The nomore++ approach to answer set solving

Christian Anger, Martin Gebser, Thomas Linke, Aaditeumann, and Torsten Schaub

Institut fir Informatik, Universiat Potsdam, Postfach 90 03 27, D-14439 Potsdam

Abstract. We present a new answer set solver, catlethore++, along with its
underlying theoretical foundations. A distinguishing feature is that it treats heads
and bodies equitably as computational objects. Apart from its operational foun-
dations, we show how it improves on previous work through its new lookahead
and its computational strategy of maintaining unfounded-freeness. We underpin
our claims by selected experimental results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the early
availability of efficient solvers, likemodelg1] anddlv [2]. Since then, many other sys-
tems, sometimes following different approaches, have emerged, amongsisatf3],
cmodeld4], andnoMoR€[5].

We present a new ASP solver, calledmore++, along with its underlying theo-
retical foundationsnomore++ pursues a hybrid approach in combining features from
literal-based approaches, likenodelsanddlv, with the rule-based approach of its pre-
decessonoMoRe To this end, it treats heads and bodies of logic programs’ rules equi-
tably as computational objects. We argue that this approach allows for more effective (in
terms of search space pruning) choices than obtainable when dealing with either heads
or bodies only. As a particular consequence of this, we demonstrate that the resulting
lookahead operation allows for more effective propagation than previous approaches.
Finally, we detail a computational strategy of maintaining “unfounded-freeness”.

We empirically show that, thanks to its hybrid approactbimore++ outperforms
smodelson relevant benchmarks. In fact, we mainly compare our approach to that of
smodelsOur choice is motivated by the fact that both systems primarily address normal
logic programs. dlv and many of its distinguishing features are devised for dealing with
the more expressive class of disjunctive logic programs. Alsmdelsandnomore++
share the same concept of “choice points”, on which parts of our experiments rely upon.

The paper is organised as follows. After some preliminary definitions, we start with
a strictly operational specification nbmore++. In fact, its configurable operator-based
design is a salient feature nbmore++ We then concentrate on two specific features:
First, we introduc@nomore++s lookahead operation and prove that, in terms of propa-
gation, it is more powerful than the ones encountereshiodelsandnoMoRe Second,
we presenhomore++s strategy of keeping assignments unfounded-free. Finally, we
provide selected experimental results backing up our claims.

! Unlike smodelsnomore++cannot (yet) handle cardinality and weight constraints.

2 Background
A logic programis a finite set of rules of the form

pO<_p1a'"7pm7n0tpm+17"'an0tpn7 (1)

wheren > m > 0 and eaclp; (0 < ¢ < n) is anatomin some alphabetl. A literal
is an atony or its negationot p. Forr as in (1), lethead(r) = po be theheadof r
andbody(r) = {p1,--.,Pm, "0t Dm+1,...,not p,} be thebodyof r. Given a setX
of literals, letXT™ = {pe A|pe X} andX~ = {p € A| not p € X}. Forbody(r),
we then gebOdy(r)+ = {plv cee 7p7n} and bOdy(T‘)7 = {pm+17 cee 7pn}

A logic program/T is calledbasicif body(r)~ = () for all » € II. Thereduct IT¥,
of IT relative to a seiX of atoms is defined by

IT% = {head(r) — body(r)" | r € I, body(r)~ N X = 0}.

A set X of atoms is closed under a basic prograhif, for anyr € II, head(r) € X if
body(r)™ C X. Cn(II) denotes the smallest set of atoms closed under basic program
II. A setX of atoms is aranswer sebf a logic programiT if Cn(I1X) = X.

As an example, consider progralifi comprising rules:

r1:a < notb r3:c< notd @)
r9 : b« nota ry 1 d < notc
We get four answer sets, viga, c}, {a, d}, {b, c}, and{b, d}.

For a programiI, we write head(IT) = {head(r) | r € I} andbody(II) =
{body(r) | r € II}. We further extend this notation: Fér € head(IT), define
body(h) = {body(r) | r € II, head(r) = h}.

