We thus obtain the following counterpart of Proposition 3.
Proposition 5 Let Π be a logic program and X ⊆ A(Π).

Then, X |= {LFΠ(Y) | Y ⊆ A(Π), |Y | > 1} iff
X = AT ∩ A(Π) for a (unique) solution A for ΛΠ ∪⋃
r∈Π γ(B(r)).
Combining Proposition 3 and 5 yields the next result.

Proposition 6 Let Π be a logic program and X ⊆ A.
Then, X |= LFΠ iff X = AT ∩ A(Π) for a (unique)

solution A for Θ~Π ∪ ΛΠ ∪
⋃
r∈Π γ(B(r)).

Finally, the nogoods in ΛΠ allow us to extend Theorem 4
to non-tight programs.
Theorem 7 Let Π be a logic program and X ⊆ A.

Then, X is an answer set of Π iff X = AT ∩ A(Π) for a
(unique) solution A for ∆Π ∪Θ~Π ∪ ΛΠ.

Algorithms
Our decision procedure for disjunctive programs is based
on the one for normal programs presented in (Gebser et al.
2007b). But in contrast to normal programs, the problem
of deciding whether a disjunctive program has an answer
set is ΣP2 -complete (Eiter & Gottlob 1995). The source of
this complexity increase is recognizing (the absence of) un-
founded sets, which is coNP -complete in general (Leone,
Rullo, & Scarcello 1997). Regarding our framework in
the previous section, this means that detecting violations
of ΛΠ, using its compact representation by Π itself, may
be intractable for certain programs Π. However, for so-
called head-cycle-free programs, unfounded set checking is
tractable, so that deciding the existence of answer sets drops
into NP (Ben-Eliyahu & Dechter 1994).

Our algorithm exploits head-cycle-freeness as well as the
fact that the consideration of unfounded sets can safely be
restricted to loops (cf. (Lee 2005)). To this end, we parti-
tion the atoms of a given program Π into components via
CΠ = {C1, . . . , Cj}, where Ci is a ⊆-maximal element
of loop(Π) that is not a singleton for 1 ≤ i ≤ j. It is not
hard to check that (K ∪ L) ∈ loop(Π) if K,L ∈ loop(Π)
and K ∩ L 6= ∅. Hence, the components in CΠ are mutu-
ally disjoint. Furthermore, by restricting attention to non-
singletons, CΠ focuses on atoms belonging to loops that are
not already handled by Θ~Π. In order to access the compo-
nent of some atom a, let CΠ(a) = C, if C ∈ CΠ such that
a ∈ C. We say that a component C ∈ CΠ is head-cycle-free
(HCF), if for every r ∈ Π, we have |H(r)∩C| ≤ 1. Finally,
we denote the set of HCF components in CΠ by C⊕Π , and let
C∨Π = CΠ \ C⊕Π be the set of non-HCF components in CΠ.

Before we provide the details of our algorithms, let us
briefly outline the context. Our algorithmic approach is
based on Conflict-Driven Clause Learning (CDCL) for SAT
(Mitchell 2005), having conflict analysis at its core. Here,
the First-UIP scheme (Marques-Silva & Sakallah 1999;
Zhang et al. 2001), enabling backjumping and conflict-
driven learning, has turned into a quasi-standard. These
techniques are adopted by our algorithms, but in the more
abstract setting of nogoods. In fact, every clause describes
a nogood consisting of the complements of literals in the
clause. Conversely, every nogood can be syntactically rep-
resented by a clause, but other representations are also possi-
ble. A prominent example in ASP are cardinality and weight
constraints (Simons, Niemelä, & Soininen 2002), compactly
representing a number of nogoods that can be exponential.
In order to also capture such extended constructs, we express
the semantics of Boolean constraints via nogoods and switch
to the term Conflict-Driven Nogood Learning (CDNL).

Main Algorithm
Algorithm 1 shows our procedure for deciding whether
a disjunctive program Π has some answer set. It is in-
spired by Conflict-Driven Clause Learning (CDCL) for SAT
(Mitchell 2005) and our previous algorithm for normal pro-
grams (Gebser et al. 2007b). In fact, our procedure is cen-
tered around conflict-driven learning. This is reflected by
the dynamic nogoods in ∇, initialized in Line 2 of Algo-

Algorithm 1: CDNL-ASP-D
Input : A program Π.
Output: An answer set of Π.

A← ∅ // assigment over A(Π) ∪ B(Π) ∪ B(~Π)1
∇ ← ∅ // set of dynamic nogoods2
dl← 0 // decision level3
loop4

(A,∇)← PROPAGATION(Π,∇,A)5
if δ ⊆ A for some δ ∈ ∆Π ∪Θ~Π ∪∇ then6

if dl = 0 then return no answer set7
(ε, k)← ANALYSIS(δ,Π,∇,A)8
∇ ← ∇∪ {ε}9
A← A \ {σ ∈ A | k < dl(σ)}10
dl← k11

else if AT ∪AF = A(Π) ∪ B(Π) ∪ B(~Π) then12
U ← ∅ // unfounded set13
foreach C ∈ C∨Π do14

if U = ∅ then U ← CDNL(ΓA
Π (C))15

if U 6= ∅ then16
let δ ∈ λΠ(U) such that δ ⊆ A in17

if {σδ ∈ δ | 0 < dl(σδ)} = ∅ then18
return no answer set19

(ε, k)← ANALYSIS(δ,Π,∇,A)20
∇ ← ∇∪ {ε}21
A← A \ {σ ∈ A | k < dl(σ)}22
dl← k23

else return AT ∩A(Π)24

else25
σd ← SELECT(Π,∇,A)26
dl← dl + 127
A← A ◦ (σd)28

rithm 1 and filled with learned nogoods in Line 5, 9, and 21.
Note that the dynamic nogoods added to∇ in Line 5 are ele-
ments of ΛΠ, while those added in Line 9 and 21 result from
conflict analysis (see below) invoked in Line 8 or 20, respec-
tively. In addition to conflict-driven learning, our procedure
performs backjumping (Lines 10–11 and 22–23), guided by
a decision level k that is determined by conflict analysis.

