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Abstract

In this work, we show that both logic programming and ab-
stract argumentation frameworks can be interpreted in terms
of Nelson’s constructive logic N4. We do so by formalising,
in this logic, two principles that we call non-contradictory in-
ference and strengthened closed world assumption: the first
states that no belief can be held based on contradictory evi-
dence while the later forces both unknown and contradictory
evidence to be regarded as false. Using these principles, both
logic programming and abstract argumentation frameworks
are translated into constructive logic in a modular way and us-
ing the object language. Logic programming implication and
abstract argumentation supports become, in the translation, a
new implication connective following the non-contradictory
inference principle. Attacks are then represented by combin-
ing this new implication with strong negation.

Introduction
Logic programming (LP) and Abstract Argumentation
Frameworks (AFs) are two well-established formalisms for
Knowledge Representation and Reasoning (KRR) whose
close relation is well-known since the introduction of lat-
ter: besides introducing AFs, Dung (1995) studied how logic
programs under the stable models (Gelfond and Lifschitz
1988) and the well-founded semantics (Van Gelder, Ross,
and Schlipf 1991) can be translated into abstract argumenta-
tion frameworks. Since then, this initial connection has been
further studied and extended, providing relations between
other semantics and ways to translate argumentation frame-
works into logic programs (See Caminada et al. 2015 for an
overview and further references).

On the other hand, Nelson’s constructive logic (Nel-
son 1949) is a conservative extension of intuitionistic logic
which introduces the notion of strong negation as a means to
deal with constructive falsity, in an analogous way as intu-
itionism deals with constructive truth. Pearce (1996) showed
that a particular selection of models of constructive logic,
called equilibrium logic, precisely characterise the stable
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models of a logic program. This characterisation was later
extended to the partial stable model (Przymusinski 1991)
and the well-founded semantics in (Cabalar et al. 2007). Ver-
sions of constructive logic without the “explosive” axiom
ϕ→ (∼ϕ→ ψ) has been extensively studied (See Odintsov
and Rybakov (2015) for an overview) and can be considered
a kind of paraconsistent logics, in the sense, that some for-
mulas may be constructively true and false at the same time.
The notion of equilibrium has been extended to one of these
logics by Odintsov and Pearce (2005), who also showed that
this precise characterise the paraconsistent stable seman-
tics (Sakama and Inoue 1995).

In this paper, we formalise in Nelson’s constructive logic a
reasoning principle, to be called non-contradictory inference
(denoted NC), which states that

NC “no belief can be held based on contradictory evi-
dence.”

Interestingly, though different from the logic studied
by Odintsov and Pearce (2005), the logic presented here is
also a conservative extension of equilibrium logic (and, thus,
also of LP under the stable models semantics) which allows
us to deal with inconsistent information; and, at the same
time, to capture AFs, under the stable semantics, in the ob-
ject language level. Recall that by object language level, we
mean that AFs and its logical translation share the same lan-
guage (each arguments in the AF becomes an atom in its
corresponding logical theory) and the relation between ar-
guments in the AF (attacks or supports) are expressed by
means of logical connectives. This contrast with meta level
approaches, which talk about the AFs from “above,” us-
ing another language and relegating logic to talk about this
new language. It is important to note that, as highlighted
by Gabbay and Gabbay (2015), the object language ori-
ented approaches have the remarkable property of provid-
ing alternative intuitive meaning to the translated concepts
through their interpretation in logic. In this sense, from the
view-point of constructive logic, AFs can be understood as
a strengthened closed world assumption (Reiter 1980), de-
noted as CW:

CW “everything for which we do not have evidence of
being true or for which we have contradictory
evidence, should be regarded as false”

The relation between AFs and logic has been extensively



studied in the literature (See Gabbay and Gabbay 2015 for
an overview and further references). In particular, the ap-
proach taken in this paper shares with (Gabbay and Gabbay
2015) the interpretation of the attack as strong negation, but
differs in the underlying logic: constructive logic in our case
and classical logic in the case of (Gabbay and Gabbay 2015).
On the intuitive level, under the constructive logic point of
view, attacks can be understood as
AT “means to construct a proof of the falsity of the

attacked argument based on the acceptability of
the attacker”

On the practical level, the use of constructive logic al-
lows for a more compact and modular translation: each at-
tack becomes a (rule-like) formula with the attacker – or a
conjunction of attackers in the case of set attacking argu-
ments (Nielsen and Parsons 2007) – as the antecedent and
the attacked argument as the consequent. Moreover, when
attacks are combined with LP implication, we show that
the latter captures the notion of support in Evidential-Based
Argumentation Frameworks (EBAFs) (Oren and Norman
2008): for accepting an argument, these frameworks require,
not only its acceptability in Dung’s sense, but also that it is
supported by some chain of supports rooted in a kind of spe-
cial arguments called prima-facie.

Background
In this section we recall the needed background regarding
Nelson’s constructive logic, logic programming and argu-
mentation frameworks.

Nelson’s Constructive Logic
The concept of constructive falsity was introduced into logic
by Nelson (1949) and it is often denoted as N3. Versions of
constructive logic without the “explosive” axiom are usually
denoted as N4 and they are based on a four valued assign-
ment for each world corresponding to the values unknown,
(constructively) true, (constructively) false and inconsistent
(or overdetermined). We describe next a Kripke semantics
for a version of N4 with the falsity constant ⊥, which is
denoted as N4⊥ in (Odintsov and Rybakov 2015). We fol-
low here an approach with two forcing relations in the style
of (Akama 1987).

Syntactically, we assume a logical language with a strong
negation connective “∼”. That is, given some (possibly infi-
nite) set of atoms At, a formula ϕ is defined using the gram-
mar:

ϕ ::= ⊥ | a | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

with a ∈ At. We use Greek letters ϕ and ψ and their variants
to stand for propositional formulas. Intuitionistic negation is
defined as ¬ϕ def= (ϕ → ⊥) and we also define the derived
operators ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ) and > def= ∼⊥.

