
Default Logic and Bounded Treewidth∗

Johannes K. Fichte1 Markus Hecher1

Irina Schindler2

1: TU Wien, Austria, {fichte,hecher}@dbai.tuwien.ac.at
2: Leibniz Universität Hannover, Germany, schindler@thi.uni-hannover.de

December 30, 2017

Abstract

In this paper, we study Reiter’s propositional default logic when the treewidth of a certain graph represen-
tation (semi-primal graph) of the input theory is bounded. We establish a dynamic programming algorithm on
tree decompositions that decides whether a theory has a consistent stable extension (Ext). Our algorithm can
even be used to enumerate all generating defaults (EnumSE) that lead to stable extensions. We show that our
algorithm decides Ext in linear time in the input theory and triple exponential time in the treewidth (so-called
fixed-parameter linear algorithm). Further, our algorithm solves EnumSE with a pre-computation step that is
linear in the input theory and triple exponential in the treewidth followed by a linear delay to output solutions.

1 Introduction

Reiter’s default logic (DL) is one of the most fundamental formalisms to non-monotonic reasoning where
reasoners draw tentative conclusions that can be retracted based on further evidence [19, 16]. DL augments
classical logic by rules of default assumptions (default rules). Intuitively, a default rule expresses “in the
absence of contrary information, assume . . . ”. Formally, such rule is a triple p:j

c of formulas p, j, and c
expressing “if prerequisite p can be deduced and justification j is never violated then assume conclusion c”.
For an initial set of facts, beliefs supported by default rules are called an extension of this set of facts. If
the default rules can be applied consistently until a fixed point, the extension is a maximally consistent
view (consistent stable extension) with respect to the facts together with the default rules. In DL stable
extensions involve the construction of the deductive closure, which can be generated from the conclusions of
the defaults and the initial facts by means of so-called generating defaults. However, not every generating
default leads to a stable extension. If a generating default leads to a stable extension, we call it a stable
default set. Our problems of interest are deciding whether a default theory has a consistent stable extension
(Ext), output consistent stable default sets (CompSE), counting the number of stable default sets (#SE),
and enumerating all stable default sets (EnumSE). All these problems are of high worst case complexity,
for example, the problem Ext is Σp

2-complete [14].
Parameterized algorithms [7] have attracted considerable interest in recent years and allow to tackle

hard problems by directly exploiting certain structural properties present in input instances (the parameter).
For example, Ext can be solved in polynomial time for input theories that allow for small backdoors into

∗The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and P26696, and the German Science
Fund (DFG), Grant ME 4279/1-1. The first two authors are also affiliated with the Institute of Computer Science and
Computational Science at University of Potsdam, Germany. The final publication will be available at Springer proceedings of
LATA 2018.

1

tractable fragments of DL [11]. Another parameter is treewidth, which intuitively measures the closeness of
a graph to a tree. Ext can also be solved in linear time for input theories and a (non-elementary) function
that depends on the treewidth of a certain graph representation of the default theory (incidence graph) [17].
This result relies on logical characterization in terms of a so-called MSO-formula and Courcelle’s theorem [5].
Unfortunately, the non-elementary function can become extremely huge and entirely impractical [15]. More
precisely, the result by Meier et al. [17] yields a function that is at least quintuple exponential in the
treewidth and the size of the MSO-formula. This opens the question whether one can significantly improve
these runtime bounds. A technique to obtain better worst-case runtime bounds that often even allows to
practically solve problem instances, which have small treewidth, are dynamic programming (DP) algorithms
on tree decompositions [4, 9, 10]. In this paper, we present such a DP algorithm for DL, which uses a
slightly simpler graph notation of the theory (semi-primal graph).

Contributions. We introduce DP algorithms that exploit small treewidth to solve Ext and CompSE
in time triple exponential in the semi-primal treewidth and linear in the input theory. Further, we can
solve #SE in time triple exponential in the semi-primal treewidth and quadratic in the input theory. Our
algorithm can even be used to enumerate all stable default sets (EnumSE) with a pre-computation step
that is triple exponential in the semi-primal treewidth and linear in the input theory followed by a linear
delay for outputting the solutions (Delay-FPT [6]).

2 Default Logic

We assume familiarity with standard notions in computational complexity, the complexity classes P and
NP as well as the polynomial hierarchy. For more detailed information, we refer to other standard
sources [18, 12, 8]. For parameterized (decision) problems we refer to work by Cygan et al. [7].

A literal is a (propositional) variable or its negation. The truth evaluation of (propositional) formulas is
defined in the standard way [16]. In particular, θ(⊥) = 0 and θ(>) = 1 for an assignment θ. Let f and g
be formulas and X = Vars(f) ∪Vars(g). We write f � g if and only if for all assignments θ ∈ 2X it holds
that if the assignment θ satisfies f , then θ also satisfies g. Further, we define the deductive closure of f
as Th(f) := { g ∈ P | f � g } where P is the family that contains all formulas. In this paper, whenever it
is clear from the context, we may use sets of formulas and a conjunction over formulas equivalently. In
particular, we let for formula f and a familyM of sets of variables be ModM(f) := {M |M ∈M,M � f}.
We denote with Sat the problem that asks whether a given formula f is satisfiable.

We define for formulas p, j, and c a default rule d as a triple p:j
c ; p is called the prerequisite, j is

called the justification, and c is called the conclusion; we set α(d) := p, β(d) := j, and γ(d) := c. The
mappings α, β and γ naturally extend to sets of default rules. We follow the definitions by Reiter [19]. A
default theory 〈W,D〉 consists of a set W of propositional formulas (knowledge base) and a set of default
rules.

Definition 1. Let 〈W,D〉 be a default theory and E be a set of formulas. Then, Γ(E) is the smallest set
of formulas such that: (i) W ⊆ Γ(E) (ii) Γ(E) = Th(Γ(E)), and (iii) for each p:j

c ∈ D with p ∈ Γ(E) and
¬j /∈ E, it holds that c ∈ Γ(E). E is a stable extension of 〈W,D〉, if E = Γ(E). An extension is inconsistent
if it contains ⊥, otherwise it is called consistent. The set G = { d | α(d) ∈ E,¬β(d) /∈ E, d ∈ D } is called
the set of generating defaults of extension E and default theory D.

The definition of stable extensions allows inconsistent stable extensions. However, inconsistent extensions
only occur if the set W is already inconsistent where 〈W,D〉 is the theory of interest [16, Corollary 3.60].
In consequence, (i) if W is consistent, then every stable extension of 〈W,D〉 is consistent, and (ii) if W is
inconsistent, then 〈W,D〉 has a stable extension. For Case (ii) the stable extension consists of all formulas.
Therefore, we consider only consistent stable extensions. For default theories with consistent W, we can
trivially transform every formula in W into a default rule. Hence, in this paper we generally assume that

2

W = ∅ and write a default theory simply as set of default rules. Moreover, we refer by SE(D) to the set of
all consistent stable extensions of D.

Example 1. Let the default theories D1 and D2 be given as

D1 :=

{
d1 =

> : a

a ∨ b
, d2 =

> : ¬a
¬b

}
,

D2 :=

{
d1 =

c : a

a ∨ b
, d2 =

c : ¬a
¬b

, d3 =
> : c

c
, d4 =

> : ¬c
¬c

}
.

D1 has no stable extension, while D2 has only one stable extension E1 = {¬c} .

In our paper, we use an alternative characterization of stable extension beyond fixed point semantics,
which is inspired by Reiter’s stage construction [19].

Definition 2. Let D be a default theory and S ⊆ D. Further, we let E(S) := {γ(d) | d ∈ S}. We call
a default d ∈ D p-satisfiable in S, if E(S) ∪ ¬α(d) is satisfiable; and j-satisfiable in S, if E(S) ∪ β(d) is
unsatisfiable; c-satisfiable in S, if d ∈ S. The set S is a satisfying default set, if each default d ∈ D is
p-satisfiable in S, or j-satisfiable in S, or c-satisfiable in S.

The set S is a stable default set, if (i) S is a satisfying default set and (ii) there is no S′ where S′ (S
such that for each default d it holds that d is p-satisfiable in S′, or j-satisfiable in S, or c-satisfiable in S′.
We refer by SD(D) to the set of all stable default sets of D.

The following lemma establishes that we can simply use stable default sets to obtain stable extensions
of a default theory.