The purpose of decision levels is to count (Line 27) the
number of decision literals, i.e., literals heuristically selected
in Line 262 and added to assignment A in Line 28, being
present in A. Initially, assignment A is empty (Line 1), and
thus the decision level dl is zero (Line 3). For any literal σ
present in A, we write dl(σ) to refer to the decision level at
which σ has been added to A (the value dl had at that point).
A conflict, detected in Line 6 or 17 via some nogood δ ⊆ A,
at decision level zero indicates that Π has no answer set,
in which case our procedure terminates (Line 7 or 18–19).
Note that, before selecting any decision literal, propagation
(see below) is performed in Line 5. For the result, one of the
following three major cases applies: some known nogood
δ ∈ ∆Π ∪ Θ~Π ∪ ∇ is violated (Lines 6–11); assignment A

2We assume {σd, σd}∩A = ∅ for literals σd selected in Line 26.

is total, that is, A assigns either T or F to each element
of A(Π) ∪ B(Π) ∪ B(~Π) (Lines 12–24); or the obtained
assignment A is partial (Lines 25–28).

Let us focus on the case of a total assignment A, which
is specific to disjunctive programs. In fact, propagation in-
cludes a polynomial check for unfounded sets, which in the
case of normal (or HCF) programs allows us to simply re-
turn AT ∩A(Π) as an answer set of Π. The same is done in
Line 24, but only after performing exponential (in the worst
case) unfounded set checks on the non-HCF components
C ∈ C∨Π, iterated over in Lines 14–15. For each such C, a
nonempty unfounded set contained inC∩AT is a solution to
a separate search problem given by the following nogoods:
ΓA

Π (C)=
{
{Ta | a ∈ H(r) ∩AT}∪{Fa | a ∈ B(r) ∩ C} |

r ∈ Π, satr(C) ∩A = ∅
}

∪
{
{Fa | a ∈ C ∩AT}

}
.

For a solution U for ΓA
Π (C), represented by the atoms as-

signed T, and each r ∈ Π such that H(r) ∩ AT ⊆ C and
B(r) /∈ AF, the nogoods in ΓA

Π (C) stipulate that either r is
satisfied independently from U , i.e., (H(r) ∩AT) \ U 6= ∅,
or r depends on U , i.e., B(r) ∩ U 6= ∅. Also note that
all rules satisfied independently from C, i.e., rules r where
satr(C)∩A 6= ∅, do not contribute any nogoods to ΓA

Π (C).
For illustration, consider the following program Π:{
a; b← a; c; e← b c← d,∼b d← e,∼a
c; d← b; d← c c← e e← c, d

}
. (2)

Observe that the only component of Π is C = {b, c, d, e},
which is non-HCF. Taking a total assignment A such that
AT ∩A(Π) = {a, c, d, e} and AF ∩A(Π) = {b}, we get:

ΓA
Π (C) =

{
{Tc,Fd}, {Tc,Td}, {Td,Fc}, {Tc,Fe},
{Te,Fc,Fd}

}
∪
{
{Fc,Fd,Fe}

}
.

Note that, from the first line in (2), only rule c← d,∼b con-
tributes nogood {Tc,Fd} to ΓA

Π (C), while the other three
rules r are already satisfied because either a ∈ H(r)∩AT or
∼a ∈ B(r) implying B(r) ∈ AF. As one can check, there
is no solution for ΓA

Π (C), meaning that C ∩AT = {c, d, e}
does not contain any nonempty unfounded set. Indeed, we
have that AT ∩A(Π) = {a, c, d, e} is an answer set of Π.

The orthogonal search problem specified via ΓA
Π (C) can

be solved externally to our main algorithm. In Line 15, we
assume that the true atoms of a solution are returned, if there
is some solution, or the empty set, if ΓA

Π (C) is unsatisfi-
able. In the former case, due to the construction of ΓA

Π (C),
we know that A contains some nogood δ ∈ λΠ(U), which
is determined in Line 17 and used for conflict analysis in
Line 20. In the latter case, if U = ∅, we proceed with
the next component in C∨Π. Only after all non-HCF com-
ponents have been processed and no nonempty unfounded
set has been found, the true atoms in A are returned as an
answer set of Π (Line 24). Finally, note that restricting un-
founded set checks to non-HCF components is justified by
the fact that the loop formula of some loop of Π is violated
if A does not correspond to an answer set of Π. In addition,
such a loop cannot belong to a HCF component, which un-
like non-HCF components are thoroughly dealt with by the
polynomial unfounded set check within propagation.

Algorithm 2: PROPAGATION

Input : A program Π, a set∇ of nogoods, and an
assignment A.

Output: An extended assignment and set of nogoods.

U ← ∅ // unfounded set1
loop2

repeat3
if δ ⊆ A for some δ ∈ ∆Π ∪Θ~Π ∪∇ then4

return (A,∇)5

Σ← {δ ∈ ∆Π∪Θ~Π∪∇ | δ\A = {σ}, σ /∈ A}6

if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in7
A← A ◦ (σ)8

until Σ = ∅9

if CΠ = ∅ then return (A,∇)10

U ← U \AF11
if U = ∅ then U ← UNFOUNDEDSET(Π,A)12
if U = ∅ then return (A,∇)13
let a ∈ U and δ ∈ λΠ(U) such that δ\{Ta} ⊆ A14
in
∇ ← ∇∪ {δ}15

Propagation
We now explain our propagation procedure shown in Algo-
rithm 2. Lines 3–9 amount to unit propagation (cf. (Mitchell
2005)) on the nogoods in ∆Π ∪Θ~Π ∪ ∇, either resulting in
a conflict (Lines 4–5) or a fixpoint A. In the latter case, if
CΠ = ∅, we have that Π is tight, and according to The-
orem 4, sophisticated unfounded set checks are unneces-
sary (Line 10). Otherwise, we proceed with the consider-
ation of unfounded sets. As argued in (Gebser et al. 2007b),
falsifying a single atom in an unfounded set might enable
unit propagation to falsify further atoms of the set. Once
a nonempty unfounded set U has been identified, we thus
falsify its elements one by one, doing unit propagation in-
between. On this account, we remove false atoms from U in
Line 11. If the resulting set is empty, in Line 12, we look for
another nonempty unfounded set (see below). Provided that
such a U has been determined, for each a ∈ U , there is some
nogood δ ∈ λΠ(U) such that either δ \ A = {Ta}, i.e., δ
implies Fa, or δ ⊆ A, i.e., δ is violated by A. Such a δ is
determined in Line 14 and recorded in Line 15, triggering
either unit propagation or conflict analysis.