Without loss of generality, we restrict ourselves to progrdisatisfying{p | r €
I, p € body(r)" Ubody(r)~} C head(IT). That is, every body atom must occur as the
head of some rule. Any prografd can be transformed into such a format, exploiting
the fact that no atom iQA \ head(IT)) is contained in any answer set Gf.

3 Operational specification

We provide in this section a detailed operational specificatiamoofiore++ The firm
understanding ohomore++s propagation mechanisms serves as a basis for formal
comparisons with techniques used $iodel=or dlv. We indicate how the operations
applied bynomore++ are related to well-known propagation principles, in particular,
showing that our basic propagation operations are as powerful as thesedélqcf.
Theorem 1). Beyond this, the hybrid approachhnofmore++ allows for more flexible
choices, in particular, leading to a more powerful lookahead, as we detail in Section 4.
We consider assignments that map heads and bodies of a prégiato {®, ©},
indicating whether a head or body is true or false, respectively. Such assignments are
extended in comparison to those used in literal-based solvers, ssofoaglsanddly,
or rule-based solvers, such asMoRe Formally, a (partial) assignment is a partial

mappingA : head(IT) U body(II) — {@®, ©}. For simplicity, we often represent such
an assignmentl as a paif A%, A°), whereA® = {z | A(z) = &} andA° = {z |
A(z) = ©}. Wheneverd® N A® # (), then A is undefined as it is no mapping. We
represent an undefined assignmentiyud (I1)U body (II), head (IT) U body(IT)). For
comparing assignmentsandB, we defined C B, if A® C B® andA® C B°. Also,
we defined LI B as(A® U B, A° U B®).

Forward propagation imomore++ can be divided into two sorts. Head-oriented
propagation assigns to a head if one of its associated bodies belong&toit assigns
© whenever all of a head's bodies are 4¥. This kind of propagation is captured
by setsT;;(A) andT ;7 (A) in Definition 1. Body-oriented propagation is based on the
concepts osupportandblockage A body issupportedf all its positive literals belong
to A9, it is unsupportedf one of its positive literals is iM®. This is reflected by sets
S(A) andS 7 (A) below. Analogously, but with roles partly interchanged, $&t5 A)
andB;(A) define whether a body Islockedor unblockedrespectively.

Definition 1. LetII be alogic program and letl be a partial assignment éfead (1)U
body(IT). We define

1. T (A) = {h € head(II) | body(h) N A® £ 0};
2. T11(A) = {h € head(II) | body(h) C A®};
3. Si(A) = {b € body(IT) | b+ C A®);

4. Sr(A) = {b e body(I]) | b+ N A® # 0};
5. Brr(A) = {b € body(IT) | b= N A® # 0}

6. Brr(A) = {b e body(Il) | b= C A®}.

We omit the subscripfl whenever it is clear from the context. In what follows, we also
adopt this convention for similar concepts without further notice.
Based on the above sets, we define forward propagation opéraeifollows.

Definition 2. LetII be alogic program and lefl be a partial assignment éfead (17)U
body(IT). We define

Pr(A) = A U(T(A) U (S(A) N B(A)), T(A) US(A) U B(A)) .

A head is assigned if it belongs toT'(A); a body must be supported as well as un-
blocked, namely, belong t6(A) N B(A). Conversely, a body is assignedwhenever
it is unsupported or blocked, i.e. B{A) U B(A); a head must be i (A).

For example, let us appl to Ay = ({body(r1)},) on I1;:

P(Ao) = A1 = ({a, body(r1)},0) by T'(Ay)
P(A1) = A2 = ({a, body(r1)}, {body(r2)}) by B(A:1)
P(Az2) = Az = ({a, body(r1)}, {b, body(r2)}) by T(A2)

Note thatAj; is closed undeP, that is,P(A3) = As.
For describing the saturated result of operators’ application, we need the following
definition. LetO be a collection (possibly a singleton) of operators andllbe a partial

2 We systematically use over-lining for indicating sets with antonymous contents.

assignment. Then, we denote®y (A) theC-smallest partial assignment containiAg

and being closed under all operator€Inin the above example, we get (4p) = As.
Backward propagation can be viewed as an inversioR.dfor example, consider

the definition of7'(A) and supposé € head(II) N A® whereashody(h) N A® = 0,

that is, no body of any rule with heddhas been assigned so far. Hencep is not

“produced” byT(A). Yet there must be some bodyc body(h) that is eventually

assignedp, otherwiseh cannot be true. However, this body can only be determined if all

other bodies are already i°. This leads us to the definition @, (A).2 Analogously,

we can derive the following sefs.