A Kripke frame F = 〈W,≤〉 is a pair where W is a non-
empty set of worlds and ≤ is a partial order on W . A valua-
tion V : W −→ 2At is a function mapping each world to a
subset of atoms. A Nelson’s interpretation (N-interpretation)
is a 3-tuple I = 〈F , V +, V −〉 where F = 〈W,≤〉 is a
Kripke frame and where both V + and V − are valuations

satisfying, for every pair of worlds w,w′ ∈W with w ≤ w′
and every atom a ∈ At, the following preservation proper-
ties:

i) V +(w) ⊆ V +(w′), and
ii) V −(w) ⊆ V −(w′).

Intuitively, V + represents our knowledge about constructive
truth while V − represents our knowledge about constructive
falsity. We say that I is consistent if, in addition, it satisfies:
iii) V +(w) ∩ V −(w) = ∅ for every world w ∈W .

Two forcing relations |=+ and |=− are defined with respect
to any N-interpretation I = 〈F , V +, V −〉, world w ∈ W
and atom a ∈ At as follows:

I,w |=+ a iff a ∈ V +(w)

I,w |=− a iff a ∈ V −(w)

These two relations are extended to compounded formulas
as follows:

I,w 6|=+ ⊥
I,w |=+ ϕ1 ∧ ϕ2 iff I,w |=+ ϕ1 and I,w |=+ ϕ2

I,w |=+ ϕ1 ∨ ϕ2 iff I,w |=+ ϕ1 or I,w |=+ ϕ2

I,w |=+ ϕ1→ϕ2 iff ∀w′≥w I,w′ 6|=+ϕ1 or I,w′ |=+ϕ2

I,w |=+ ∼ϕ iff I,w |=− ϕ
I,w |=− ⊥
I,w |=− ϕ1 ∧ ϕ2 iff I,w |=− ϕ1 or I,w |=− ϕ2

I,w |=− ϕ1 ∨ ϕ2 iff I,w |=− ϕ1 and I,w |=− ϕ2

I,w |=− ϕ1→ϕ2 iff I,w |=+ ϕ1 and I,w |=− ϕ2

I,w |=− ∼ϕ iff I,w |=+ ϕ

An N-interpretation is said to be an N-model of a formula ϕ,
in symbols I |=+ ϕ, iff I,w |=+ ϕ for every w ∈ W . It is
said to be N-model of a theory Γ, in symbols also I |=+ Γ,
iff it is an N-model of all its formulas I |=+ ϕ. A formula ϕ
is said to be a consequence of a theory Γ iff every model of Γ
is also a model of ϕ, that is I |=+ ϕ for every I |=+ Γ. This
formalisation characterises N4 while a restriction to consis-
tent N-interpretations would characterise N3. As mentioned
above, N4 is “somehow” paraconsistent in the sense that a
formula ϕ and its strongly negated counterpart ∼ϕ may si-
multaneously be consequences of some theory: for instance,
we have that {a,∼a} |=+ a and {a,∼a} |=+ ∼a. Intu-
itively, these two forcing relations determine the four val-
ues above mentioned: a formula ϕ satisfying I 6|=+ ϕ and
I 6|=− ϕ is understood as unknown. If it satisfies I |=+ ϕ
and I 6|=− ϕ, is understood as true. False if I |=+ ϕ and
I 6|=− ϕ, and inconsistent if I |=+ ϕ and I |=− ϕ.

Logic Programming, Equilibrium Logic and
Here-and-There Nelson’s Models
In order to accommodate the logic programming conven-
tions, we will indistinctly write ϕ ← ψ instead of ψ → ϕ
when describing logic programs. An explicit literal is either
an atom a ∈ At or an atom preceded by strong negation∼a.
A literal is either an explicit literal l or an explicit literal pre-
ceded by intuitionistic negation ¬l. A rule is a formula of the



form H ← B where H is a disjunction of atoms and B is a
conjunction of literals. A logic program Π is a set of rules.

Given a set of literals T and a formula ϕ, we write T |=+

ϕ if 〈F , V +, V −〉 |=+ ϕ holds with F the Kripke frame
with a unique world w and valuations: V +(w) = T ∩At
and V −(w) = { a

∣∣ ∼a ∈ T }. A set of literals T is said to
be closed under Π if T |=+ H ← B for every rule H ← B
in Π.

Next, we recall the notions of reduct and answer set (Gel-
fond and Lifschitz 1991):

Definition 1 (Reduct and Answer Set). The reduct of pro-
gram Π w.r.t. some set of explicit literals T is defined as
follows

i) Remove all rules with not l in the body s.t. l ∈ T,
ii) Remove all negative literals for the remaining rules.

Set T is said to be an stable model of Π if T is a ⊆-minimal
closed set under Π.

In particular, for characterising logic programs in con-
structive logic, we are only interested in a particular kind of
N-interpretations over Here-and-There (HT) frames of the
form FHT = 〈{h, t},≤〉 where ≤ is a partial order satisfy-
ing h ≤ t. An HT-interpretation is a N-interpretation with
an HT-frame. A HT-model is an N-model which is also a
HT-interpretation. We use the generic terms interpretation
(resp. model) for both HT and N-interpretations (resp. mod-
els) when it is clear by the context. At first sight, it may look
that restricting ourselves to HT frames is an oversimplifica-
tion, however, once the closed world assumption is added to
intuitionistic logic, this can be replaced without loss of gen-
erality by any proper intermediate logic (Osorio, Pérez, and
Arrazola 2005; Cabalar et al. 2017).

Given any HT-interpretation, I = 〈FHT , V
+, V −〉 we

define four sets of atoms respectively verified at each cor-
responding world and valuation as follows:

H+
I

def= V +(h)

H−I
def= V −(h)

T+
I

def= V +(t)

T−I
def= V −(t)

Note that every HT-interpretation I is fully determined by
these four sets. We will omit the subscript and write, for in-
stance, H+ instead of H+

I when I is clear from the con-
text. Furthermore, any HT-interpretations can be succinctly
rewritten as a pair I = 〈H,T〉 where H = H+ ∪ ∼H−
and T = T+ ∪ ∼T− are sets of literals.1 Note that, by the
preservation properties of N-interpretations, we have that
H ⊆ T. We say that an HT-interpretation I = 〈H,T〉 is
total iff H = T. Given HT-interpretations I = 〈H,T〉 and
I ′ = 〈H′,T′〉, we write I ≤ I ′ iff H ⊆ H′ and T = T′.
As usual, we write I < I ′ iff I ≤ I ′ and I 6= I ′.