(Polynomial) Unfounded Set Detection
Our unfounded set detection procedure in Algorithm 3 uses
source pointers (Simons, Niemelä, & Soininen 2002), in-
dicating for each non-false atom a justifying rule. We
denote the source pointer of an atom a by source(a).
For a program Π, we require as invariants that a ∈
H(source(a)), for each a ∈ (

⋃
C∈CΠ

C), and that the graph
(
⋃
C∈CΠ

C, {(a, b) | a ∈ (
⋃
C∈CΠ

C), source(a) = r,

b ∈ B(r) ∩ CΠ(a)}) is acyclic. After an appropriate initial-
ization, these invariants are maintained by Algorithm 3. Fur-
thermore, we use the following notation to access the prefix

Algorithm 3: UNFOUNDEDSET

Input : A program Π and an assignment A.
Output: An unfounded set of Π wrt A.

S ← {a ∈ (
⋃
C∈CΠ

C) \AF | B(source(a)) ∈ AF or
H(source(a)) ∩ ((AT \ CΠ(a)) ∪A[Ta]T) 6= ∅}1

repeat2

T ← {a ∈ (
⋃
C∈CΠ

C) \ (AF ∪ S) |
B(source(a)) ∩ CΠ(a) ∩ S 6= ∅}3

S ← S ∪ T4

until T = ∅5

while S 6= ∅ do let a ∈ S in6
U ← {a}7
repeat8

R← {r ∈ supΠ(U) | satr(U) ∩A = ∅}9
if R = ∅ then return U10
let r ∈ R in11

if B(r) ∩ CΠ(a) ∩ S = ∅ then12
T ← {a′ ∈ (H(r) ∩ U) |

H(r) ∩A[Ta′]T = ∅}13

foreach a′ ∈ T do source(a′)← r14
S ← S \ T15
U ← U \ T16

else U ← U ∪ (B(r) ∩ CΠ(a) ∩ S)17

until U = ∅18

return ∅19

of an assignment A up to a literal σ:

A[σ] =
{

(σ1, . . . , σm) if A = (σ1, . . . , σm, σ, . . .)
A if σ /∈ A .

If a rule head contains several atoms of the same component
that are true wrt A, the prefix allows us to identify the atom
that became true first. Only this atom can potentially use
the rule as its source pointer, while the other atoms may not.
Note that it would be incorrect to completely exclude dis-
junctive rules with several true head atoms as source point-
ers, as it would lead to speciously reckon sets as unfounded.

The general purpose of source pointers is to designate the
scope of unfounded set checks in reaction to changes of A.
In fact, in Line 1 of Algorithm 3, we determine all non-
false atoms a, belonging to some component in CΠ, whose
source pointer has recently been invalidated, either because
B(source(a)) has become false or because some atom in
H(source(a)) \ {a} has become true. As mentioned above,
if all true head atoms belong to the same component, then
the first atom that became true may still use the respective
rule as its source pointer. After determining the atoms with
invalidated source pointers, in Lines 2–5, we iteratively col-
lect further atoms whose source pointers depend on them.
The resulting set S provides the scope for the second part of
Algorithm 3 in Lines 6–18, trying to reestablish the source
pointers of the atoms in S. To this end, we investigate a
(nonempty) subset U of S, starting from some a ∈ S, to-
gether with the rules that externally support U and are not
satisfied independently from U (Line 9). If no such rule ex-

ists, then U is unfounded, and we immediately return it in
Line 10. Otherwise, we check for some such rule r whether
B(r) contains atoms belonging both to CΠ(a) and to the
scope S (Line 12). If so, these atoms are added to U in
Line 17, achieving that r does not externally support the re-
sulting setU . In contrast, if no atom from B(r) can be added
to U , then r is eligible as new source pointer for some atoms
in U , where we again distinguish the first true atom from U
in H(r) in case that H(r) contains true atoms (Line 13). In
Lines 14–16, we eventually reestablish source pointers and
remove the corresponding atoms both from the scope S as
well as the unfounded set U to be constructed.

Reconsider the program Π in (2), non-HCF component
C = {b, c, d, e}, and an assignment A such that AT ∩
A(Π) = {a, c, d, e} and AF ∩ A(Π) = {b}. Observe that,
for every rule r ∈ Π such that H(r)∩ (C \AF) 6= ∅, where
C \AF = {c, d, e}, we have either B(r)∩ (C \AF) 6= ∅ or
|H(r) ∩AT| > 1. In particular, the latter applies to c; d←.
If we did not permit c; d← as the source pointer of either c
or d, then the acyclic character of source pointers would im-
ply that the atoms in {c, d, e} get into the scope of Algo-
rithm 3 at some point and would then wrongly be returned as
an unfounded set, making us discard answer set {a, c, d, e}
of Π. For another example, consider an assignment A such
that AT ∩ A(Π) = {b, c, d, e} = C. Then, if Tb and Tc
precede Td and Te in A, only rules d← e,∼a and e← c, d
can potentially be used as source pointers of d or e, respec-
tively. However, since these rules are cyclic, Algorithm 3
cannot reset the source pointers of d and e, thus identifying
unfounded set {d, e}. In contrast, if Te is first in A, then
the source pointer of e can be set to a; c; e← b (as a; b←
can be used for b), which afterwards allows Algorithm 3 to
set the source pointers of c and d to c← e and d← e,∼a,
respectively. Hence, unfounded set {d, e} is not detected.

Note that Algorithm 3 is complete for HCF components,
C, in the sense that it detects a nonempty unfounded setU ⊆
C \ AF if there is one. For non-HCF components, Algo-
rithm 3 can only approximate unfounded sets. In fact, any
determined set U is unfounded, but we are not guaranteed
to detect every unfounded set that may exist. Allowing the
first true atom in a disjunctive head to use the correspond-
ing rule as its source pointer is not an exact criterion, and
other choices may lead to different outcomes. However, the
lack of exactness is compensated by the computational cost:
While Algorithm 3 has linear complexity,3 deciding whether
a nonempty unfounded set exists is NP -complete for non-
HCF components (Leone, Rullo, & Scarcello 1997).

Conflict Analysis
Finally, our conflict analysis procedure in Algorithm 4 re-
solves a violated nogood δ against other nogoods implying
some of its literals until encountering a Unique Implication
Point (UIP), σ, which has the property that dl(σδ) < dl(σ)
for all σδ ∈ δ \ {σ}. To this end, we pick in Line 2 the lit-
eral σ ∈ δ that has been added last to A. If σ is not a UIP,
we resolve δ against a nogood ε implying σ (Line 6). Note

3Within claspD, described below, we even retain the scope S
for repeated calls to UNFOUNDEDSET at the same decision level.