Lemma 1 (?1). Let D be a default theory. Then,

SE(D) =
⋃

S∈SD(D)

Th({γ(d) | d ∈ S}).

In particular, S ∈ SD(D) is a generating default of extension Th({γ(d) | d ∈ S}).

Given a default theory D we are interested in the following problems:
The extension existence problem (called Ext) asks whether D has a consistent stable extension. Ext is

Σp
2-complete [14]. The extension computation problem (called CompSE) asks to output a stable default

set of D. The extension counting problem (called #SE) asks to output the number of stable default sets
of D. The enumerating problem asks to enumerate all stable default sets of D (called EnumSE).

3 Dynamic Programming on TDs for Default Logic

In this section, we present the basic methodology and definitions to solve our problems more efficiently
for default theories that have small treewidth. Our algorithms are inspired by earlier work for another
non-monotonic framework [9]. However, due to much more evolved semantics of DL, we require extensions
of the underlying concepts.

Before we provide details, we give an intuitive description. The property treewidth was originally
introduced for graphs and is based on the concept of a tree decomposition (TD). Given a graph, a TD
constructs a tree where each node consists of sets of vertices of the original graph (bags) such that additional
conditions hold. Then, we define a dedicated graph representation of the default theory and our algorithms

1Statements or descriptions whose proofs or details are omitted due to space limitations are marked with “?”. These
statements are sketched in the appendix.

3

a b

d2 d1 {a, b, d1}t1 {a, b, d2} t2

{a, b} t3

Figure 1 Graph G (left) and an TD T (right) of G.

work by dynamic programming (DP) along the tree decomposition (post-order) where at each node of the
tree, information is gathered in tables. The size of these tables is triple exponential in the size of the bag.
Intuitively, the TD fixes an order in which we evaluate the default theory. Moreover, when we evaluate
the default theory for one node, we can restrict the theory to a sub-theory and parts of prerequisites,
justifications, and conclusions that depends only on the content of the currently considered bag.

Tree Decompositions. Let G = (V,E) be a graph, T = (N,F, n) be a tree (N,F) with root n, and
χ : N → 2V be a mapping. We call the sets χ(·) bags and N the set of nodes. The pair T = (T, χ) is a tree
decomposition (TD) of G if the following conditions hold: (i) for every vertex v ∈ V there is a node t ∈ N
with v ∈ χ(t); (ii) for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and (iii) for any three
nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then χ(t1)∩ χ(t3) ⊆ χ(t2). The width of the
TD is the size of the largest bag minus one. The treewidth tw(G) is the minimum width over all possible

TDs of G. For k ∈ N we can compute a TD of width k or output that no exists in time 2O(k3) · |V | [3].
Next, we restrict the TD T such that we have only nice case distinctions for our DP algorithm later.

Therefore, we define a nice TD in the usual way as follows. Given a TD (T, χ) with T = (N, ·, ·), for a
node t ∈ N we say that type(t) is leaf if t has no children; join if t has children t′ and t′′ with t′ 6= t′′ and
χ(t) = χ(t′) = χ(t′′); int (“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem
(“removal”) if t has a single child t′, χ(t) ⊆ χ(t′) and |χ(t′)| = |χ(t)|+ 1. If every node t ∈ N has at most
two children, type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and the root are empty, then the TD is
called nice. For every TD, we can compute a nice TD in linear time without increasing the width [3]. In
our algorithms we will traverse a TD bottom up, therefore, let post-order(T, t) be the sequence of nodes in
post-order of the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Example 2. Figure 1 (left) depicts a graph G together with a TD of width 2 of G. Further, the TD T in
Figure 2 sketches main parts of a nice TD of G (obvious parts are left out).

Graph Representations of Default Theories. For a default theory D, its primal graph P (D) is the
graph that has the variables of D as vertices and an edge a b if there exists a default d ∈ D and a, b ∈ Vars(d).
The incidence graph I(G) is the bipartite graph, where the vertices are variables of D and defaults d ∈ D,
and there is an edge d a between a default d ∈ D and a corresponding variable a ∈ Vars(d). The
semi-primal graph S(D) of D is the graph, where the vertices are variables Vars(D) and defaults of D. For
each default d ∈ D, we have an edge a d if variable a ∈ Vars(d) occurs in d. Moreover, there is an edge a b
if either a, b ∈ Vars(α(d)), or a, b ∈ Vars(β(d)), or a, b ∈ Vars(γ(d))2. Observe the following connection.
For any default theory D, we have that tw(I(D)) ≤ tw(S(D)). Note that earlier work [17] uses a special
version of the incidence graph I ′(D). The graph I ′(D) is a supergraph of I(D) and still a bipartite graph,
which contains an additional vertex for each subformula of every occurring formula, and corresponding
edges between subformulas and variables. Consequently, we obtain the bound tw(I(D)) ≤ tw(I ′(D)).

Example 3. Recall default theory D1 of Example 1. We observe that graph G in the left part of Figure 1
is the semi-primal graph of D1.

In our DP algorithms for default logic we need to remember when we can evaluate a formula (prerequisite,
justification, or conclusion) for a default, i.e., we have a default and all the variables of the formula in a
bag. To that end, we introduce labels of nodes. Since we work along the TD and want a unique point

2Note that these formulas may also be > or ⊥, which we “simulate” by means of the same formula v ∨¬v or v ∧¬v, where
variable v does not occur in the default theory.

4

Listing 1: Algorithm DP(T) for Dynamic Programming on TD T for DL, cf. [9].

In: Pretty LTD T = (T, χ, δ) with T = (N, ·, n) of the semi-primal graph S(D).
Out: A table for each node t ∈ T stored in a mapping Tables[t].

1 for iterate t in post-order(T,n) do
2 Child-Tabs := {Tables[t′] | t′ is a child of t in T}
3 Tables[t] ← SPRIM(t, χ(t), δ(t), Dt,Child-Tabs)
4 return Tables[·]

where to evaluate, we restrict a label to the first occurrence when working along the TD. A labeled tree
decomposition (LTD) T of a default theory D is a tuple T = (T, χ, δ) where (T, χ) is a TD of S(D) and
δ : N → 2({α,β,γ}×D) is a mapping where for any (f, d) in {α, β, γ} ×D it holds that (i) if (f, d) ∈ δ(t),
then {d} ∪ f(d) ⊆ χ(t); and (ii) if {d} ∪ f(d) ⊆ χ(t) and there is there is no descendent t′ of t such that
(f, d) ∈ δ(t′), then (f, d) ∈ δ(t).

We need special case distinctions for DL. Therefore, we restrict an LTD as follows. For a node t ∈ N
that has exactly one child t′ where χ(t) = χ(t′) and δ(t) 6= ∅, we say that type(t) is label. If every node
t ∈ N has at most two children, type(t) ∈ {leaf, join, int , label , rem}, bags of leaf nodes and the root are
empty, |δ(t)| ≤ 1, and δ(t) = ∅ for type(t) 6= label then the LTD is called pretty. It is easy to see that
we can construct in linear time a pretty LTD without increasing the width from a nice TD, simply by
traversing the tree of the TD and constructing the labels and duplicating nodes t where δ(t) 6= ∅. Assume
in the following, that we use pretty LTDs, unless mentioned otherwise.

Next, we briefly present the methodology and underlying ideas of our DP algorithms on TDs. The
basis for our Algorithm is given in Listing 1 (DP), which traverses the underlying tree of the given
LTD (T, χ, δ) in post-order and runs an algorithm SPRIM at each node t ∈ T . SPRIM computes a
new table τt based on the tables of the children of t. It has only a “local view” on bag-defaults, which
are simply the “visible” defaults, i.e., Dt := D ∩ χ(t). Intuitively, we store in each table information
such as partial assignments of Dt, that is necessary to locally decide the default theory without storing
information beyond variables that belong to the bag χ(t). Further, the default theory below t is defined as
D≤t := {d | d ∈ Dt′ , t

′ ∈ post-order(T, t)}, and the default theory strictly below t is D<t := D≤t \Dt. For
root n of T , it holds that D≤n = D<n = D.

Example 4. Intuitively, the LTD of Figure 1 enables us to evaluate D by analyzing sub-theories ({d1}
and {d2}) and combining results agreeing on a, b. Indeed, for the given LTD of Figure 1, D≤t1 = {d1},
D≤t2 = {d2} and D = D≤t3 = D<t3 = D≤t1 ∪D≤t2 .