Next, we introduce the definition of equilibrium model.

Definition 2 (Equilibrium model). A HT-model I of a theory
Γ is said to be an equilibrium model iff it is total and there
is no other HT-model I ′ of Γ s.t. I ′ < I.

1We denote by ∼S def= { ∼ϕ
∣∣ ϕ ∈ S } the set strongly

negated formulas given some set S. Similarly, we also define
¬S def= { ¬ϕ

∣∣ ϕ ∈ S }.

Interestingly, consistent equilibrium models precisely
capture the answer set of a logic program (Pearce 1996).
More in general, it has been shown in (Odintsov and Pearce
2005) that the (possible non-consistent) equilibrium mod-
els of a logic program capture its paraconsistent answer
sets (Sakama and Inoue 1995).

The following proposition characterises some interesting
properties of intuitionistic and strong negation that will be
useful through the paper:

Proposition 1. Given any HT-interpretation I, formula ϕ
and world w ∈ {h, t}, the following hold:

i) I,w |=+ ¬ϕ iff I,t 6|=+ ϕ, and
ii) I,w |=+ ¬¬ϕ iff I,t |=+ ϕ, and

iii) I,w |=+ ¬¬¬ϕ iff I,w |=+ ¬ϕ, and
iv) I,w |=− ¬ϕ iff I,w |=− ∼ϕ.

Abstract Argumentation Frameworks
Since their introduction, the syntax of AFs have been ex-
tended in different ways. One of these extensions, usu-
ally called SETAFs, consists in generalising the notion of
binary attacks to collective attacks such that a set of ar-
guments B attacks some argument a (Nielsen and Par-
sons 2007). Another such extension, usually called Bipo-
lar AFs (BAFs), consists on considering frameworks with
a second positive relation called support (Amgoud, Cayrol,
and Lagasquie-Schiex 2004). In particular, Verheij (2003)
introduced the idea that, in AFs, arguments are consid-
ered as prima-facie justified statements which can be con-
sidered true until proved otherwise, that is, until they are
defeated. This allows to introduce a second class of ordi-
nary arguments, which cannot be considered true unless
get supported by the prima-facie ones. Latter, Polberg and
Oren (2014) developed this idea by introducing Evidence-
Based AFs (EBAFs), an extension of SETAFs (and, this, of
AFs) which incorporates the notions of support and prima-
facie arguments. Next we introduce an equivalent definition
from (Cayrol et al. 2018) which is closer to the logic formu-
lation we pursue here.

Definition 3 (Evidence-Based Argumentation framework).
An Evidence-Based Argumentation framework is a 4-tuple
EF = 〈A,Ra,Rs,P〉 where A represents a (possible in-
finite) set of arguments, Ra ⊆ 2A ×A is an attack rela-
tion, Rs ⊆ 2A ×A is a support relation and P ⊆ A is
a set of distinguished prima-facie arguments. We say that
an EF is finitary iff B is finite for every attack or support
(B, a) ∈ Ra ∪Rs.

The notion of acceptability is extended by requiring not
only defence against all attacking arguments, but also sup-
port from some prima-facie arguments. Furthermore, de-
fence can be provided not only by defeating all attacking
sets of arguments, but also by denying the necessary support
for some of their non-prima-facie arguments.

Definition 4 (Defeat/Acceptability). Given some argument
a ∈ A and set of arguments E ⊆ A, we say
1. a is defeated w.r.t. E iff ∃B ⊆ E s.t. (B, a) ∈ Ra,



Def (E) will denote the set of arguments that are defeated
w.r.t. E.
2. a is supported w.r.t. E iff either a ∈ P or there is some
B ⊆ E \ {a} whose elements are supported w.r.t. E \
{a} and such that (B, a) ∈ Rs,

3. a is supportable w.r.t. E iff it is supported w.r.t. A \
Def (E),

4. a is unacceptable w.r.t. E iff it is either defeated or not
supportable,

5. a is acceptable w.r.t. E iff it is supported and, for every
(B, a) ∈ Ra, there is b ∈ B such that b is unacceptable
w.r.t. E

Sup(E) (resp. UnAcc(E) and Acc(E)) will denote the set
of arguments that are supported (resp. unacceptable and ac-
ceptable) w.r.t. E.

Then, semantics are defined as follows:
Definition 5. A set of arguments E ⊆ A is said to be:
1. self-supporting iff E ⊆ Sup(E),
2. conflict-free iff E∩Def (E)=∅,
3. admissible iff it is conflict-free and E ⊆ Acc(E),
4. complete iff it is conflict-free and E = Acc(E),
5. preferred iff it is a ⊆-maximal admissible set,
6. stable iff E = A \UnAcc(E).

SETAFs can be seen as a special cases where the
set of supports is empty and all arguments are prima-
facie. In this sense, we write SF= 〈A,Ra〉 instead
EF = 〈A,Ra,∅,A〉. Furthermore, in their turn, AFs can
be seen as a special case of SETAFs where all attacks
have singleton sources. In such case, we write AF= 〈A,R〉
with R = { (b, a)

∣∣ ({b}, a) ∈ Ra } instead SF = 〈A,Ra〉.
For this kind of frameworks, the respective notions of
conflict-free (resp. admissible, complete, preferred or stable)
coincide with those being defined in (Nielsen and Parsons
2007) and (Dung 1995).