Definition 3. LetII be alogic program and letl be a partial assignment éfead (17)U
body(IT). We define

1. T2 (A) = {b| b € body(h),h € head(IT) N A®, body(h) \ {b} C A®};
2. Ty (A) = {b| b € body(h), h € head(II) N A®Y};

3. S?Y(A) ={h|hebt,be body(Il)N A®};

4.5, (A) = {h| h € b+, b e body(IT) N A® N B(A), b+ \ {h} C A®Y};
5. B?Y(Yy={h|heb,be body(IT)N A° N S(A), b=\ {h} C A°};
6. B)(A) = {h| h e b~,b € body(I]) N A®}.

Combining the above sets yields backward propagation opdfator

Definition 4. LetII be alogic program and lefl be a partial assignment éfead (17)U
body(IT). We define

Bir(A) = A U (T°(A) U S*(A) U B°(A), T°(A) US (A) UBP(A)) .

Adding the ruleb — ¢ to programlT; still givesP(As) = As. Due to the fact that
b€ AT, iterated application oB additionally yields:

B(A3)= Ay =AU (0,{{c}}) by T"(As)
B(Ag)= A; =A3U(0,{{c},c}) by S°(A4)
B(As) = As = AsU(0,{{c},c, body(rs)}) by T°(As)
B(As) = A7 = AsuU({d}, {{c},c, body(rs)}) by B°(As)
B(A7) = B*(A3) = Az U ({d, body(r4)}, {{c}, ¢, body(rs)}) by T°(Az7)

The next definition elucidates the notion of an unfounded set [6] in our context.
Given an assignmend, the greatest unfounded sef heads and bodieg/;(A), is
defined in terms of the still potentially derivable atomgip (A).

Definition 5. LetII be alogic program and letl be a partial assignment éfead (17)U
body(IT). We define

Un(A) = {b € body(II) | b* € U (A)} U{h € head(II) | h ¢ Unr(A)}
where Uz (A) = Cn((IT \ {r € IT | body(r) € A9})?).

3 We use the superscripto indicate sets used in backward propagation.
4 The relation betweef andB will be detailed in the full paper.

The setU(A) of potentially derivable atoms is formed by removing all rules whose
bodies belong tod®. The resulting subprogram is reduced with respect to the empty
set so that we can compute its (potential) consequences by means(@f thgerator,
as defined for basic programs in Section 2.

The following operatot/ falsifies all elements in a greatest unfounded set.

Definition 6. LetII be alogic program and letl be a partial assignment éfead (17)U
body(IT). We define
U (A) =AU (D, UA)) .

Consider progranil,, obtained from/Z, by adding rules
rs:e<« nota,notc, rg:e« f,notb, 1r;:f—e, 3)

and assignmentt = (0, {body(rs)}).> We then havdl(A) = Cn((ITz \ {r5})?) =
Cn({a —, b —, c—,d—, e —f f—e}) ={ab,cd}, and thus we obtain
U(A) = (0,{body(rs), e, body(rs), f, body(r7)}). As we detail in the full paper, the
assignmentPU)*((#,?)) amounts to a program’s well-founded semantics [6].

Let us compare the introduced operators to propagatismiodelswhich is based
on two functions, calledtleastand atmost Functionatleastcomputes deterministic
consequences by forward and backward propagation, Furatinostis the counter-
part of U (A) and amounts t@n (11 \ {r | body(r)" N AS # (})A®Nhead(D)) n [1],
smodelsassignments are represented as sets of literals. Although we refrain from giv-
ing a formal definition, we however mention tretteastbounds the set of true literals
from “below” and thatatmostbounds the set of true atoms from “above”.