The next section deals with the details of SPRIM. Before, we need a notion to talk about the result
of sequences of a computation. For a node t, the Algorithm SPRIM stores tuples in a table τt based on
a computation that depends on tuples (originating tuples) that are stored in the table(s) of the child
nodes. In order to talk in informal explanations about properties that tuples or parts of tuples have when
looking at the entire computation from the relevant leaves up to the node t in the post-order, we need a
notion similar to a default theory below t for parts of tuples. Assume for now that our tuples in tables
are only tuples of sets. Then, we collect recursively in pre-order along the induced subtree T ′ of T rooted
at t a sequence s of originating tuples (u, ~u1, . . . , ~um). If the set T occurs in position i of tuple u, our
notion T≤t(s) takes the union over all sets T, T1, . . . , Tm at position i in the tuples ~u1, . . . , ~um. Since a
node of type rem will typically result in multiple originating tuples, we have multiple sequences s1, . . . , sm
of originating tuples in general. This results in a family T ≤t := {T≤t(s) | s ∈ {s1, . . . , sm}} of such sets.
However, when stating properties, we are usually only interested in the fact that each S ∈ T ≤t satisfies
the property. To this end, we refer to T≤t as any arbitrary S ∈ T ≤t. Further, we let T<t := T≤t \ T .
The definition vacuously extends to nested tuples and families of sets. A more formal compact definition
provide so-called extension pointers [2].

Example 5. Recall the given TD in Figure 1 (right). For illustrating notation, we remove node t2, since

5

we only care about nodes t1 and t3 and thereby obtain a simpler TD T = (T, χ, δ) (of some simpler graph).
Assume that for both nodes t in T we store a table of tuples, say of the form 〈X,Y 〉, where X is a subset
of the bag χ(t) and Y is a set of subsets of χ(t). Further, let the tables τi for the two nodes in this example
be as follows: τ1 := { ~u1.1 = 〈{d1}, {∅, {d1}, {d1, b}}〉, ~u1.2 = 〈{a}, {{b}}〉}, and τ3 := { ~u3.1 = 〈∅, {{a}}〉}.
Then, we let tuple ~u3.1 originate from tuple ~u1.1 of child table τ1 and not from ~u1.2. We discuss only the Y
part of tuple ~u3.1 (referred to by Y3.1). In order to talk about any “extension” Y ≤t3.1.1 ⊇ Y3.1.1 of Y3.1.1 = {a}
in T , we write Y ≤t3.1.1, which can be one of {a}, {a, d1}, or {a, d1, b}.

4 Computing Stable Default Sets

In this section, we present our table algorithm SPRIM. Therefore, let D be a given default theory and
T = (T, χ, δ) a pretty LTD of S(D).

Our table algorithm follows Definition 2, which consists of two parts: (i) finding sets of satisfying default
sets of the default theory and (ii) generating smaller sets of conclusions for these satisfying default sets
in order to invalidate subset minimality. Since, SPRIM has only a “local view” on default theory D, we
are only allowed to store parts of satisfying default sets. However, we guarantee that, if for the “visible”
part Z of a set of satisfying defaults for any node t of T there is no smaller set of satisfying defaults, then Z
can be extended to a stable default set of D<t. However, in general Z alone is not sufficient, we require
auxiliary information to decide the satisfiability of defaults. We need a way to prove that Z witnessed a
satisfying default set Z≤t. In particular, even though each d ∈ Z≤t is vacuously c-satisfiable, we have to
verify that each default d ∈ D \ Z≤t is indeed p-satisfiable or j-satisfiable. In turn, we require a set M
of (partial) assignments of Z≤t. To this end, we store in table τt tuples that are of the form 〈Z,M,P, C〉,
where Z ⊆ Dt and M⊆ 2X for X = χ(t) ∩Vars(D). The first three tuple positions cover Part (i) and can
be seen as the witness part. The last position consists of a set of tuples C = 〈ρ,AC,BC〉 to handle Part (ii)
and can be seen as the counter-witness part.

In the following, we describe more details of our tuples. We call Z the witness set, since Z witnesses the
existence of a satisfying default set Z≤t for a sub-theory S. Each element M in the setM of witness models
witnesses the existence of a model of F≤t :=

∧
d∈Z≤t γ(d). For our assumed witness set Z, we require a

set P of witness proofs. The set P consists of tuples of the form 〈σ,A,B〉, where σ : Dt → {p, j, c} and
A,B ⊆ 2X for X = χ(t)∩Vars(D). The function σ, which we call states function, maps each default d ∈ Dt

to a decision state v ∈ {p, j, c} representing the case where d is v-satisfiable. The set A, which we call the
required p-assignments, contains an assignment A ∈ 2X for each default d that is claimed to be p-satisfiable.
More formally, there is an assignment A ∈ A for each default d ∈ σ−1(p)∪D<t where σ≤t(d) = p such that
there is an assignment A≤t that satisfies F≤t ∧ ¬α(d). The set B, which we call the refuting j-assignments,
contains an assignment B ∈ 2X for certain defaults. Intuitively, for each B ∈ B there is a default d in the
current bag χ(t) or was in a bag below t such that there is an assignment B≤t where the justification is
not fulfilled. More formally, there is a B ∈ B if there is an assignment B≤t that satisfies F≤t ∧ β(d) for
some default d ∈ σ−1(j) ∪ D<t where σ≤t(d) = j. In the end, if Z proves the existence of a satisfying
default set Z≤t of theory D<t, then there is at least one tuple 〈·, ·,B〉 ∈ P with B = ∅. Hence, we require
that B = ∅ in order to guarantee that each default d ∈ D<t is j-satisfiable where σ≤t(d) = j. To conclude,
if table τn for (empty) root n contains u = 〈Z, ·,P, C〉 where P contains 〈·, ·, ∅〉, then Z≤t is a satisfying
default set of the default theory D. The main aim of C is to invalidate the subset-minimality of Z≤t, and
will be covered later.

Next, we briefly discuss important cases of Listing 2 for Part (i), which consists only of the first three
tuple positions (colored red and green) and ignores the remaining parts of the tuple. We call the resulting
table algorithm SCONS, which only concerns about computing satisfying default sets. Let t ∈ T and
u′ = 〈Z,M,P, ·〉 a tuple of table τ ′ for a child node of t and 〈σ,A,B〉 a tuple in P . We describe informally
how we transform u′ tuples into one or more tuples for the table in node t.

If t is of type int and a default d is introduced in t, Line 3 guesses whether d is p-satisfiable, j-satisfiable,

6

Listing 2 (?): Table algorithm SPRIM(t, χt, δt, Dt,Child-Tabs).

In: Bag χt, label mapping δt, bag-theory Dt, and child tables Child-Tabs of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉} /* Abbreviations below. */

2 else if type(t) = int, d ∈ Dt is the introduced default, and τ ′ ∈ Child-Tabs then
3 τt ← {〈Z+

d ,M, SGuessd,{c}(P), SGuessd,{p,j,c}(C) ∪ SGuessd,{p,j}(P,M)〉,
〈Z,M,SGuessd,{p,j}(P), SGuessd,{p,j}(C)〉 | 〈Z,M,P, C〉 ∈ τ ′}

4 else if type(t) = label, {(γ, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then
5 τt ← {〈Z,ModM(γ(d)),PCond(P), CCond(C)〉 | 〈Z,M,P, C〉 ∈ τ ′, d ∈ Z} ∪

{〈Z,M,P, C〉 | 〈Z,M,P, C〉 ∈ τ ′, d 6∈ Z}
6 else if type(t) = label, {(α, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then
7 τt ← {〈Z,M,PPred(P,M), CPred(C)〉 | 〈Z,M,P, C〉 ∈ τ ′}
8 else if type(t) = label, {(β, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then
9 τt ← {〈Z,M,PJustd(P,M), PJustd(C,M)〉 | 〈Z,M,P, C〉 ∈ τ ′}