Algorithm 4: ANALYSIS

Input : A violated nogood δ, a program Π, a set ∇ of
nogoods, and an assignment A.

Output: A derived nogood and a decision level.

loop1
let σ ∈ δ such that δ \A[σ] = {σ} in2

k ← max ({dl(σδ) | σδ ∈ δ \ {σ}} ∪ {0})3
if k = dl(σ) then4

let ε∈∆Π∪Θ~Π∪∇such that ε\A[σ]={σ} in5
δ ← (δ \ {σ}) ∪ (ε \ {σ})6

else return (δ, k)7

that such a nogood ε always exists because σ is necessar-
ily different from the decision literal of dl(σ). Otherwise,
if σ is a UIP, we are done with conflict analysis (Line 7).
The particularity of a UIP σ is that the corresponding no-
good δ implies σ at the maximum decision level k of literals
in δ\{σ}. Hence, backjumping can return to decision level k
in order to afterwards assert σ. By stopping conflict analy-
sis at the UIP σ encountered first, which is not necessarily
the decision literal of dl(σ), Algorithm 4 is similar to the
First-UIP scheme of CDCL (Mitchell 2005).

System
We implemented our approach to disjunctive ASP solving as
an extension of the conflict-driven ASP solver clasp (Gebser
et al. 2007b) and call the resulting system claspD (claspD).
In fact, claspD inherits many features from clasp, such as
conflict-driven learning, lookback-based decision heuristics,
restart policies, watched literals, etc. The input language of
claspD consists of logic programs in lparse’s output format
(Syrjänen). Like clasp, also claspD supports answer set enu-
meration (Gebser et al. 2007a) and optimization. It also han-
dles cardinality and weight constraints (Simons, Niemelä, &
Soininen 2002), currently through compilation.

The global architecture of claspD is shown in Figure 1.
Given a logic program Π, the PREPROCESSOR takes care
of creating an internal representation, comprising the static
nogoods in ∆Π ∪Θ~Π as well as the components in CΠ. No-
tably, preprocessing also includes program simplifications
(Eiter et al. 2004) and equivalence reasoning (Gebser et
al. 2008), both adapted to disjunctive programs. The ac-
tual search for answer sets can be further distinguished into
a generating part, providing answer set candidates, and a
testing part, verifying the provided candidates. Since both
of these tasks can be computationally complex, they are
performed by associated inference engines (indicated by
CDNL in Figure 1), implemented in claspD by feeding the
core search module from clasp with particular Boolean con-
straints. While the generator traverses the search space for
answer sets of Π, communicating its current state through
an assignment to the tester, the latter checks for unfounded
sets and reports them back via nogoods of ΛΠ. As shown
in Algorithm 2, procedure UNFOUNDEDSET is integrated
into propagation and thus continuously applied during the

Logic
Program Answer Set

claspD

�

�

�

�

Generator

Tester
�
 �	PREPROCESSOR

Static
Nogoods Components

'

&

$

%
CDNL

Assignment

Dynamic
Nogoods
�
 �	UNFOUNDEDSET

��
��PPPP����PP

PP exhaustive?

yes

'
&
$
%CDNL

?

6

��	 @@R

?

-

-

-�

-

@
@@R

6

�

Figure 1: The system architecture of claspD.

generation of answer set candidates. In contrast, the checks
encoded by ΓA

Π (C), for non-HCF components C ∈ C∨Π, are
performed only selectively, e.g., if assignment A is total,
due to their high computational cost. Having sketched the
overall architecture, the remainder of this section outlines
particular features of claspD related to degrees of freedom
in the algorithms specified above.

As mentioned below Theorem 4, the models of a pro-
gram Π (or RFΠ, respectively) can also be captured by ∆~Π
as substitute for ∆Π. On the one hand, shifting poten-
tially increases the number of nogoods used to express mod-
els because |Π| ≤ |~Π|. On the other hand, the proposi-
tional variables occurring in ∆~Π are exactly the same as
those in Θ~Π, while ∆Π introduces extra variables for bod-
ies in B(Π) \ B(~Π). With claspD, the set of nogoods
to use can be selected via command line options. By de-
fault, claspD encodes models via ∆~Π in order to maxi-
mize the reuse of variables, particularly, in learned nogoods.
Another representation-related issue is checking whether
satr(U) ∩A = ∅ holds in Line 9 of Algorithm 3, as it re-
quires the investigation of B(r) and the atoms in H(r) \ U .
For reducing the number of the latter, claspD performs a
“component-wise shifting.” That is, for each C ∈ CΠ and
r ∈ Π such that H(r) ∩ C 6= ∅, we introduce a variable
B = B(r) ∪ {∼a | a ∈ H(r) \ C} along with the nogoods
in γ(B). This allows us to check satr(U)∩A = ∅ by inves-
tigating just B and the atoms in (H(r) ∩ C) \ U . Note that,
if C is HCF, we have |H(r) ∩ C| = 1, which implies that
B is already present in Θ~Π and can thus be reused. During
preprocessing, claspD introduces a variable standing for a
conjunction (being the body of either an original or a shifted
rule) only once and reuses it if the same conjunction recurs.

Even with component-wise shifting, for non-HCF com-
ponents C ∈ C∨Π, claspD may detect some nonempty un-
founded setU ⊂ C such that there is a rule r ∈ supΠ(U) for
which |Σr =

((
{F(B(r)∪{∼a | a ∈ H(r) \C})}∪{Ta |

a ∈ (H(r) ∩ C) \ U}
)
∩ A

)
| > 1, where A is the cur-

rent assignment. Since in this case we can choose among
the literals in Σr, several nogoods can be extracted and used
for falsifying an atom in U by unit propagation. However,
claspD does not aim at the exhaustive recording of such no-
goods, as it would be memory-consuming and might even
slow down the solving process as a whole. On this ac-
count, claspD selects the literal σ ∈ Σr added first to A,
i.e., Σr ∩ A[σ] = ∅, in order to construct a single no-
good δ to be recorded. The underlying idea is that, if δ
is resolved within conflict analysis, then literals of smaller
decision levels are likely to permit longer backjumps. The
described heuristics is applicable (and applied by claspD)
to unfounded sets U ⊂ C, for some C ∈ C∨Π, deter-
mined either via the polynomial unfounded set check in Al-
gorithm 3 or as a solution for ΓA