To illustrate the notions support and prima-facie argu-
ments, consider the well-known Tweety example:
Example 1. Suppose we have the knowledge base that in-
cludes the following statements:

1. birds (normally) can fly,
2. penguins are birds,
3. penguins cannot fly and
4. Tweety is a penguin.
We can formalise this by the following graph:

pT fT

bT

where pT , bT and fT respectively stand for “Tweety is a
penguin”, “Tweety is a bird” and “Tweetry can fly.” Dou-
ble arrows represent support while simple ones represent
attacks. Furthermore, circles with solid border represent
prima-facie arguments while dashed border ones represent
ordinary ones. That is, “Tweety is a penguin” is consid-
ered a prima-facie argument that supports that “Tweety is

a bird” which, in its turn, supports that “Tweety can fly.”
The latter is then considered also prima-facie, that is, true
unless proven otherwise. Note that “Tweety is a penguin”
also attacks that “Tweety can fly”, so the latter cannot be
accepted as true. Formally, this corresponds to the frame-
work EF1 = 〈A,Ra,Rs,P〉 with Ra = {({pT}, fT )} and
Rs = {({pT}, bT ), ({bT}, fT )} and P = {pT} whose
unique admissible, complete, preferred and stable extension
is {pT, bT}. In other words, we conclude that “Tweety can-
not fly.” Note that “Tweety is a penguin” provides conflict-
ing evidence for whether it can fly or not. In EBAFs, this is
solved by given priority to the attack relation, so “Tweety
cannot fly” is inferred.

Reasoning with Contradictory Evidence in
Equilibrium Logic

In this section we formalise principles NC and CW in con-
structive logic, obtaining as a result formalism which is a
conservative extension of logic programming under the an-
swer set semantics (see Theorem 1 and Corollary 1 below)
and which is capable of reasoning with contradictory evi-
dence. We start by defining a new implication connective
that captures NC in terms of intuitionistic implication and
strong negation:

ϕ1 ⇒ ϕ2
def= (¬∼ϕ1 ∧ ϕ1)→ ϕ2 (1)

Recall that intuitionistic implication ϕ1 → ϕ2 can be infor-
mally understood as a means to construct a proof of the truth
of the consequent ϕ2 in terms of a proof of truth or the an-
tecedent ϕ1. In this sense, (1) can be understood as a means
to construct a proof of the truth of the consequentϕ2 in terms
of proof of the truth of the antecedent ϕ1 and the absence of
a proof of its falsity, or in other words, in terms of a consis-
tent proof of the antecedent ϕ1. It is easy to see that (1) is
weaker than intuitionistic implication:

ϕ1 → ϕ2 |=+ ϕ1 ⇒ ϕ2

holds for every pair of formulas ϕ1, ϕ2. We can use the fol-
lowing simple example to illustrate the difference between
intuitionistic implication and (1):
Example 2. Let Γ2 be the following set of formulas:

a b ∼b a⇒ c b⇒ d

and let Γ′2 be the theory obtained by replacing each occur-
rence of⇒ by→.

On the one hand, we have that both, Γ2 and Γ′2, entail
atoms a and c while, on the other hand, we have: Γ′2 |=+ d
but Γ2 6|=+ d. This is in accordance with NC, since the only
way to obtain a proof of d is in terms of b, for which we
have contradictory evidence. Note also that an alternative
proof of d could be obtained if new consistent evidence
becomes available: for the theory Γ3 = Γ2 ∪ {a⇒ d} we
have that Γ3 |=+ d. It is also worth to highlight that, in con-
trast with intuitionistic implication, (1) is not monotonic: for
Γ4 = {b, b⇒ d}we have that Γ4 |=+ d and Γ4∪{∼b} 6|=+

d. Obviously, it is not antimonotonic either: Γ4 \ {b} 6|=+ d.
The following result shows that, when dealing with con-

sistent evidence, these differences disappear and (1) col-
lapses into intuitionistic implication:



Proposition 2. Let I be a consistent N-interpretation and
let ϕ1, ϕ2 be any pair of formulas. Then, we have: I |=+

ϕ1 ⇒ ϕ2 iff I |=+ ϕ1 → ϕ2.
Let us now formalise the CW assumption. As usual

non-monotonicity is obtained by considering equilibrium
models (Definition 2). However, to capture CW, we need
to restrict the consequences of these models to those that are
consistent. We do so by introducing a new cw-inference re-
lation which, precisely, restricts the consequences of |=+ to
those which are consistent:

I,w |= ϕ iff I,w |=+ ¬∼ϕ ∧ ϕ (2)

Furthermore, as usual, we will write I |= ϕ iff I,w |= ϕ
for all w ∈W . We will also write Γ |= ϕ iff we have that
I |= ϕ for every equilibrium model I of Γ. It is easy to see,
for instance, that Γ2 |=+ b and Γ2 |=+ ∼b, but Γ2 6|= b and
Γ2 6|= ∼b because the unique equilibrium model of Γ2 con-
tains contradictory evidence for b. On the other hand, as may
be expected, when we deal with non-contradictory evidence
cw-inference |= just collapses to the regular inference rela-
tion |=+ (see Proposition 3 below).

To finalise the formalisation of CW, we also need to define
default negation. This is accomplished by introducing a new
connective not and adding the following two items to the
Nelson’s forcing relations:

I,w |=+ not ϕ iff I,w |=+ ¬ϕ ∨ (ϕ ∧ ∼ϕ)

I,w |=− not ϕ iff I,w |=+ ϕ and I,w 6|=− ϕ

Then, an extended formula ϕ is defined using the following
grammar:

ϕ ::= ⊥ | a | ∼ϕ | not ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

with a ∈ At an atom. The following result shows that
cw-inference and default negation are conservative exten-
sions of the satisfaction relation |=+ and intuitionistic nega-
tion ¬ when restricted to consistent knowledge.
Proposition 3. Let I be a consistent N-interpretation and
ϕ be any extended formula. Then, the following condition
hold:

i) I |= ϕ iff I |=+ ϕ

ii) I |= not ϕ iff I |= ¬ϕ.
More in general, the following result shows the relation be-
tween default negation, implication and cw-inference.
Proposition 4. Let I be any N-interpretation and ϕ be any
formula. Then,

i) I |= ϕ and I |=+ ϕ⇒ ψ implies I |=+ ψ,
ii) I |= not ϕ implies I 6|= ϕ.

Furthermore, if I is a total HT-interpretation, then
iii) I |= not ϕ iff I 6|= ϕ.