10 else if type(t) = int, a ∈ χt is the introduced variable, and τ ′ ∈ Child-Tabs then
11 τt ← {〈Z,M∪M]

a ,PGuessa(P), PGuessa(C)〉 | 〈Z,M,P, C〉 ∈ τ ′}
12 else if type(t) = rem, d 6∈ Dt is the removed default, and τ ′ ∈ Child-Tabs then
13 τt ← {〈Z−d ,M, SProjd(P), SProjd(C)〉 | 〈Z,M,P, C〉 ∈ τ ′}
14 else if type(t) = rem, a 6∈ χt is the removed variable, and τ ′ ∈ Child-Tabs then
15 τt ← {〈Z,M∼a ,AProja(P), AProja(C)〉 | 〈Z,M,P, C〉 ∈ τ ′}
16 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then
17 τt ← {〈Z,M′ ∩M′′,P ′.̂/M′,M′′P ′′, (C′.̂/M′,M′′C′′) ∪ (P ′.̂/M′,M′′C′′) ∪ (C′.̂/M′,M′′P ′′)〉

| 〈Z,M′,P ′, C′〉 ∈ τ ′, 〈Z,M′′,P ′′, C′′〉 ∈ τ ′′}
18 return τt

S−e := S \ {e}, S∼e := {S−e | S ∈ S}, S+
e := S ∪ {e}, and S]e := {S+

e | S ∈ S}.

or c-satisfiable. To this end, SGuessd,S(P) adds potential proofs to P where the satisfiability state of d is
within S. Lines 5, 7 and 9 cover nodes of type label as follows: In Line 5, if (γ, d) is the label and σ(d) = c,
we enforce that each M ∈M is also a model of γ(d). PCond(P) only keeps tuples in P where each A ∈ A
is a model of γ(d). In Line 7, if (α, d) is the label and σ(d) = p, PPred(P,M) enforces that each A ∈ A
within P is a model of ¬α(d). In Line 9, if (β, d) is the label and σ(d) = j, PJustd(P,M) adds assignments
of M to B that are also models of β(d).

Next, we cover the case, where a variable a is introduced. In Line 11, we increase the existing witness
set M ∪{a} for each M ∈M. PGuessa(P) works analogously for B and computes all potential combinations
of every A ∈ A, where a is either set to true or to false.

In Line 13, we remove default d from Z and SProjd(P) removes d from the domain of the mapping σ,
since d is not considered anymore. In Line 15, we remove variable a from each M ∈ M and AProja(P)
works analogously for each assignment of A and B.

Finally, if the node is of type join, we have a second child and its table τ ′′ as well as a tuple u′′ ∈ τ ′′.
Intuitively, tuples u′ and u′′ represent intermediate results of two different branches in T . To combine these
results, we have to join the tuples on the witness extension, witness states, and the witness models. The
join operation ./ can be seen as a combination of inner and outer joins, used in database theory [1]. Note
that for instance for an assignment B ∈ B to endure within P of τt, it suffices that B is a corresponding
witness model in u′′.

Example 6. Consider default theory D from Example 1 and in Figure 2 (left) pretty LTD T = (·, χ, δ)
of the semi-primal graph S(D) and the tables τ1, . . . , τ18 illustrating computation results obtained during
post-order traversal of T by DP using SCONS instead of SPRIM in Line 3. We omit the last position
of the tuples, since those are only relevant for SPRIM. Note that we discuss only selected cases, and
we assume for presentation that each tuple in a table τt is identified by a number, i.e., the i-th tuple
corresponds to ~ut.i = 〈Zt.i,Mt.i,Pt.i, Ct.i〉. The numbering naturally extends to sets in witness proofs and
counter-witnesses.

7

∅ t18

{a, b}
t15

γ,d2:{a, b, d2}
t14

β,d2:{a, d2}

α,d2:{a, d2}

{a, d2} t11

∅t9

{a, b}

γ,d1:{a, b, d1}t7

{a, b, d1}

α,d1:{a, d1}
t5

β,d1:{a, d1}
t4

{a, d1} t3

{a} t2

∅t1

〈Z14.i,M14.i,P14.i, C14.i〉 τ14

〈∅, 2{a,b}, {〈{d2 7→ j}, ∅, {∅, {b}}〉}, ∅〉
〈{d2}, {∅, {a}}, {〈{d2 7→ c}, ∅, ∅〉},
{〈{d2 7→ j}, ∅, [2{a,b}]]mo ∪ {∅}〉}〉

〈Z18.i,M18.i,P18.i, C18.i〉
〈∅, {∅}, {〈∅, ∅, {∅}〉}, ∅〉
〈∅, {∅}, {〈∅, ∅, ∅〉},
〈∅, ∅, {∅}〉}〉

τ18

〈Z4.i,M4.i,P4.i, C4.i〉 τ4

〈∅, {∅, {a}}, {〈{d1 7→ p}, ∅, ∅〉,
〈{d1 7→ j}, ∅, {{a}}〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 7→ c}, ∅, ∅〉},
{〈{d1 7→ p}, ∅, [2{a}]]mo〉,
〈{d1 7→ j}, ∅, [2{a}]]mo ∪ {{a}}〉}〉

〈Z5.i,M5.i,P5.i, C5.i〉 τ5

〈∅, {∅, {a}},
{〈{d1 7→ j}, ∅, {{a}}〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 7→ c}, ∅, ∅〉},
{〈{d1 7→ j}, ∅, [2{a}]]mo ∪ {{a}}〉}〉

〈Z3.i,M3.i,P3.i, C3.i〉 τ3

〈∅, {∅, {a}}, {〈{d1 7→ p}, ∅, ∅〉,
〈{d1 7→ j}, ∅, ∅〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 7→ c}, ∅, ∅〉},
{〈{d1 7→ p}, ∅, [2{a}]]mo〉,
〈{d1 7→ j}, ∅, [2{a}]]mo〉}〉

〈Z7.i,M7.i,P7.i, C7.i〉 τ7

〈∅, 2{a,b},
{〈{d1 7→ j}, ∅, {{a}, {a, b}}〉}, ∅〉

〈{d1}, 2{a,b} \ ∅, {〈{d1 7→ c}, ∅, ∅〉},
{〈{d1 7→ j}, ∅,

[2{a,b}]]mo ∪ {{a}, {a, b}}〉}〉
〈Z1.i,M1.i,P1.i, C1.i〉
〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉

τ1

Figure 2 Selected DP tables of SPRIM for pretty LTD T .

We obtain table τ1 = {〈∅, {∅}, {〈∅, ∅, ∅〉}〉} as type(t1) = leaf (see Line 1). Since type(t2) = int and a
is the introduced variable, we construct table τ2 from τ1 by modifying M2.1 and P2.1 = {〈σ1.1,A1.1,M2.1〉},
where M2.1 contains M1.1.k and M1.1.k ∪ {a} for each M1.1.k (k ≤ 1) in τ1. This corresponds to a guess
on a. Precisely, M2.1 := {∅, {a}} (Line 11).

Then, t3 introduces default d1, which results in two tuples. In tuple ~u3.1 default d1 is p-satisfiable or
j-satisfiable due to α(d1) or β(d1) (see P3.1, Line 3). In tuple ~u3.2 default d1 is c-satisfiable and we have
that Z3.2 = {d1} and P3.2 = {{d1 7→ c}, ∅, ∅〉}.

Node t4 introduces label (β, d1) and modifies P4.1.2. In particular, it chooses among M candidates,
which might contradict that d1 is j-satisfiable (see Line 9). Obviously, we have that B4.1.2 = {{a}}, since
β(d1) = a.

In table τ5, we present the case where default d1 should be p-satisfiable. In this case since α(d1) = >,
we do not find any model of ⊥. In consequence, there is no corresponding successor of P4.1.1 in τ5, i.e.,
in τ5 it turns out that d1 can not be p-satisfiable.

Table τ7 concerns the conclusion γ(d1) of a default. It updates every assignment occurring in the table,
such that the models satisfy γ(d1) if d1 is c-satisfiable. The remaining cases work similarly.

In the end, join node t16 just combines witnesses agreeing on its content.

Next, we briefly discuss the handling of counter-witnesses, which completes Algorithm SPRIM. The
handling of counter-witnesses C is quite similar to the witness proofs P. The tuples 〈ρ,AC,BC〉 ∈ C
consist of a states function ρ : D≤t 7→ {p, j, c}, required p-assignments AC ⊆ 2X and refuting j-assignments
BC ⊆ 2(X∪{mo}) for X = Vars≤t ∩ χ(t). In contrast to the refuting j-assignments in B, BC may in addition
contain an assignment B ∈ BC with a marker mo. The marker indicates that B≤t is actually not refuting,
but only a model of γ(d) for each default below t that is c-satisfiable, i.e.,

∧
d∈D≤t,ρ≤t(d)=c γ(d). In other

words, those assignments setting mo to true are the counter-witness assignments that do not refute
c-assignments (comparable to witness assignments in M for Part (ii)).