Π (C). Beyond that, once
a nonempty unfounded set U ⊂ C has been determined,
where C ∈ C∨Π, there possibly are atoms a ∈ C \ (U ∪AF)
such that U ∪ {a} is also an unfounded set. Furthermore,
we might have a ∈ B(r) for some rule r ∈ supΠ(U), so
that r /∈ supΠ(U ∪ {a}). Following this observation, it
can happen that |supΠ(U ∪ {a})| < |supΠ(U)| and that the
nogood to be recorded for U ∪ {a} turns out to be smaller
(in terms of the number of literals) than the one for U . For
unfounded sets U determined as solutions for ΓA

Π (C), we
exploit this idea and greedily add atoms a ∈ C \ (U ∪AF)
to U , provided that U∪{a} stays unfounded and that the no-
good already constructed for U becomes smaller due to the
addition of a. This strategy is guided by the assumption that
smaller nogoods constrain the search space stronger and by
the consideration that the effort made to identify U justifies
the overhead of a posteriori reducing its associated nogood.

A related feature of claspD goes back to ideas from (Jan-
hunen et al. 2006; Pfeifer 2004), where exhaustive un-
founded set checks are repeated during backtracking and are
thus not limited to total assignments, as it is the case in Al-
gorithm 1. On the one hand, such strategies make sure that
backtracking proceeds to a state such that no nogood in ΛΠ

is violated, which is not guaranteed in Algorithm 1 because
it computes an arbitrary nonempty unfounded set in Line 15.
On the other hand, by integrating exhaustive unfounded set
checks into backtracking, they are applied on demand and
in a controlled way, while it would be harder to predict their
usefulness during the generation of an answer set candidate.
In the implementation of claspD, the loop in Lines 14–15 of
Algorithm 1 is repeated after backjumping because of an in-
valid answer set candidate. Since assignments A can be par-
tial in such situations, for a non-HCF component C ∈ C∨Π,
encoding ΓA

Π (C) is modified as follows:

ΥA
Π (C)=

{
{Ta | a ∈ H(r) ∩AT}∪{Fa | a ∈ B(r) ∩ C} |

r ∈ Π, satr(C) ∩A = ∅, H(r) ∩AT 6= ∅
}

∪
{
{Ta} ∪ {Fa | a ∈ B(r) ∩ C} |

r ∈ Π, satr(C \AT) ∩A = ∅, a ∈ (H(r) ∩ C) \AF
}

∪
{
{Fa | a ∈ C ∩AT}

}
.

Note that the first set of nogoods in ΥA
Π (C) is almost sim-

ilar to the corresponding set in ΓA
Π (C), but since A might

be partial, we explicitly require that H(r) ∩ AT 6= ∅. The
second set of nogoods is used to encode rules r not having

No. Class n claspD claspDns claspDna claspDnr claspDnp claspDnl cmodels dlv gnt

1 SCore-Tight 39
9.57 (17) 9.13 (16) 10.03 (16) 8.80 (17) 9.83 (16) 32.49 (12) 34.58 (20) 75.45 (48) 40.03 (22)

95.36 89.93 90.71 94.70 90.54 90.70 131.23 290.06 145.32

2 SCore-NonTight 56
10.74 (0) 11.26 (0) 11.16 (0) 10.95 (0) 10.78 (0) 29.32 (13) 17.62 (12) 78.62 (23) 42.18 (23)

10.74 11.26 11.16 10.95 10.78 73.48 59.22 150.00 118.55

3r DLV-HCF-Hamilton 100
2.36 (2) 1.94 (0) 2.36 (2) 2.36 (2) 1.53 (3) 24.59 (108) 10.64 (2) 0.04 (0) 16.69 (67)

6.34 1.94 6.34 6.34 7.51 231.74 14.57 0.04 149.29

4s DLV-HCF-Sokoban 118
1.23 (0) 1.02 (0) 1.24 (0) 1.23 (0) 1.24 (0) 4.64 (9) 0.20 (6) 2.40 (9) 5.13 (17)

1.23 1.02 1.24 1.23 1.24 19.78 10.37 17.59 33.70

5r DLV-QBF.cgs 100
0.07 (0) 0.21 (0) 0.08 (0) 0.07 (0) 0.05 (0) 0.00 (6) 0.26 (0) 3.23 (15) 51.76 (269)

0.07 0.21 0.08 0.07 0.05 12.00 0.26 33.07 543.35

6r DLV-QBF.gw 100
0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.01 (0) 3.52 (0) 0.01 (0) 0.01 (0) 50.10 (85)

0.00 0.00 0.00 0.00 0.01 3.52 0.01 0.01 205.91

7 SCore-Mutex 7
53.42 (0) 53.38 (0) 52.86 (0) 55.26 (0) 17.79 (15) 46.91 (0) 0.42 (18) 14.15 (0) 1.64 (18)

53.42 53.38 52.86 55.26 433.65 46.91 514.35 14.15 514.52

8r SCore-RandomQBF 15
9.38 (0) 9.39 (0) 9.33 (0) 8.54 (0) 304.27 (1) 9.31 (0) 101.73 (29) 15.55 (0) — (45)

9.38 9.39 9.33 8.54 310.84 9.31 422.84 15.55 600.00

9r SCore-StratComp 15
53.16 (2) 70.04 (2) 47.44 (0) 53.16 (2) 52.56 (2) 136.16 (21) 93.67 (1) 43.32 (2) 84.27 (6)

77.46 93.59 47.44 77.46 76.89 352.62 104.92 68.06 153.03

Average Time (Sum Timeouts) 15.55 (21) 17.37 (18) 14.94 (18) 15.60 (21) 44.23 (37) 31.88 (169) 28.79 (88) 25.86 (97) 36.48 (552)
Average Penalized Time 28.22 28.97 24.35 28.28 103.50 93.34 139.75 65.39 273.74

Table 1: Experiments computing one answer set on a 3.4GHz PC under Linux; each run limited to 600s time and 1GB RAM.

a true head atom, where one nogood containing literal Ta
is included per atom a ∈ (H(r) ∩ C) \ AF. By also tak-
ing unassigned atoms into account, we allow for solutions
U 6⊆ AT, in which case U ∩AT 6= ∅ is implicitly granted
since claspD applies UNFOUNDEDSET within Algorithm 2
before solving ΥA

Π (C). Similar to ΓA
Π (C), the third nogood

thus excludes the empty (unfounded) set as a solution. An-
other strategy, called “Partial Checks Forwards” in (Pfeifer
2004), consists of incorporating an exhaustive unfounded
set check into the generation of a new answer set candidate
after the previous one has turned out to be invalid. Based
on ΥA

Π (C), we also adopted this technique in claspD.