Condition i) formalises a kind of modus pones for⇒ in the
sense that if the we have a consistent proof of the antecedent
we a least have a (possibly inconsistent) proof of the conse-
quent. It is clear that this statement cannot be strengthened
to provide a consistent proof of the consequent because any
other formula could provide the contradictory evidence to

make it inconsistent. Condition iii) formalises CW assump-
tion, that is, not ϕ holds whenever ϕ is not known to be true
or we have contradictory evidence for it. Note that, accord-
ing to this, the default negation of an inconsistent formula is
true and, therefore, the evaluation of default negation itself is
always consistent (even if the formula is inconsistent): that
is, I,w 6|=+ ϕ or I,w 6|=− ϕ holds for any extended formula.
Furthermore, on the contrary that implication ⇒, default
negation not cannot be straightforwardly defined2 in terms
of Nelson’s connectives. In particular, the following result
shows the difference between not ϕ and ¬ϕ ∨ (ϕ ∧ ∼ϕ) in
terms of cw-inference.

Proposition 5. Let I be any N-interpretation and ϕ be any
formula. Then, I |= ¬ϕ ∨ (ϕ ∧ ∼ϕ) iff I |= ¬ϕ.

That is, in terms of cw-inference, ¬ϕ ∨ (ϕ ∧ ∼ϕ) is equiv-
alent to intuitionistic negation and, it is easy to check that,
if default negation were defined as intuitionistic negation,
condition iii) in Proposition 4 would not hold. The follow-
ing example illustrates this difference:

Example 3. Let Γ5 be the following theory:

a ∼a not ∼a⇒ b

This theory has a unique equilibrium model I = 〈T,T〉
with T = {a,∼a, b}. Note that, every model J of Γ5 must
satisfy J |=+ a ∧ ∼a and, thus, it must also satisfy J |=
not ∼a and J |=+ b follows (Proposition 4). Hence, I is
a ≤-minimal model and, thus, an equilibrium model. On the
other hand, let Γ6 be the theory:

a ∼a ¬∼a⇒ b

In this case, we can check that J = 〈H,T〉 with
H = {a,∼a} is a model of Γ6 becauseJ 6|= ¬∼a and, thus,
now I is not an equilibrium model. In fact, 〈H,H〉 is the
unique equilibrium model of Γ6.

The following example illustrates that, though default
negation allows to derive new knowledge from contradictory
information, it does not allow to self justify a contradiction.

Example 4. Let Γ7 be a logic program containing the fol-
lowing single rule:

not ∼a⇒ a (3)

stating, as usual, that a holds by default. As expected this
theory has a unique equilibrium model I which satisfies
I |= a and I 6|= ∼a. Let now Γ8 = Γ7 ∪ {∼a}. This sec-
ond theory also has a unique equilibrium model I which
now satisfies I |= ∼a and I 6|= a. To see that J = 〈T,T〉
with T = {a,∼a} is not an equilibrium model of Γ8, let
J ′ = 〈H,T〉 with H = {∼a} be an interpretation. Since
J ′ satisfies J ′ < J and it is a model of ∼a, it only re-
mains to be shown that J ′ is a model of (3). For that, just
note J |= ∼a ∨ (∼a ∧ ∼∼a) and, thus, J 6|= not ∼a fol-
lows by definition. This implies that J ′ satisfies (3) and,
consequently, that J is not an equilibrium model. In fact,
〈H,H〉 is the unique equilibrium model of Γ8.

2It is still an open question whether it is definable in terms of
Nelson’s connectives or not.



A Conservative Extension of Logic Programming
Let us now consider the language formed with the set of
logical connectives CLP def= {⊥,∼,∧,∨,⇒,not }. In other
words, a CLP -formula ϕ is defined using the following gram-
mar:

ϕ ::= ⊥ | a | ∼ϕ | not ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

with a ∈ At being an atom. A CLP -literal is either an ex-
plicit literal l or is default negation not l. A CLP -rule
is a formula of the form H ⇐ B where H is a dis-
junction of atoms and B is a conjunction of CLP -literals.
CLP -theories and CLP -programs are respectively defined as
sets of CLP -formulas and CLP -rules. The definition of an
answer set is applied straightforwardly as in Definition 1.
Given any theory CLP -theory Γ, by CN(Γ) we denote the re-
sult of
1. replacing every occurrence of⇒ by→ and
2. and every occurrence of not by ¬.

Then, the following results follow directly from Proposi-
tions 2 and 3:
Theorem 1. Let Γ be any CLP -theory and I be any consis-
tent interpretation. Then, I is an equilibrium model of Γ iff
I is an equilibrium model of CN(Γ).

Corollary 1. Let P be a CLP -program and T be any consis-
tent set of explicit literals. Then, I = 〈T,T〉 is an equilib-
rium model of P iff T is an answer set of P .

In other words, the equilibrium models semantics are a
conservative extension of the answer set semantics. The
following example shows the usual representation of the
Tweety scenario in this logic (an alternative representation
using contradictory evidence will be discussed in Discussion
section).
Example 5 (Ex. 1 continued). Consider now the Tweety sce-
nario. The following logic program P9 is a usual way of rep-
resenting this scenario in LP:

flyTweety ⇐ birdTweety ∧ not ∼flyTweety (4)
birdTweety ⇐ penguinTweety (5)
∼flyTweety ⇐ penguinTweety (6)

penguinTweety

where rule (4) formalises the “birds normally can fly”
statement by considering ∼flyTweety as an exception to
this rule. It can be checked that P9 has a unique equi-
librium model I9, which is consistent, and which satisfies
I9 6|= flyTweety and I9 |= not flyTweety . In other words,
Tweety cannot fly.

Example 6 (Ex. 2 continued). Consider now the theory ob-
tained by replacing formulas a⇒ c and b⇒ d in Γ2 by the
following two formulas:

not e ∧ a⇒ c not e ∧ b⇒ d

Let Γ10 be such theory.