Theorem 1. Let IT be a logic program. LetX be a partial assignment dfead (I7)
and let A be a partial assignment ofiead(I1) U body(II) such that(A®, A®) =
(X*,X7).5 Then, we have the following results.

1. LetY = atleast(II, X) and B = (PB)*(A).
fYtNY- =0andB® N B® =, then(Y*,Y~) = (B® N head(II), B® N
head(II)); otherwise,Y * NY~ # @ and B® N B® # ().

2. LetY = X U (0, head(II) \ atmost(II, X)) and B = U(P(A)).
fY*NY- =0andB® N B® =0, then(Y*,Y ™) = (B® N head(II), B® N
head(IT)); otherwise,Y ™ NY~ #) and BY N B® £ ().

The above results show thadmore++s basic propagation operatiofts 13, andl{ are
as powerful as those simodelsThe reason wh is applied once ir2. is that initially
A assigns no values to bodies in order to be comparaldmtmelsassignmentX.
Concluding with basic propagation, we mention tRatorresponds to Fitting’s op-
erator [7],(PB) coincides to unit propagation on a program’s completion (8%/)
amounts to propagation via well-founded semantics [6], @#l/) matchesmodels
propagation, that is, well-founded semantics enhanced by backward propagation.

® The situation that a body is iA® without belonging ta5(A)UB(A) is common imomore++,
as bodies can be taken as choices.
5 Note that(A® N body(IT), A® N body(I1)) = (,0).

The first differences to well-known approaches are encountered at choisazodh
elsanddlv, choices are restricted to head®MoRechooses on rules (comparable to
bodies) only. Unlike thisnomore++ generally allows for choosing to assign values to
heads as well as bodies, and we definenore++s choice operatof as follows.

Definition 7. Let IT be a logic program, letd be a partial assignment dfead (IT) U
body(IT), and letX C head(II) U body(IT). We define

1. CZ?(A,X) = (AP U {z},A%) forsomer € X \ (4% U A®);
2. Cq(A,X) = (A%, A° U {z}) for somer € X \ (A% U 4°).

The setX delineates the set of possible choices. In general, the chosen objedf
can be any unassigned head or body.

The possibility of choosing among heads and bodies provides us with great flexibil-
ity. Notably, some choices have a higher information gain than others. On the one hand,
setting a head te yields more information than choosing some body tachéNegat-
ing some head by © implies that all bodies ibody(h) are false (viaB). Conversely,
choosing a body to be has generally no direct effect on the body’s heads because there
may be alternative rules (i.e. other bodies) sharing the same heads. Also, we normally
gain no information on the constituent literals of the body. On the other hand, assigning
@ to bodies is superior to assigniagto heads. When we choosefor a body, we infer
that its heads must be assignedas well (viaP). Moreover, assignings to a body
b implies that every literal irb is true (viaB). Unlike this, choosings for some head
does generally not allow to determine a corresponding body that justifies this choice
and would then be assigneg too. The observation that assigniagto heads and
to bodies, respectively, subsumes the opposite assignments also fodifiese++s
lookahead strategy, detailed in Section 4.

Following [9], we characterise the process of answer set formation by a sequence
of assignments.

Theorem 2. Let IT be a logic program, letA be a total assignment dfead (II) U
body(II), and letX = head(II)U body(II). Then,A® N head(IT) is an answer set of
II iff there exists a sequenc¢d’)o<;<,, of assignments with the following properties:

1. A = (PBU)*((0,0));
2. A = (PBU)*(C°(A%, X)) for someo € {®,0} and0 < i < n;
3. A" = A.

The intersectionA® N head(IT) accomplishes a projection to heads and thus to the
atoms forming an answer set. Many different strategies can be shown to be sound and
complete. For instance, the above result still holds after elimin&ingor simplicity,
we refer to these strategies (B BU)*C or (PU)*C, respectively. We also drop super-
scripts® and® from C when referring to either case.) As with computational strategies,
alternative choices, expressed Ky are possible. For example, Theorem 2 also holds
for X = head(IT) or X = body(II), respectively, mimicking a literal-based approach
such asmodelsone or a rule-based approach as the oneadloRe A further restric-
tion of choices is discussed in Section 5.