Experiments
We conducted experiments on a variety of benchmarks,
stemming from the dlv team4 and from the normal (SCore)
and disjunctive (SCore∨) solver categories of the ASP sys-
tem competition5. Instances from the normal SCore cate-
gory are divided into classes No. 1 and 2 in Table 1, depend-
ing on tightness. Both subclasses contain randomly gener-
ated as well as structured instances. For the other classes
(No. 3–9), we indicate by a superscript r or s whether they
consist of randomly generated or structured instances, re-
spectively. Class No. 7 contains (unsatisfiable) instances,
also used in (Faber et al. 2007), that have been obtained
from 2QBFs whose particular nature is unknown to us. Note
that class No. 1 consists of tight, classes No. 2–4 of non-tight
HCF, and classes No. 5–9 of (non-tight) non-HCF programs.

Our study considers claspD in six settings: default config-
uration (claspD); no shifting for nogoods encoding model
conditions (claspDns); no polynomial unfounded set ap-
proximation within non-HCF components (claspDna); no

4http://www.dlvsystem.com/examples/tocl-dlv.zip
5http://asparagus.cs.uni-potsdam.de/contest/

reduction of loop nogoods violated by total assignments
(claspDnr); no exhaustive unfounded set checks on partial
assignments (claspDnp); neither learning nor backjumping,
instead using lookahead (claspDnl). For comparison, we
also incorporate the disjunctive ASP solvers cmodels (3.68),
dlv (Oct 11 2007), and gnt (2.1). Table 1 summarizes run-
time results in seconds, excluding times spent by lparse
(Syrjänen) and subtracting times of dlv with option “instan-
tiate” from run-times of dlv. Each line averages over 3n
runs on n benchmark instances, each shuffled three times
using ASP tools from TU Helsinki6. For every benchmark
class, the first line gives the average time for completed runs
and the number of timeouts in parentheses, whereas the sec-
ond line provides the average time penalizing timeouts with
maximum time, viz., 600 seconds. Similarly, we summa-
rize at the bottom of Table 1 the average run-times over all
benchmark classes (weighted equally). So the last but one
line gives the average time per solver along with the sum of
all timeouts in parentheses, while the last line provides the
average time including the aforementioned penalty.

The summary in Table 1 shows that claspD, claspDns ,
claspDna , and claspDnr are close to each other, and they
outperform the other solvers regarding timeouts. The fact
that most of the available instances, in particular, in the non-
HCF classes (No. 5–9), are randomly generated could be
a reason for the observed indifference; more differentiated
benchmark classes and instances are needed for a meaning-
ful comparison. However, on non-HCF classes No. 7 and 8,
we observe degrading performance of claspDnp , showing
the positive impact of exhaustive unfounded set checks on
partial assignments. We note that differing run-times and
timeouts among the first five claspD variants on HCF classes
(No. 1–4) are noise effects, caused by implementation de-

6http://www.tcs.hut.fi/Software/asptools/

tails influencing the variable ordering in the data structures
of claspD. The non-learning variant claspDnl overall per-
forms worse than the five learning ones, but it shows sur-
prisingly good performance in terms of timeouts on class
No. 1. Here, we verified that all of the observed timeouts
occurred on randomly generated instances of the “Blocked-
NQueens” problem. Among the other solvers, the approach
of cmodels, using conflict-driven learning SAT solvers, is
closest to claspD. The fact that cmodels does currently not
exploit exhaustive unfounded set checks on partial assign-
ments is likely to be the reason for the limited performance
on classes No. 7 and 8, where also claspDnp shows declines.
In contrast, dlv uses such checks and is successful on classes
No. 7 and 8. Also, we observe distinguished performance of
dlv on class No. 3, consisting of particularly tailored pla-
nar graphs (Leone et al. 2006), possibly suiting the heuris-
tics of dlv. The most problematic classes for dlv are No. 1
and 2, used in SCore, as well as non-HCF class No. 5. Fi-
nally, we observe that gnt shows weakest performance over-
all, which might be somewhat explained by the fact that it
deploys smodels (Simons, Niemelä, & Soininen 2002).

Related Work
Our approach to disjunctive ASP solving builds upon pre-
vious work on normal programs (Gebser et al. 2007b).
The common idea is to exploit advanced lookback-based
techniques from Boolean satisfiability and constraint solving
(Mitchell 2005; Dechter 2003) in the context of ASP. Many
of these general techniques, e.g., backjumping, conflict-
driven learning, decision heuristics, restart policies, and
watched literals, are implemented in clasp and extended in
claspD to the disjunctive case. We note that smodelscc (Ward
& Schlipf 2004) augments smodels with similar techniques,
and a prototypical extension of dlv (Faber et al. 2007) imple-
ments backjumping along with lookback-based heuristics.

In accord with the computational complexity of disjunc-
tive ASP solving (Eiter & Gottlob 1995), claspD deploys
a generate and test approach, realizing both tasks through
clasp’s core technology. Notably, the generating part ap-
plies the enumeration technique described in (Gebser et
al. 2007a) for the repetition-less computation of multi-
ple answer sets, without falling back to solution record-
ing. Furthermore, the basic data structure of clasp is
that of a Boolean constraint, permitting the native (that is,
compilation-less) support of cardinality and weight rules
(Simons, Niemelä, & Soininen 2002). Such extended con-
structs are currently handled in claspD through compilation,
and their native support is a subject to the future.

Unfounded set checking in clasp makes use of source
pointers, an implementation technique first applied in smod-
els (Simons, Niemelä, & Soininen 2002). But different
from smodels, clasp does not aim at determining great-
est unfounded sets (Van Gelder, Ross, & Schlipf 1991),
which might even be non-existent for non-HCF compo-
nents (Leone, Rullo, & Scarcello 1997). As it does not
rely on greatest unfounded sets, the extension of clasp’s
source pointer technique realized in claspD is applicable
to both HCF and non-HCF components, though complex-
ity obstructs exactness for the latter. In dlv (Leone et al.