The existence of a certain counter-witness tuple for a witness in a table τt establishes that the
corresponding witness can not be extended to a stable default set of D≤t. In particular, there exists a
stable extension for D if the table τn for root n contains a tuple of the form 〈∅, {∅},P, C〉, where P 6= ∅
and contains tuples of the form 〈·, ·, ∅〉. Moreover, for each 〈ρ,AC,BC〉 ∈ C there is ∅ ∈ BC indicating
a true refuting j-assignment for the empty root n. Intuitively, this establishes that there is no actual
counter-witness, which contradicts that the corresponding satisfying default Z≤t is subset-minimal and
hence indeed a stable default set.

Due to space limitations, we omit a full description of both Parts (i) and (ii) together for our algorithm.

8

A major difference of Part (ii) is that we need a special function CCond(C) to establish that a default d is
j-satisfiable, which is defined with respect to fixed set S, c.f., Case (ii) of Definition 2. Then, CCond(C)
additionally adds potential proofs involving counter-witnesses and mo models, where ρ(d) 6= c, but σ(d) = c.

In the following, we state the correctness of the algorithm DP.

Theorem 1 (?). Given a default theory D, algorithm DP correctly solves Ext.

Idea. The correctness proof of this algorithm needs to investigate each node type separately. We have to
show that a tuple at a node t guarantees existence of a stable default set for a sub-theory of theory D≤t,
which proves soundness. Conversely, one can show that each stable default set is indeed evaluated while
traversing the pretty LTD, which establishes completeness.

Next, we establish that we can extend DP to enumerate stable default sets. The algorithm on top of
DP is relatively straight forward, which can be found in the appendix. The idea is to compute a first stable
default set in linear time, followed by systematically enumerating subsequent solutions with linear delay.
One can even further extend DP to solve #SE, similar to related work [9] in a slightly different context.

Theorem 2 (?). Given a default theory D, algorithm SPRIM can be used as a preprocessing step to
construct tables from which we can solve problem EnumSE.

Idea. The correctness proof requires to extend the previous results to establish a one-to-one correspondence
when traversing the tree of the TD and such that we can reconstruct each solution as well as we do not get
duplicates. The proof proceeds similar to Theorem 1.

The following theorem states that we obtain threefold exponential runtime in the treewidth.

Theorem 3 (?). Algorithm DP runs in time O(22
2k+4

· ‖S(D)‖) for a given default theory D, where
k := tw(S(D)) is the treewidth of semi-primal graph S(D).

5 Conclusion

In this paper, we established algorithms that operate on tree decompositions of the semi-primal graph
of a given default theory. Our algorithms can be used to decide whether the default theory has a stable
extension or to enumerate all stable default sets. The algorithms assume small treewidth and run in linear
time and with linear delay, respectively. Even though already linear time results for checking the existence
of a stable extension are known, we are able to establish runtime that is only triple exponential in the
treewidth of the semi-primal graph.

In order to simplify the presentation, we mainly covered the semi-primal graph. However, we believe
that our algorithms can be extended to tree decompositions of the incidence graph. Then we need additional
states to handle the cases where prerequisite, justification, and conclusion do not occur together in one bag.
Consequently, such an algorithm will likely be very complex. Further, we also believe that our algorithm
can be extended to disjunctive defaults [13], where we have to guess which of the conclusion parts is to
apply. An interesting research question is whether we can improve our runtime bounds. Still it might be
worth implementing our algorithms to enumerate stable default sets for DL, as previous work showed that
a relatively bad worst-case runtime may anyways lead to practical useful results [4].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level. Addison-Wesley,
Boston, MA, USA, 1st edition, 1995.

9

[2] B. Bliem, G. Charwat, M. Hecher, and S. Woltran. D-FLATˆ2: Subset minimization in dynamic
programming on tree decompositions made easy. FI, 147:27–34, 2016.

[3] H. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded treewidth.
The Computer Journal, 51(3):255–269, 2008.

[4] G. Charwat and S. Woltran. Dynamic programming-based QBF solving. In Proc. of the 4th Intl.
Workshop on Quantified Boolean Formulas (QBF’16), pages 27–40, 2016.

[5] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook
of theoretical computer science, Vol. B, volume Formal Models and Semantics, pages 193–242. Elsevier
Science Publishers, North-Holland, 1990.

[6] N. Creignou, A. Meier, J.-S. Müller, J. Schmidt, and H. Vollmer. Paradigms for parameterized
enumeration. Th. Comput. Syst., 60(4):737–758, 2017.

[7] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

[8] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. 2013.

[9] J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. Answer set solving with bounded treewidth
revisited. In Proc. of the 14th Intl. Conference on LPNMR, 2017.

[10] J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. DynASP2.5: Dynamic programming on tree
decompositions in action. In Proc. of the 12th IPEC, 2017.

[11] J. K. Fichte, A. Meier, and I. Schindler. Strong backdoors for default logic. In Proc. of the 19th Intl.
Conference on Theory and Applications of SAT (SAT’16), 2016.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Th. Comput. Sc. Springer,
Berlin, 2006.

[13] M. Gelfond, V. Lifschitz, H. Przymusinska, and M. Truszczynski. Disjunctive defaults. pages 230–237.
Morgan Kaufmann, 1991.

[14] G. Gottlob. Complexity results for nonmonotonic logics. JLC, 2(3):397–425, 1992.

[15] J. Kneis and A. Langer. A practical approach to Courcelle’s theorem. Electronic Notes in Theoretical
Computer Science, 251:65–81, 2009.

[16] V. W. Marek and M. Truszczyński. Nonmonotonic Logic: context-dependent reasoning. Artificial
Intelligence. Springer, Berlin, Germany, 1993.

[17] A. Meier, I. Schindler, J. Schmidt, M. Thomas, and H. Vollmer. On the parameterized complexity of
non-monotonic logics. Archive for Math. Logic, 54(5-6):685–710, 2015.

[18] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[19] R. Reiter. A logic for default reasoning. AIJ, 13:81–132, Apr. 1980.

10

A Equivalence of stable default sets and stable extensions

We provide in the following insights on the correspondence between sets SD(D) and SE(D) for a given
default theory D.

Lemma 1. Let D be a default theory. Then,

SE(D) =
⋃

S∈SD(D)

Th({γ(d) | d ∈ S}).

In particular, S ∈ SD(D) is a generating default of extension Th({γ(d) | d ∈ S}).

Sketch. Consider an arbitrary default theory D.
“=⇒”: Take any extension E ∈ SE(D). Observe that E is closed unter Th(·), i.e., E = Th(E). From E,
we now construct set S := {d ∈ D | γ(d) ∈ E,α(d) ∈ E,¬β(d) 6∈ E}. Assume towards a contradiction
that S is not a stable default set, so it either dissatisfies at least one default, which immediately leads
to a contradiction since E is a stable extension, or S is not subset-minimal. If S is not subset-minimal,
there is a smaller set S′ (S, which is a satisfying default set. Observe that there is at least one d ∈ S \ S′
where γ(d) 6∈ Th({γ(d′) | d′ ∈ S′}), since otherwise S′ can not be a satisfying default set due to
Th({γ(d) | d ∈ S}) = Th({γ(d′) | d′ ∈ S′}) and S′ (S, which results in at least one default in S \ S′ that
is dissatisfied (by construction of S, c.f. Definition 2(i)). As a result, there is a smaller extension E′ (E,
where E′ := Th({γ(d′) | d′ ∈ S′}), which contradicts, once again, that E is a stable extension.
“⇐=”: Assume any stable default set S. We define E := Th({γ(d) | d ∈ S}). Assume towards a contradiction
that E is not stable. Obviously, by construction of E, Γ(E) := E satisfies Definition 1(i)-(iii). It remains
to show, that, indeed there is no smaller Γ′(E) (Γ(E) which also satisfies the three conditions. Assume
towards a contradiction, that such a set Γ′(E) with Γ′(E) = Th(Γ′(E)) indeed exists. Then there is at
least one default d ∈ D, such that γ(d) ∈ Γ(E) \ Γ′(E). As a result, by construction of E, S can not be
stable default set, which yields a contradiction.