Although we cannot provide the details here, it is noteworthy to mention that al-
lowing X = head(II) U body(II) as choices leads to an exponentially stronger proof

system (in terms of proof complexity [10], i.e. minimal proofs for unsatisfiability) in
comparison to eitheX = head(IT) or X = body(IT). The comparison between dif-
ferent proof systems and proof complexity results will be key issues in the full paper.

4 Lookahead

We have seen thatomore++s basic propagation is as powerful as thasofodelsAn

effective way of strengthening propagation is to lesekahead Apart from specifying

nomore++s lookahead, we demonstrate below thatyarid lookahead strategy, incor-

porating heads and bodies, allows for stronger propagation theawif@m one using

only either heads or bodies. Uniform lookahead is for instance ussthauelon lit-

erals and imoMoReon rules (comparable to bodies). However, we do not want to put

more computational effort into hybrid lookahead than needed in the uniform case. The

solution is simple: Assigning to heads aneb to bodies within lookahead is, in combi-

nation with propagation, powerful enough to compensate for the omitted assignments.
First of all, we operationally define our lookahead oper#tas follows.

Definition 8. LetII be alogic program and letl be a partial assignment éfead (17)U
body(IT). Furthermore, letD be a collection of operators.
For z € (head(II) U body(II)) \ (A® U A®), we define:

(204, 2) {(A@,Ae u{z}) if O*((A® U{z}, A®)) is undefined
I » X A

otherwise
(9014,) = (A® U {z}, A°) if O*((A®, A° U{zx})) is undefined
uy =14 otherwise

For X C head(II) U body(IT), we define:

LA X) = Lzex\(asuae) (7 (A)
L7(AX) = Uyexyavuaey £ (A, @)
LA, X)=LSC(A,X)ULGO (A, X)

Observe that, according to the above definition, elementary lookahead only be
applied to an unassigned head or badyror such an, ¢ tests whether assigning and
propagating a value leads to a conflict. If so, the opposite value is assigned. We stipulate
x to be unassigned because the intended purpose of lookahead is gaining information
from imminent conflicts when basic propagation is stuck, hence the name “lookahead”.
Our lookahead operatdf can be parametrised in several ways. First, one can decide
on asetX C head(II) U body(IT) to apply{ to. Second, eithe®, ©, or both of them,
one after the other, can be temporarily assigned and propagated. Third, the collection
O determines the propagation operators to be applied inside lookahead, which can be

" Note that we consider lookahead primarily as a propagation operation, s@hasandif.
Supplementary, lookahead is often also used for gathering heuristic values for the selection of
choices. As witrsmodelsanddlv, this information is exploited bomore++as well.

different from the ones used outside lookahead. The general definition allows us to
describe and to compare different variants of lookahead.

In what follows, we detaihomore++s hybrid lookahead on heads and bodies and
show that it is strictly stronger than uniform lookahead on only either heads or bodies,
without being computationally more expensive. To start with, observefulidtybrid
lookahead byC® (A, head(IT) U body(IT)) is the most powerful lookahead operation
with respect to somé. That is, anything inferred by a restricted lookahead is also
inferred by full hybrid lookahead. Given that full hybrid lookahead has to temporarily
assign both valuesp and©, to each unassigned head and body, it is also the com-
putationally most expensive lookahead operation. In the worst case, there might be
2 x (|head (IT)| + |body(IT)|) applications of without inferring anything.