It is easy to see that neither Γ10 nor CN(Γ10) mono-
tonically entail c nor d. This is due to the fact

that the negation of e is not monotonically entailed:
Γ10 6|=+ not e and CN(Γ10) 6|=+ ¬e. On the other hand,
the negation of e is non-monotonically entailed in both
cases: Γ10 |= not e and CN(Γ10) |= ¬e. Note that both
Γ10 and CN(Γ10) have a unique equilibrium model,
I10 = 〈T,T〉 and I ′10 = 〈T′,T′〉 with T = {a, b,∼b, c}
and T = {a, b,∼b, c, d}, respectively, and in both cases
we have I10 |= not e and I ′10 |= ¬e. As a result, we have
that both theories cautiously entail c. However, as hap-
pened in Example 2, only CN(Γ10) cautiously entails d, be-
cause the unique evidence for d comes from b for which
we have inconsistent evidence. This behaviour is different
from paraconsistent answer sets (Sakama and Inoue 1995;
Odintsov and Pearce 2005). As pointed out in (Sakama and
Inoue 1995), the truth of d is less credible than the truth of
c, since d is derived through the contradictory fact b. In or-
der to distinguish such two facts (Sakama and Inoue 1995)
also define suspicious answer sets which do not consider d
as true.3

Example 6 also helps us to illustrate the strengthened
closed world assumption principle CW. On the one hand, we
have that Γ10 |= not e holds because there is no evidence
for e. On the other hand, we have that Γ10 |= not b holds
because we have contradictory evidence for b. Moreover, we
have that Γ10 |= not d holds because the only evidence we
have for d is based on the contradictory evidence for b.

Argumentation Frameworks in Equilibrium
Logic

In this section, we show how AFs, SETAFs and EBAFs can
be translated in this logic in a modular way and using only
the object language. This translation is a formalisation of
the intuition of an attack stated in AT. Theorems 2, 3 and 4
show that the equilibrium models of this translation pre-
cisely characterise the stable extension of the corresponding
framework.

Dung’s Argumentation Frameworks
Now, let us formalise the notion of attack introduced in AT,
by defining the following connective:

ϕ1  ϕ2
def= ϕ1 ⇒ ∼ϕ2 (7)

Here we identify the acceptability of ϕ1 with having a con-
sistent proof of it, or in other words, as having a proof of the
truth of ϕ1 and not having a proof of its falsity. Then, (7)
states that the acceptability of ϕ1 allows to construct a proof
of the falsity of ϕ2. In this sense, we identify a proof of the
falsity of ϕ2 with ϕ2 being defeated.

Using the language CAF = { }, we can translate any AF
as follows:

3Suspicious answer sets are based on a 6-value lattice which
add the values suspiciously true and suspiciously false to the four
values of N4. In the unique suspicious answer set of Γ10, atom d
gets assigned the suspiciously true value instead the true value. A
formal comparison with suspicious answer sets is left for future
work.



Definition 6. Given some framework AF = 〈A,R〉, we de-
fine the theory:

CAF(AF) def= A ∪ { a b
∣∣ (a, b) ∈ Ra } (8)

In addition, we assign a corresponding set of arguments
EI

def= {a ∈ A
∣∣I |= a} to every interpretation I.

Example 7. To illustrate this translation, let AF11 be the
framework corresponding to the following graph:

a b c

Then, we have that CAF(AF11) is the theory containing the
following two attacks:

a b b c

plus the facts {a, b, c}.
Proposition 6. Let AF be some framework and I be some
HT-model of CAF(AF). Then, the following hold:

i) if a is defeated w.r.t. EI , then I |=+ ∼a
ii) EI is conflict-free.

If, in addition, I is an ≤-minimal model, then
iii) a is defeated w.r.t. EI iff I |=+ ∼a.

Continuing with our running example (Example 7),
let I11 = 〈T11,T11〉 and J11 = 〈T′11,T′11〉 be two
total models of ΓAF11

with T11 = {a, b, c,∼b} and
T′11 = {a, b, c,∼a,∼c}. Then, we have that both
SI11 = {a, c} and SJ11

= {b} are conflict-free (though
only SI11 is stable). Furthermore, we also have that b is
the unique defeated argument w.r.t. SI11 and the unique
atom for which I11 |= ∼b holds. On the other hand, we
have c is the unique defeated argument w.r.t. EJ , but we
have that both I11 |= ∼a and I11 |= ∼c hold. Note that, as
stated by iii) in Proposition 6, this implies that only SI11
can be an equilibrium model. Let us show that it is indeed
the case that J11 is not an equilibrium model and let us
define, for that purpose, an interpretation J ′11 = 〈H′11,T′11〉
with H′11 = T′11 \ {∼a} = {a, b, c,∼c}. In other words,
interpretation J ′11 is as J11, but removing the non-defeated
argument a as a negated conclusion ∼a. It is easy to check
that J ′11 |= b c because ∼c ∈ H′11 holds. Besides, since
∼a ∈ T′11, we have that J ′11 6|= a and, therefore, that
J ′11 |= a  b and, thus, that J ′11 is a model of ΓAF11

.
Since J ′11 < J11, this implies that J11 is not an equilibrium
model. In fact, we can generalise this correspondence
between the stable extensions of and the equilibrium models
to any argumentation framework as stated by the following
theorem:
Theorem 2. Given some AF = 〈A,R〉, there is a one-to-
one correspondence between its stable extensions and the
equilibrium models of CAF(AF) such that
i) if I is an equilibrium model of CAF(AF), then EI is a

stable extension of AF,
ii) if E is a stable extension of AF and I is a total interpre-

tation such that T+
I =A and T−I = Def (E), then I is an

equilibrium model of CAF(AF).

Proof (sketch). First, note that condition i) follows directly
from iii) in Proposition 6 and the facts that (a) equilib-
rium models are ≤-minimal models and (b) EI is a sta-
ble extension iff EI are exactly the non-defeated arguments
w.r.t. EI . To show ii), it is easy to see that EI being a
stable extension implies that I is a model of CAF(AF).
Hence, to show that I is an equilibrium model what re-
mains is to prove that any J < I is not a model of
CAF(AF). Any such J must satisfy H+

J = H+
I = A and

H−J ⊂ H
−
I = T−I = Def (E). Therefore, there is some de-

feated argument such that a /∈ H−J and some defeating at-
tack (b, a) ∈ Ra such that b ∈ E = H+

I \ T
−
I = H+

J \ T
−
J .

This implies that b a ∈ CAF(AF) and J |= b which, in
its turn, implies that a ∈ H−J . This is a contradiction and,
consequently, I is an equilibrium model.

Set Attack Argumentation Frameworks
We may also extend the results of the previous section to
SETAFs using the language CSF = { ,∧} and a similar
translation.