B Auxiliary Definitions of Table algorithm SPRIM

We provide formal definitions for abbreviations that are used in algorithm SPRIM, which we explained only
verbally in Section 4. We abbreviate by SMO the set {S | S ∈ S,mo ∈ S} for set S of sets. Further, we define
the abbreviation S?e for set S of sets as follows: ∅?e := {∅} and S?e :=

⋃
S∈S,S′∈(S\S)?e{S

′ ∪ {S+
e }, S′ ∪ {S}}.

11

cpyd(P, π) := {〈σ,A,B〉 | 〈σ,A,B〉 ∈ P, σ(d) 6= π} (1)

SGuessd,S(P,M) := {〈σ+
d7→π,A,M

+
mo ∪ B〉 | 〈σ,A,B〉 ∈ P, π ∈ S} (2)

SGuessd,S(P) := SGuessd,S(P, ∅) (3)

PCond(P) := {〈σ,A,ModB(γ(d))〉 | 〈σ,A,B〉 ∈ P, σ(d) = c, (4)

A = ModA(γ(d))}
CCond(C) := PCond(C) ∪ {〈ρ,AC,BCMO ∪ModBC(γ(d))〉 (5)

| 〈ρ,AC,BC〉 ∈ C, ρ(d) 6= c}
PPred(P,M) := cpyd(P, p) ∪ {〈σ,A ∪A′,B〉 | 〈σ,A,B〉 ∈ P, (6)

σ(d) = p,A′ ∈ ModM∪B∼mo
(¬α(d))}

CPred(C) := PPred(C, ∅) (7)

PJustd(P,M) := cpyd(P, j) ∪ {〈σ,A,B ∪ [ModM(β(d))]
∼
mo)〉 (8)

| 〈σ,A,B〉 ∈ P, σ(d) = j}
PGuessa(P) := {〈σ,A′,B ∪ B]a 〉 | A′ ∈ A?

a, 〈σ,A,B〉 ∈ P} (9)

SProjd(P) := {〈σ \ {d 7→ p, d 7→ j, d 7→ c},A,B〉 | 〈σ,A,B〉 ∈ P} (10)

AProja(P) := {〈σ,A∼a ,B∼a 〉 | 〈σ,A,B〉 ∈ P} (11)

M′ ./M′′ := {M ′ ∪M ′′ |M ′ ∈M′,M ′′ ∈M′′,M ′ ∩ [χt]
+
mo = (12)

M ′′ ∩ [χt]
+
mo}

B′ ./M′,M′′ B′′ := [B′ ./ (B′′ ∪M′′)] ∪ [(B′ ∪M′) ./ B′′] (13)

P ′.̂/M′,M′′P ′′ := {〈σ,AR,B′ ./M′,M′′ B′′〉 | 〈σ,A′,B′〉 ∈ P ′, (14)

〈σ,A′′,B′′〉 ∈ P ′′,AR = A′./(A′′ ∪M′′ ∪ [B′′]∼mo),

A′ ∪ A′′ ⊆ AR} ∪ {〈σ,RA,B′ ./M′,M′′ B′′〉
| 〈σ,A′,B′〉 ∈ P ′, 〈σ,A′′,B′′〉 ∈ P ′′,
RA = A′′./(A′ ∪M′ ∪ [B′]∼mo),A′ ∪ A′′ ⊆ AR} (15)

C Proof of Correctness

Before we provide more insights on the correctness of our algorithms, we require some missing auxiliary
definitions.

Bag-default parts. Consider an LTD (T, χ, δ) of the graph S(D) of a given default theory D. The
set Vars≤t := {v | v ∈ Vars(D) ∩ χ(t′), t′ ∈ post-order(T, t)} is called variables below t. Further, the bag-
default parts for prerequisite, justification, or conclusion f ∈ {α, β, γ} contain ft := {f(d) | (f, d) ∈ δ(t)}.
We naturally extend the definition of the bag-default parts to the respective default parts below t (analogously
to our definitions for default theory below t), i.e., we also use α≤t, β≤t, and γ≤t.

Further, we define mapping Γt : 2γ(D≤t) → 2γ≤t by Γt[E] := E ∩ γ≤t.

Example 7. Recall the LTD of Figure 2. Observe that Vars≤t6 = Vars(D), α≤t6 = {α(d1)} and γ≤t16 =
{γ(d1), γ(d2)}.

We employ the correctness argument using the notions of (i) partial solutions consisting of partial
extensions and the notion of (ii) local partial solutions.

12

Definition 3. Let D be a default theory, T = (T, χ, δ) be an LTD of the semi-primal graph S(D) of D,
where T = (N, ·, ·), and t ∈ N be a node. Further, let ∅ (B ⊆ 2Vars≤t∪{mo}, A ⊆ 2B

∼
mo , σ : D≤t → {p, j, c},

E ⊇ γ(Z), where Z := σ−1(c). The tuple (σ,A,B) is a partial extension under E for t if the following
conditions hold:

1. Z is a set of satisfying defaults of D<t \ [{d ∈ D<t | σ(d) = j,∃B ∈ B : B � Γt[E] ∧ β(d)}],

2. A is a set such that:

(a) |A| ≤ |σ−1(p)| − 1,

(b) ∃d ∈ D≤t : σ(d) = p, α(d) ∈ α≤t, A � Γt[γ(Z)] ∧ ¬α(d) for every A ∈ A,

(c) ∃A ∈ A : A � Γt[γ(Z)] ∧ ¬α(d)⇐= σ(d) = p for every d ∈ D≤t such that α(d) ∈ α≤t; and

3. B is the largest set such that:

(a) B � Γt[γ(Z)] for every B ∈ B,

(b) ∃d ∈ D≤t : σ(d) = j, β(d) ∈ β≤t, B � Γt[E] ∧ β(d) for every B ∈ B where mo 6∈ B.

Definition 4. Let D be a default theory, T = (T, χ, δ) where T = (N, ·, n) be an LTD of S(D), and t ∈ N
be a node. A partial solution for t is a tuple (Z,M,P, C) where Z ⊆ D≤t, and P is the largest set of tuples
such that each (σ,A,B) ∈ P is a partial extension under γ(Z) with BMO = ∅ and Z = σ−1(c). Moreover,
C is the largest set of tuples such that for each (ρ,AC,BC) ∈ C, we have that (ρ,AC,BC) is a partial
extension under γ(Z) with ρ−1(c) (σ−1(c). Finally, M⊆ 2Vars≤t is the largest set with M � Γt[γ(Z)] for
each M ∈M.

The following lemma establishes correspondence between stable default sets and partial solutions.

Lemma 2. Let D be a default theory, T = (T, χ, δ) be an LTD of the semi-primal graph S(D), where
T = (·, ·, n), and χ(n) = ∅. Then, there exists a stable default set Z ′ for D if and only if there exists a
partial solution u = (Z ′,M,P, C) for root n with at least one tuple 〈σ,A,B〉 ∈ P where B = ∅, where C is
of the following form: For each (ρ,AC,BC) ∈ C, BCMO 6= BC.

Sketch. Given a stable default set Z ′ of D we construct u = (Z ′,M,P, C) where we generate every potential
σ : D → {p, j, c} such that σ(d) = c for d ∈ Z ′ as follows. For d ∈ D \ Z ′, we are allowed to set σ(d) := p
if γ(Z ′) ∧ ¬α(d) is satisfiable and σ(d) := j if γ(Z ′) ∧ β(d) is unsatisfiable.

For each of this functions σ, we require 〈σ,A, ∅〉 ∈ P, where A ⊆ 2Vars(D) is the smallest set with
|A| ≤ |σ−1(α)| − 1 such that for all d ∈ σ−1(α) there is at least one A ∈ A with A � γ(Z ′) ∧ ¬α(d).

Moreover, we define setM := Mod2Vars(D)(
∧
d∈Z′ γ(d)), in order for u to be a partial solution for n (see

Definition 4). We construct C, consisting of partial solutions (ρ,AC,BC) where we use every potential state
function ρ with ρ−1(c) (σ−1(c). For this, let Z := ρ−1(c). For the defaults d with ρ(d) 6= c, i.e., defaults d
that are p-satisfiable or j-satisfiable, we also set their state ρ(d) to α or β, respectively (analogous to above).
Finally, we define set BC := [Mod2Vars(D)(

∧
d∈Z γ(d))

]

mo
∪ [
⋃
d:ρ(d)=j Mod2Vars(D)([

∧
d∈Z′ γ(d)] ∧ β(d))],

and AC ⊆ 2Vars(D) as the smallest set such that |AC| ≤ |ρ−1(p)| − 1 and for all d ∈ ρ−1(p), there is
at least one AC ∈ AC with AC � γ(Z) ∧ ¬α(d) according to Definition 3.