2006), unfounded set checking is also integrated into prop-
agation but limited to computing greatest unfounded sets
within HCF components (Calimeri et al. 2006). Instead of
source pointers, dlv uses a “must-be-true” value to indicate
true atoms whose support might be circular. Interestingly,
dlv may assign true, rather than must-be-true, to the first
atom satisfying the head of a rule (Faber 2008). Though
in dlv it serves a different purpose, this strategy is similar
to the one in Algorithm 3, possibly permitting the first true
atom of a disjunctive head to use the corresponding rule as
its source pointer. In contrast to claspD and dlv, on non-
tight programs, cmodels (Lierler 2005) performs sophisti-
cated unfounded set checks only after an answer set candi-
date has been generated, but not during propagation.

Like claspD, the solvers cmodels, dlv, and gnt (Janhunen
et al. 2006) rely on a generate and test approach. For
both tasks, cmodels makes use of SAT solvers, typically per-
forming conflict-driven learning according to the First-UIP
scheme (Marques-Silva & Sakallah 1999; Zhang et al. 2001;
Mitchell 2005). To this end, cmodels encodes both the gen-
eration and the testing problem by CNF formulas, abbre-
viating conjunctions by propositions in the generating part.
In particular, the encoding of program completion (Ben-
Eliyahu & Dechter 1994; Lee & Lifschitz 2003) used in
cmodels, which in parts is based on shifting (Gelfond et
al. 1991), reuses propositions standing for bodies of rules
in the original program (Lierler 2008). For example, a
rule a; b← c,∼d gives rise to nogoods {T{c,∼d},Fa,Fb}
and γ({c,∼d}) for describing the rule as such, along
with γ′({c,∼d,∼b}) =

{
{F{c,∼d,∼b},T{c,∼d},Fb},

{T{c,∼d,∼b},F{c,∼d}}, {T{c,∼d,∼b},Tb}
}

used for
the completion of a. Observe that the proposition stand-
ing for conjunction {c,∼d} is reused in the nogoods
of γ′({c,∼d,∼b}), encoding the extended conjunction
{c,∼d,∼b} obtained by shifting. In this respect, cmodels of-
fers an interesting alternative representation of completion,
aiming at conciseness.7

In the generating part of dlv, the nogoods resulting from
program completion are not made explicit, rather, dlv rep-
resents programs directly. However, the nogoods implicitly
underlie propagation conditions (Faber 2002), whose techni-
cal description is much more involved at the logic program
level. While the generating part of standard dlv applies sys-
tematic backtracking without learning, an experimental ver-
sion (Ricca, Faber, & Leone 2006) supports backjumping
(but not learning), pursuing a strategy that boils down to
the Decision scheme (Zhang et al. 2001). As with cmod-
els, the testing part of dlv is realized via a reduction to SAT
(Koch, Leone, & Pfeifer 2003), which is similar to ΓA

Π (C)
used in Algorithm 1. In gnt, the generating and testing part
are both implemented on top of smodels, thus using sys-
tematic backtracking without learning, where normal pro-
grams express program completion and minimality condi-
tions, respectively. Notably, the completion representations
used in claspD and cmodels, introducing propositions for
rule bodies, permit exponential improvements in terms of
proof complexity (Beame & Pitassi 1998) in comparison to

7For using SAT solvers, cmodels represents nogoods by clauses.

purely atom-based approaches, as pursued in dlv and gnt,
already for normal programs (Gebser & Schaub 2006).

In the following, we focus on the test of answer set can-
didates. In claspD, each non-HCF component C is investi-
gated, encoding a nonempty unfounded set contained in C
via ΓA

Π (C), similar to the SAT reduction used in dlv. Differ-
ent from claspD, dlv first recomputes components relative
to an answer set candidate (Koch, Leone, & Pfeifer 2003),
in the hope that a non-HCF component collapses into HCF
components. Regarding non-HCF components, the strategy
of cmodels is similar to those of claspD and dlv, but in con-
trast to them, cmodels also needs to investigate HCF compo-
nents in order to perform polynomial unfounded set checks
(Lierler 2008). The encoding used in gnt is rather different
from ΓA

Π (C), as it aims at a model smaller than an answer
set candidate, but not explicitly at an unfounded set. If such
a smaller model is found, the test is reapplied during back-
tracking to (possibly) partial answer set candidates until a
candidate passes (Janhunen et al. 2006). A similar tech-
nique is applied in dlv, but before the test for a nonempty
unfounded set is redone, dlv checks whether the previously
determined set is still unfounded after backtracking (Pfeifer
2004), in which case backtracking can proceed. In claspD
and (SAT solvers deployed by) cmodels, the loop formula of
an unfounded set invalidating an answer set candidate gives
rise to conflict-driven learning and backjumping, so that re-
peatedly checking the unfoundedness of the set is unneces-
sary. However, after having disposed a nonempty unfounded
set, it may be possible to find another one to invalidate a
partial answer set candidate. A respective strategy is ap-
plied in dlv (Pfeifer 2004) and adopted by claspD. Finally,
we note that our encoding ΥA

Π (C) allows us to identify both
unfounded sets U ⊆ AT and U 6⊆ AT, while the approach
in (Pfeifer 2004) only admits unfounded sets U ⊆ AT.

Interestingly, the first among the algorithms for 2QBF
solving described in (Ranjan, Tang, & Malik 2004), reported
as the most robust of the compared algorithms (some of
which applicable to general QBFs and others specialized to
2QBFs), also relies on two core solvers feeding each other
with particular problems and assignments resulting from the
computed solutions, respectively. For problems located at
the second level of the polynomial hierarchy, this indicates
that the entangling of two NP -oracles is a promising ap-
proach, where details of the entangling are a major subject
to optimizations, like the ones suggested in (Pfeifer 2004).

Discussion
We introduced a uniform constraint-based approach to dis-
junctive ASP solving. This provides us with flexibility in
problem representation offering several degrees of freedom,
like optional shifting in the encoding of model conditions
or component-wise shifting for facilitating unfounded set
checking. Moreover, our approach allows us to take advan-
tage of Boolean constraint solving technology without us-
ing any legacy ASP or SAT solvers as black boxes. To this
end, we developed advanced solving algorithms, featuring
conflict-driven learning and backjumping based on the First-
UIP scheme as well as an elaborate component-oriented un-

founded set checking strategy. As dictated by complexity,
the latter is exponential on non-HCF components only, while
it stays polynomial on HCF and in an approximative way
also on non-HCF components. Notably, our polynomial un-
founded set checking technique generalizes source pointers
to the disjunctive case. As a result, we implemented a new
disjunctive ASP solver, claspD, being competitive with cur-
rent state-of-the-art solvers. Further experiments using real-
istic, i.e., not randomly generated, instances of ΣP2 -complete
problems are needed to fine-tune claspD.