Definition 7. Given some finitary set attack framework
SF= 〈A,Ra〉, we define

ΓRa

def=
{ ∧

A b
∣∣∣ (A, b) ∈ Ra

}
(9)

and CSF(SF) def= A ∪ ΓRa
.

Theorem 3. Given some finitary SF there is a one-to-one
correspondence between its stable extensions and the equi-
librium models of CSF(SF) such that

i) if I is an equilibrium model of CSF(SF), then EI is a
stable extension of SF,

ii) if E is a stable extension of SF and I is a total interpre-
tation such that T+

I =A and T−I = Def (E), then I is an
equilibrium model of CSF(SF).

Proof (sketch). The proof follows as in Theorem 2 by noting
that any interpretation I and set of argumentsB satisfy:B ⊆
EI iff I |= b for all b ∈ B iff I |=

∧
B.

Argumentation Frameworks with Evidence-Based
Support
Let us now extend the language of SETAFs with the LP im-
plication (1), in other words, we consider the language pos-
sessing the following set of connectives CEF = { ,∧,⇒},
so that we can translate any EBAF as follows:

Definition 8. Given any finitary evidence-based frame-
work EF= 〈A,Ra,Rs,P〉, we define its corresponding the-
ory as: CEF(EF) def= P ∪ ΓRa ∪ ΓRs with

ΓRs

def=
{ ∧

A⇒ b
∣∣∣ (A, b) ∈ Rs

}
(10)

and ΓRa
as stated in (9).

Note that, in contrast with AFs and SETAFs, the theory
corresponding to an EBAFs do not contain all arguments as
atoms, but only those that are prima-facie P. This reflects
the fact that in EBAFs not all arguments can be accepted,



but only those that are prima-facie or are supported by those
prima facie. Supports are represented using the LP implica-
tion⇒ and supported arguments are captured by the positive
evaluation of each interpretation H+

I . The following result
extends Proposition 6 to EBAFs including the relation be-
tween supported arguments and models.

Proposition 7. Let EF be some framework and I be some
HT-model of CEF(EF). Then, the following hold:

i) if a is supported w.r.t. EI , then I |=+ a,
ii) if a is defeated w.r.t. EI , then I |=+ ∼a,

iii) EI is conflict-free.

If, in addition, I is an ≤-minimal HT-model, then

iii) a is supported w.r.t. EI iff I |=+ a,
iv) a is defeated w.r.t. EI iff I |=+ ∼a,
v) EI is self-supporting.

Example 8 (Ex. 1 continued). Consider now framework EF
representing the Tweety scenario.

birdTweety ⇒ flyTweety (11)
penguinTweety ⇒ birdTweety (12)
penguinTweety  flyTweety (13)

penguinTweety

As mentioned in Example 1, framework EF1 has
a unique stable extension {penguinTweety , birdTweety}
which does not include the argument flyTweety . In other
words, Tweety cannot fly. Interestingly, CSF(EF1) has also
a unique equilibrium model I12 = 〈T12,T12〉 where T12

stands for the set:

{penguinTweety , birdTweety , flyTweety , ∼flyTweety}

This equilibrium model precisely satisfies the two ar-
guments in that stable extension: I12 |= penguinTweety
and I12 |= birdTweety . Note that I12 6|= flyTweety follows
from the fact that I12 |=+ ∼flyTweety . In fact, this corre-
spondence holds for any EBAF as shown by the Theorem 4
below. Though more technically complex, the proof of The-
orem 4 is similar that those of Theorems 2 and 3. In partic-
ular, it is necessary to prove the following relation between
equilibrium models and supportable arguments:

Proposition 8. Let EF be some framework and I be some
equilibrium model of CEF(EF). Then, the following state-
ment holds:

i) a is supportable w.r.t. EI iff I |=+ a.

In contrast with the results for supported arguments stated
in Proposition 7, this property does not hold for arbitrary
≤-minimal models. This fact can be illustrated by consider-
ing a simple EF13 such that CEF(EF13) = {a, a⇒ b}. Let
I13 = 〈H13,T13〉 be some interpretation with H13 = {a}
and T13 = {a,∼a}. It is easy to see that I13 is a≤-minimal
model of CEF(EF13), though it is not an equilibrium model
(because it is not a total interpretation). It can also be
checked that a is not defeated and, consequently, that b is
supportable w.r.t. EI13 = ∅. On the other hand, the unique
equilibrium model of CEF(EF13) is J13 = 〈H′13,T′13〉 with

H′13 = {a, b} and T′13 = {a, b}. Here, both a and b are sup-
portable (and supported) w.r.t. EJ13 = {a, b}.

The following result shows that, indeed, this correspon-
dence holds for any EBAF:
Theorem 4. Given some finitary EF, there is a one-to-one
correspondence between its stable extensions and the equi-
librium models of CEF(EF) such that
i) if I is an equilibrium model of CEF(EF), then EI is a

stable extension of EF,
ii) if E is a stable extension of EF and I is a total interpre-

tation such that T+
I =Sup(E) and T−I =Def (E), then I

is an equilibrium model of CEF(EF).

Discussion
LP and AFs are two well-established KRR formalisms for
dealing with nonmonotonic reasoning (NMR). In particular,
Answer Set Programming (ASP) is an LP paradigm, based
on the stable model semantics, which has raised as a pre-
eminent tool for practical NMR with applications in diverse
areas of AI including planning, reasoning about actions, di-
agnosis, abduction and beyond (Baral 2003; Brewka, Eiter,
and Truszczynski 2011). On the other hand, one of the ma-
jor reasons for the success of AFs is their ability to handle
conflicts due to inconsistent information.