For the other direction, Definitions 3 and 4 guarantee that Z ′ is a stable extension if there exists such a
partial solution u. In consequence, the lemma holds.

Next, we require the notion of local partial solutions corresponding to the tuples obtained in Algorithm 2.

Definition 5. Let D be a default theory, T = (T, χ, δ) an LTD of the semi-primal graph S(D), where T =
(N, ·, n), and t ∈ N be a node. A tuple (σ,A,B) is a local partial solution part of partial solution (σ̂, Â, B̂)
for t if

13

1. σ = σ̂ ∩ (χ(t)× {p, j, c}),

2. A = Ât, and

3. B = B̂t, where St := {S ∩ (χ(t) ∪ {mo}) | S ∈ S}.

Definition 6. Let D be a default theory, T = (T, χ, δ) an LTD of the semi-primal graph S(D), where
T = (N, ·, n), and t ∈ N be a node. A tuple u = 〈Z,M,P, C〉 is a local partial solution for t if there
exists a partial solution û = (Ẑ,M̂, P̂, Ĉ) for t such that the following conditions hold: (1) Z = Ẑ ∩ 2Dt ,
(2) M = M̂t, (3) P is the smallest set containing local partial solution part (σ,A,B) for each (σ̂, Â, B̂) ∈ P̂,
and (4) C is the smallest set with local partial solution part (ρ,AC,BC) ∈ C for each (ρ̂, ÂC, B̂C) ∈ Ĉ.

We denote by ût the local partial solution u for t given partial solution û.

The following proposition provides justification that it suffices to store local partial solutions instead of
partial solutions for a node t ∈ N .

Lemma 3. Let D be a default theory, T = (T, χ, δ) an LTD of S(D), where T = (N, ·, n), and χ(n) = ∅.
Then, there exists a stable default set set for D if and only if there exists a local partial solution of the
form 〈∅, {∅},P, C〉 for the root n ∈ N with at least one tuple of the form 〈σ,A, ∅〉 ∈ P. Moreover, for
each 〈ρ,AC,BC〉 in C, BCMO 6= BC.

Proof. Since χ(n) = ∅, every partial solution for the root n is an extension of the local partial solution u
for the root n ∈ N according to Definition 6. By Lemma 2, we obtain that the lemma is true.

In the following, we abbreviate variables occurring in bag χ(t) by Varst, i.e., Varst := χ(t) \Dt.

Proposition 1 (Soundness). Let D be a default theory, T = (T, χ, δ) an LTD of the semi-primal graph S(D),
where T = (N, ·, ·), and t ∈ N a node. Given a local partial solution u′ of child table τ ′ (or local partial
solution u′ of table τ ′ and local partial solution u′′ of table τ ′′), each tuple u of table τt constructed using
table algorithm SPRIM is also a local partial solution.

Proof. Let u′ be a local partial solution for t′ ∈ N and u a tuple for node t ∈ N such that u was derived
from u′ using table algorithm SPRIM. Hence, node t′ is the only child of t and t is either removal or
introduce node.

Assume that t is a removal node and d ∈ Dt′ \Dt for some default d. Observe that for u = 〈Z,M,P, C〉
and u′ = 〈Z ′,M,P ′, C′〉, sets A and B are equal, i.e., 〈·,A,B〉 ∈ P ⇐⇒ 〈·,A,B〉 ∈ P ′ and 〈·,A,B〉 ∈ C ⇐⇒
〈·,A,B〉 ∈ C′. Since u′ is a local partial solution, there exists a partial solution û′ of t′, satisfying the
conditions of Definition 6. Then, û′ is also a partial solution for node t, since it satisfies all conditions of
Definitions 3 and 4. Finally, note that u = (û′)t since the projection of û′ to the bag χ(t) is u itself. In
consequence, the tuple u is a local partial solution.

For a ∈ Varst′ \Varst as well as for introduce nodes, we can analogously check the proposition.
Next, assume that t is a join node. Therefore, let u′ and u′′ be local partial solutions for t′, t′′ ∈ N ,

respectively, and u be a tuple for node t ∈ N such that u can be derived using both u′ and u′′ in
accordance with the SPRIM algorithm. Since u′ and u′′ are local partial solutions, there exists partial
solution û′ = (Ẑ ′,M̂′, P̂ ′, Ĉ′) for node t′ and partial solution û′′ = (Ẑ ′′,M̂′′, P̂ ′′, Ĉ′′) for node t′′. Using
these two partial solutions, we can construct û = (Ẑ ′ ∪ Ẑ ′′,M̂′ ./ M̂′′, P̂ ′ .̂/M̂′,M̂′′ P̂ ′′, (Ĉ′ .̂/M̂′,M̂′′ Ĉ′′) ∪
(P̂ ′ .̂/M̂′,M̂′′ Ĉ′′) ∪ (Ĉ′ .̂/M̂′,M̂′′ P̂ ′′)) where for ./ (·, ·) and .̂/(·, ·) we refer to Listing 2. Then, we check
all conditions of Definitions 3 and 4 in order to verify that û is a partial solution for t. Moreover, the
projection ût of û to the bag χ(t) is exactly u by construction and hence, u = ût is a local partial solution.

Since one can provide similar arguments for each node type, we established soundness in terms of the
statement of the proposition.

14

Proposition 2 (Completeness). Let D be a default theory, T = (T, χ, δ) where T = (N, ·, ·) be an LTD
of S(D) and t ∈ N be a node. Given a local partial solution u of table τt, either t is a leaf node, or there
exists a local partial solution u′ of child table τ ′ (or local partial solution u′ of table τ ′ and local partial
solution u′′ of table τ ′′) such that u can be constructed by u′ (or u′ and u′′, respectively) and using table
algorithm SPRIM.

Proof. Let t ∈ N be a removal node and d ∈ Dt′ \Dt with child node t′ ∈ N . We show that there exists a
tuple u′ in table τt′ for node t′ such that u can be constructed using u′ by SPRIM (Listing 2). Since u is a
local partial solution, there exists a partial solution û = (Ẑ,M̂, P̂, Ĉ) for node t, satisfying the conditions
of Definition 6. It is easy to see that û is also a partial solution for t′ and we define u′ := ût

′
, which is the

projection of û onto the bag of t′. Apparently, the tuple u′ is a local partial solution for node t′ according
to Definition 6. Then, u can be derived using SPRIM algorithm and u′. By similar arguments, we establish
the proposition for a ∈ Varst′ \Varst and the remaining node types. Hence, the propositions sustains.

Now, we are in the situation to prove Theorem 1, which states that we can decide the problem Ext by
means of Algorithm DP.

Theorem 1. Given a default theory D, the algorithm DP correctly solves Ext.

Proof. We first show soundness. Let T = (T, χ, δ) be the given LTD, where T = (N, ·, n). By Lemma 3 we
know that there is a stable default set if and only if there exists a local partial solution for the root n. Note
that the tuple is by construction of the form 〈∅, {∅},P, C〉, where P 6= ∅ can contain a combination of the
following tuples 〈∅, ∅, ∅〉, 〈∅, {∅}, ∅〉. For each 〈ρ,AC,BC〉 ∈ C, we have BCMO 6= BC. In total, this results in
16 possible tuples, since C ⊆ 2C can contain any combination (4 many) of C, where C = {〈∅, ∅, {∅, {mo}}〉,
〈∅, {∅}, {∅, {mo}}〉}. Hence, we proceed by induction starting from the leaf nodes in order to end up
with such a tuple at the root node n. In fact, the tuple 〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉 is trivially a partial solution
for (empty) leaf nodes by Definitions 3 and 4 and also a local partial solution of 〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉 by
Definition 6. We already established the induction step in Proposition 1. Hence, when we reach the root n,
when traversing the TD in post-order by Algorithm DP , we obtain only valid tuples inbetween and a tuple
of the form discussed above in the table of the root n witnesses an answer set.