Acknowledgments We would like to thank Wolfgang
Faber, Tomi Janhunen, and Yuliya Lierler for helpful com-
ments on an earlier draft of this paper. This work was par-
tially funded by the Federal Ministry of Education and Re-
search within project GoFORSYS.

References
Baral, C.; Brewka, G.; and Schlipf, J., eds. 2007. Pro-
ceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07).
Springer-Verlag.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Beame, P., and Pitassi, T. 1998. Propositional proof com-
plexity: Past, present, and future. Bulletin of the European
Association for Theoretical Computer Science 65:66–89.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs. Annals of Mathe-
matics and Artificial Intelligence 12(1-2):53–87.
Calimeri, F.; Faber, W.; Pfeifer, G.; and Leone, N. 2006.
Pruning operators for disjunctive logic programming sys-
tems. Fundamenta Informaticae 71(2-3):183–214.
claspD. http://www.cs.uni-potsdam.de/claspD.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Eiter, T., and Gottlob, G. 1995. On the computational
cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence 15(3-
4):289–323.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. In Lifschitz and Niemelä (2004), 87–99.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory and Practice of Logic Programming 3(4-5):499–
518.
Faber, W.; Leone, N.; Maratea, M.; and Ricca, F. 2007.
Experimenting with look-back heuristics for hard ASP pro-
grams. In Baral et al. (2007), 110–122.
Faber, W. 2002. Enhancing Efficiency and Expressiveness
in Answer Set Programming Systems. Dissertation.
Faber, W. 2008. Personal communication.
Gebser, M., and Schaub, T. 2006. Tableau calculi for an-
swer set programming. In Etalle, S., and Truszczyński,
M., eds., Proceedings of the Twenty-second International

Conference on Logic Programming (ICLP’06), 11–25.
Springer-Verlag.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. Conflict-driven answer set enumeration. In Baral
et al. (2007), 136–148.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007b. Conflict-driven answer set solving. In Veloso,
M., ed., Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), 386–392.
AAAI Press/MIT Press.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2008. Advanced preprocessing for answer set solving. In
Proceedings of the Eighteenth European Conference on Ar-
tificial Intelligence (ECAI’08). IOS Press.
Gebser, M.; Lee, J.; and Lierler, Y. 2006. Elementary sets
for logic programs. In Gil, Y., and Mooney, R., eds., Pro-
ceedings of the Twenty-first National Conference on Artifi-
cial Intelligence (AAAI’06). AAAI Press.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A
new grounder for answer set programming. In Baral et al.
(2007), 266–271.
Gelfond, M.; Lifschitz, V.; Przymusinska, H.; and
Truszczyński, M. 1991. Disjunctive defaults. In Allen, J.;
Fikes, R.; and Sandewall, E., eds., Proceedings of the Sec-
ond International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), 230–237. Morgan
Kaufmann Publishers.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J. 2006. Unfolding partiality and disjunctions in stable
model semantics. ACM Transactions on Computational
Logic 7(1):1–37.
Koch, C.; Leone, N.; and Pfeifer, G. 2003. Enhancing
disjunctive logic programming systems by SAT checkers.
Artificial Intelligence 151(1-2):177–212.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunc-
tive logic programs. In Palamidessi, C., ed., Proceedings
of the Nineteenth International Conference on Logic Pro-
gramming (ICLP’03), 451–465. Springer-Verlag.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Kaelbling, L., and Saffiotti, A., eds., Proceedings
of the Nineteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’05), 503–508. Professional Book
Center.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning. ACM Transac-
tions on Computational Logic 7(3):499–562.
Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunc-
tive stable models: Unfounded sets, fixpoint semantics, and
computation. Information and Computation 135(2):69–
112.
Lierler, Y. 2005. cmodels – SAT-based disjunctive an-
swer set solver. In Baral, C.; Greco, G.; Leone, N.; and
Terracina, G., eds., Proceedings of the Eighth Interna-
tional Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’05), 447–451. Springer-Verlag.

Lierler, Y. 2008. Personal communication.
Lifschitz, V., and Niemelä, I., eds. 2004. Proceedings of the
Seventh International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’04). Springer-
Verlag.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computa-
tional Logic 7(2):261–268.
Marek, V., and Truszczyński, M. 1999. Stable models
and an alternative logic programming paradigm. In Apt,
K.; Marek, W.; Truszczyński, M.; and Warren, D., eds.,
The Logic Programming Paradigm: a 25-Year Perspective,
375–398. Springer-Verlag.
Marques-Silva, J., and Sakallah, K. 1999. GRASP:
A search algorithm for propositional satisfiability. IEEE
Transactions on Computers 48(5):506–521.
Mitchell, D. 2005. A SAT solver primer. Bulletin of the
European Association for Theoretical Computer Science
85:112–133.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley.
Pfeifer, G. 2004. Improving the model generation/checking
interplay to enhance the evaluation of disjunctive pro-
grams. In Lifschitz and Niemelä (2004), 220–233.
Ranjan, D.; Tang, D.; and Malik, S. 2004. A comparative
study of 2QBF algorithms. In Electronic Proceedings of
the Seventh International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’04).
Ricca, F.; Faber, W.; and Leone, N. 2006. A backjumping
technique for disjunctive logic programming. AI Commu-
nications 19(2):155–172.
Schaefer, M., and Umans, C. 2002. Completeness in the
polynomial-time hierarchy: A compendium. ACM SIGACT
News 33(3):32–49.
Schlipf, J. 1995. The expressive powers of the logic pro-
gramming semantics. Journal of Computer and Systems
Sciences 51:64–86.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Syrjänen, T. Lparse 1.0 user’s manual. Available at
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
the ACM 38(3):620–650.
Ward, J., and Schlipf, J. 2004. Answer set programming
with clause learning. In Lifschitz and Niemelä (2004),
302–313.
Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik, S.
2001. Efficient conflict driven learning in a Boolean satis-
fiability solver. In Proceedings of the International Confer-
ence on Computer-Aided Design (ICCAD’01), 279–285.