Here, we have shown that both formalisms can be suc-
cessfully accommodated in Nelson’s constructive logic. In
fact, it is easy to see that by rewriting attacks using defini-
tion (7), the translation of any AF becomes a normal CLP -
program. For instance, by rewriting the attack (13), we ob-
tain the equivalent formula:

penguinTweety ⇒ ∼flyTweety (14)

which is a CLP -rule. In fact, we can consider CSF(EF1) in
Example 8 as an alternative representation of the Tweety
scenario in LP. Note that both the unique equilibrium model
I9 of program P9 (Example 5) and the unique equilibrium
model I12 of this program satisfy:
I9 6|= flyTweety

I9 |= not flyTweety

I12 6|= flyTweety

I12 |= not flyTweety

In other words, in both programs we conclude that Tweety
cannot fly. However, there are a couple of differences be-
tween these two representations. First, in contrast with I9,
we have that I12 is not consistent: I12 |=+ flyTweety and
I12 |=+ ∼flyTweety . Second and perhaps more interest-
ingly, in CSF(EF1), the “normality” of the statement “birds
can fly” does not need to be explicitly represented. Instead,
this normality is implicitly handled by the strong closed
word assumption CW, which resolves the contradictory ev-
idence for flyTweety by regarding it as false. In this sense,
CLP -programs and AFs can be seen as two different syntaxes
of a same formalism based in the principles NC and CW
highlighted in the introduction. In addition, another such a
principle of this formalism is the fact that evidence must be
founded or justified: this clearly shows up in normal LP and
EBAFs where true literals can be computed by some recur-
sive procedure, but also in Dung’s AFs where, as we have
seen, defeat can be understood as a proof of falsity.



Regarding practical aspects, we can use CLP -programs
as a unifying formalism to deal with both logic programs
and AFs. This directly allows to introduce variables in AFs
through the use of grounding. Going further, full first order
characterisations of AFs can be provided by applying the
same principles to first order constructive logic (full first or-
der characterisation of consistent logic programs has been
already provided by Pearce and Valverde (2004)). Besides,
constructive logic immediately provides an interpretation for
other richer syntaxes like the use of disjunctive targets in
Collective Argumentation (Bochman 2003) or the use of ar-
bitrary propositional formulas to represent attacks in Ab-
stract Dialectical Frameworks (Brewka et al. 2013).

Another important practical aspect is that current state-of-
the-art ASP solvers (Faber et al. 2008; Gebser, Kaufmann,
and Schaub 2012) can be applied to CLP -programs by apply-
ing a simple transformation:

Definition 9. Given a CLP -program P , by by CS(P ) we de-
note the result of

1. replace every positive literal a in the body of a rule by
a ∧ ¬∼a

2. replace every negative literal not a in the body of a
rule by ¬a ∨ (a ∧ ∼a), and

3. add rules a′′ ← ¬a and a′′ ← a ∧ a′ for each atom
a ∈ At with a′′ a fresh atom

4. replace each occurrence of ¬a∨ (a∧ a′) in the body of
any rule by a′′.

5. replace⇐ by←.

Furthermore, given a total interpretation I, we also denote
by CS(I) an interpretation that, for all a ∈ At, satisfies:

1. CS(I) 6|=− a
2. CS(I) |=+ a iff I |=+ a

3. CS(I) |=+ a′ iff I |=− a
4. CS(I) |=+ a′′ iff either I 6|=+ a or both I |=+ a and
I |=− a.

Theorem 5. Given a CLP -program P and a total interpreta-
tion I, we have that I is an equilibrium model of P iff CS(I)
an equilibrium model of CS(P ).

Another immediate consequence of this translation is de-
ciding whether there exists any stable extension of some
CLP -program is ΣP

2 -complete in general and NP-complete
for normal CLP -program (Dantsin et al. 2001). Further-
more, this result directly applies to EBAFs so that deciding
whether there exists any stable extension is NP-complete.

Conclusion and future work
We have formalised the principles NC and CW in Nelson’s
constructive logic and shown that this is a conservative ex-
tension of logic programs which allow us to reason with con-
tradictory evidence. Furthermore, this allows us to translate
argumentation frameworks in a modular way and using the
object language such that attacks and supports become con-
nectives in the logic. As a consequence, we can combine
both formalisms in an unifying one and use proof methods
from the logic or answer set solver to reason about it.

Regarding future work, an obvious open topic is to ex-
plore how other argumentation semantics can be translated
into the logic. Another important open questions are study-
ing how the principles NC and CW stand in the context
of paraconsistent logics (da Costa 1974) and paraconsis-
tent logic programming (Blair and Subrahmanian 1989); and
study ing the notion of strong equivalence (Lifschitz, Pearce,
and Valverde 2001; Oikarinen and Woltran 2011) in this
logic and evidence-based frameworks.
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Lagasquie-Schiex, M. 2018. Argumentation frameworks
with recursive attacks and evidence-based supports. In
FoIKS 2018, Proceedings.



da Costa, N. 1974. On the theory of inconsistent formal
systems. Notre Dame Journal of Formal Logic 15:497–510.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.
Faber, W.; Pfeifer, G.; Leone, N.; Dell’Armi, T.; and Ielpa,
G. 2008. Design and implementation of aggregate functions
in the DLV system. Theory and Practice of Logic Program-
ming 8(5-6):545–580.
Gabbay, D. M., and Gabbay, M. 2015. The attack as strong
negation, part i. Logic Journal of the IGPL 23:881–941.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187-188:52–89.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Programming:
Proc. of the Fifth International Conference and Symposium
(Volume 2).
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Trans. Comput. Log.
2(4):526–541.
Nelson, D. 1949. Constructible falsity. J. Symbolic Logic
14(1):16–26.
Nielsen, S. H., and Parsons, S. 2007. A generalization
of Dung’s abstract framework for argumentation: Arguing
with sets of attacking arguments. In Maudet, N.; Parsons,
S.; and Rahwan, I., eds., Argumentation in Multi-Agent Sys-
tems, 54–73.
Odintsov, S. P., and Pearce, D. 2005. Routley semantics
for answer sets. In Baral, C.; Greco, G.; Leone, N.; and
Terracina, G., eds., LPNMR 2005, Proceedings, 343–355.
Springer.
Odintsov, S., and Rybakov, V. 2015. Inference rules in Nel-
son’s logics, admissibility and weak admissibility. Logica
Universalis 9(1):93–120.
Oikarinen, E., and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artificial intel-
ligence 175(14-15):1985–2009.
Oren, N., and Norman, T. 2008. Semantics for evidence-
based argumentation. In Besnard, P.; Doutre, S.; and Hunter,
A., eds., COMMA 2008, Proceedings., 276–284.
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