Next, we establish completeness by induction starting from the root n. Let therefore, Ẑ be an arbitrary
stable default set of D. By Lemma 3, we know that for the root n there exists a local partial solution of the
discussed form 〈∅, {∅},P, C〉 for some partial solution 〈Ẑ,M̂, P̂, Ĉ〉. We already established the induction
step in Proposition 2. Hence, we obtain some (corresponding) tuples for every node t. Finally, stopping at
the leaves n. In consequence, we have shown both soundness and completeness resulting in the fact that
Theorem 1 is true.

Proposition 3 (Completeness for Enumeration). Let D be a default theory, T = (T, χ, δ) where T = (N, ·, ·)
be an LTD of S(D) and t ∈ N be a node. Given a partial solution û and the corresponding local partial
solution u = ût for table τt, either t is a leaf node, or there exists a local partial solution u′ of child table
τ ′ (or local partial solution u′ of table τ ′ and local partial solution u′′ of table τ ′′) such that u can be
constructed by u′ (or u′ and u′′, respectively) and using table algorithm SPRIM.

Idea. The correctness proof requires to extend the previous results to establish a one-to-one correspondence
when traversing the tree of the TD and such that we can reconstruct each solution as well as we do not get
duplicates. The result then follows from the proof for completeness (see Proposition 2).

Theorem 2. Given a default theory D, the algorithm DP can be used as a preprocessing step to construct
tables from which we can correctly solve the problem EnumSE. More precisely, this is solved by first running
Algorithm DP, constructing the ≺-smallest solution S, and then running Algorithm NSD≺(T ,S) on the
resulting tables of Algorithm DP until NSD≺(T ,S) returns “undefined”.

For showing the theorem, we require the following three results.

15

Listing 3: Algorithm NSD≺(T ,S) for computing the next stable default set of S.
In: TD T = (T, ·, ·) with T = (N, ·, n), solution tuples S, total ordering ≺ of orig·(·).
Out: The next solution tuples of S using ≺.

1 Tables[·] ← DP(T)
2 for iterate t in post-order(T,n) do
3 Child-Tabs := {Tables[t′] | t′ is a child of t in T}
4 t̂ := parent of t

5 S[t] ← direct successor s′ � S[t] in origt̂(S[t̂])
6 if S[t] defined then
7 for iterate t′ in Child-Tabs do
8 for iterate t′′ in pre-order(T,t’) do
9 t̂′′ := parent of t′′

10 S[t′′] ← ≺-smallest element in origt̂′′(S[t̂′′])
11 return S
12 return undefined

Observation 1. Let D be a default theory, T = (T, χ, δ) where T = (N, ·, ·) be an LTD of S(D) and t ∈ N
be a node. Then, for each partial solution u = 〈Z,M,P, C〉 for t, M,P and C are functional dependent
from Z, i.e., for any partial solution u′ = 〈Z,M′,P ′, C′〉 for t, we have u = u′.

Proof. The claim immediately follows from Definition 4.

Lemma 4. Let D be a default theory, T = (T, χ, δ) with T = (N, ·, ·) be an LTD of S(D), and Z be a
stable default set. Then, there is a unique set of tuples S, containing exactly one tuple per node t ∈ N
containing only local partial solutions of the unique partial solution for Z.

Proof. By Observation 1, given Z, we can construct one unique partial solution û = 〈Z,M,P, C〉 for n.
We then define the set S by S :=

⋃
t∈N{ût}. Assume that there is a different set S′ 6= S containing also

exactly one tuple per node t ∈ N . Then there is at least one node t ∈ N , for which the corresponding
tuples u ∈ S, u′ ∈ S′ differ (u 6= u′), since û is unique and the computation ût is defined in a deterministic,
functional way (see Definition 6). Hence, either ût 6= u or ût 6= u′, leading to the claim.

Proposition 4. Let D be a default theory, T = (T, χ, δ) with T = (N, ·, ·) be an LTD of S(D), and Z be a
stable default set. Moreover, let S be the unique set of tuples, containing exactly one tuple per node t ∈ N
and containing only local partial solutions of the unique partial solution for Z. Given S, and tables of
Algorithm SPRIM, one can compute in time O(‖D‖) a stable default set Z ′ with Z ′ 6= Z, assuming one can
get for a specific tuple u for node t its corresponding ≺-ordered predecessor tuple set origt(u) of tuples in
the child node(s) of t in constant time.

Proof. Note that with Z, it is easy to determine, which element of S belongs to which node t in T , hence,
we can construct a mapping S : N → S. With S, we can easily apply algorithm NSD, which is given in
Listing 3, in order to construct a different solution S ′ in a systematic way with linear time delay, since T is
nice.

of Theorem 2 (Sketch). First, we construct an LTD T = (T, χ, δ) with T = (N,n) for graph S(D). Then
we run our algorithm DP and get tables for each TD node. In order to enumerate all the stable default sets,
we investigate each of these tuple, which lead to a valid stable default set (see proof of Theorem 1). For
each of these tuples (if exist), we construct a first solution S, if exist, (as done in Lines 7 to 10 of Listing 3,
for the root n) using origt(·), and total order ≺. Thereby, we keep track of which tuple in S belongs to
which node, resulting in the mapping S (see proof of Proposition 4). Note that origt(·) and ≺ can easily be
provided by remembering for each tuple an ordered set of predecessor tuple sets during construction (using

16

table algorithm SPRIM). Now, we call algorithm NSD≺(T ,S) multiple times, by outputting and passing
the result again as argument, until the return value is undefined, enumerating solutions in a systematic
way. Using correctness results (by Theorem 1), and completeness result for enumeration by Proposition 3,
we obtain only valid solution sets, which directly represent stable default sets and, in particular, we do not
miss a single one. Observe, that we do not get duplicates (see Lemma 4).

D Proof of Runtime Guarantees

Theorem 3. Given a default theory D, the algorithm DP and runs in time O(22
2k+4

· ‖S(D)‖), where
k := tw(S(D)) is the treewidth of the semi-primal graph S(D).

First, we give a proposition on worst-case space requirements in tables for the nodes of our algorithm.

Proposition 5. Given a default theory D, an LTD T = (T, χ, δ) with T = (N, ·, ·) of the semi-primal

graph S(D), and a node t ∈ N . Then, there are at most 2k+1 · 22k+1 · 22·(3k+1·22k+2
) tuples in τt using

algorithm DP for width k of T .

Sketch. Let D be the given default theory, T = (T, χ, δ) an LTD of the semi-primal graph S(D), where
T = (N, ·, ·), and t ∈ N a node of the TD. Then, by definition of a decomposition of the semi-primal graph
for each node t ∈ N , we have |χ(t)| − 1 ≤ k. In consequence, we can have at most 2k+1 many witness

defaults and 22k+1

many witnesses models. Each set P may contain a set of witness proof tuples of the

form 〈σ,A,B〉, with at most 3k+1 many witness state σ mappings, 22
k+1

many backfire witness models B,

and 22
k+1

many required witnesses model sets. In the end, we need to distinguish 2k+1 · 22k+1 · 2(3k+1·22k+2
)

different witnesses of a tuple in the table τt for node t. For each witness, we can have at most 2(3
k+1·22k+2

)

many counter-witnesses per witness default, witness models, and required witness model sets. Therefore,

there are at most 2k+1 · 22k+1 · 22·(3k+1·22k+2
) tuples in table τt for node t. In consequence, we established

the proposition.

of Theorem 3. Let D be a default theory, S(D) = (V, ·) its semi-primal graph, and k be the treewidth of

S(D). Then, we can compute in time 2O(k3) · |V | an LTD of width at most k [3]. We take such a TD and
compute in linear time a nice TD [3]. Let T = (T, χ, δ) be such a pretty LTD with T = (N, ·, ·). Since the
number of nodes in N is linear in the graph size and since for every node t ∈ N the table τt is bounded

by 2k+1 · 22k+1 · 22·(3k+1·22k+2
) according to Proposition 5, we obtain a running time of O(22

2k+4

· ‖S(D)‖).
Consequently, the theorem sustains.

17

	Introduction
	Default Logic
	Dynamic Programming on TDs for Default Logic
	Computing Stable Default Sets
	Conclusion
	Equivalence of stable default sets and stable extensions
	Auxiliary Definitions of Table algorithm SPRIM
	Proof of Correctness
	Proof of Runtime Guarantees