The high computational cost of full hybrid lookahead is the reasonmamyore++
applies arestricted hybrid lookahead. Despite the restrictiommmore++s hybrid
lookahead does not sacrifice propagational strength and is in combination with prop-
agation as powerful as full hybrid lookahead (8eé&n Theorem 3 below). The obser-
vations made on choices in the previous section provide an explanation on how a more
powerful hybrid lookahead operation can be obtained without reasonably increasing the
computational cost in comparison to uniform lookahead on only either heads or bodies:
Assigninge to a head subsumes assignido one of its bodies, assignirgto a body
subsumes assigning to one of its heads. That is wmomore++s hybrid lookahead
appliest©-© to heads and®:© to bodies only. Provided th& belongs ta® and that
all operators inD are monotonic (like, for instanc®,, B, andi{), nomore++s hybrid
lookahead has the same propagational strength as full hybrid lookahead.

Theorem 3. Let IT be a logic program. Le be a partial assignment dfead (1) U
body(IT) and let

B =P(LYC(A, body(IT))) U LZC (A, head(IT)) .
Then, for every collectio® of C-monotonic operators such th& € O, we have

1. £LO(A, head(II)) C B;
2. LO(A, body(IT)) C P(B);
3. LO(A, head(IT) U body(IT)) C P(B).

Fact3. states thahomore++s lookahead is, in combination with propagation, as pow-
erful as full hybrid lookahead. Facfis and 2. constitute that it is always at least as
powerful as any kind of uniform lookahead. Thereby, conditiore O stipulates that
propagation (within lookahead) must be at least as powerful as Fitting’s operator. Un-
like this, the occurrences & in B, 2., and3. are only of formal nature and needed for
synchronising heads and bodies. In practise, lookahead is interleave® &itlgway,
since it is integrated into propagation, vi2ZBU/ L)*. More importantlynomore++s
restricted hybrid lookahead, assigniago heads aneb to bodies only, faces approxi-
mately the same computational efforts as encountered in the uniform case and not more
than the most consuming uniform lookahead, sieenin{|head (IT)|, |body(II)|} <

|head (IT)| + |body(IT)| < 2 * max{|head (IT)|,|body(II)|}.B

8 For both, heads and bodies, we hakead (IT)| < |II| and|body(IT)| < |II|, respectively.
In uniform cases, factor 2 accounts for assigrioghvalues,® ando, one after the other.

ro:x < notzx
71X« ai,b; o ay < not by r3 : b1 <— not a1
n o __
Hb —_—
T3n_2 : T < Un, by T3pn_1 : Qn < not by Tsn @ bp < not an
70X <= Cl,...,Cp,n0t T
r1C1 — a1 ro i1 +— b1 r3 :ay < not by r4 1 b1 <— not a1
n __
Hh _—
Tan—3:Cp ¢ Qn Tan_2:Cn < bn Tun_1:Qn ¢ N0t by Tun:bn < notan

Fig. 1. Lookahead program&;' andI; for somen > 0.

Finally, let us demonstrate thadmore++s hybrid lookahead is in fastrictly more
powerful than uniform ones. Consider Programg@ and I}, given in Figure 1. Both
programs have, due to rulg in the respective program, no answer sets and are thus
unsatisfiable. For Prograii;', this can be found out by assignirgto bodies of the
form {a;,b;} (1 < ¢ < n) and by backward propagation vi& With ProgramII}’,
assignings to an aton; (1 < ¢ < n) leads to a conflict by backward propagation via
B. Provided thai3 belongs to® in £ ° body-based lookahead detects the unsatisfi-
ability of I1;*, and head-based lookahead does the sam#& forHence nomore++s
hybrid lookahead detects the unsatisfiability of both programs without any choices be-
ing made. Unlike this, detecting the unsatisfiability/éf with head-based lookahead
and choices restricted to headspdelsstrategy) requires exponentially many choices
in n. The same holds faof7}* with body-based lookahead and choices restricted to bod-
ies hoMoReés strategy). Respective benchmark results are provided in Section 6.

5 Maintaining unfounded-freeness

A characteristic feature, distinguishing logic programming from propositional logic, is
that true atoms must be derived via the rules of a logic program. For problems that
involve reasoning, e.g. Hamiltonian cycles, this allows for more elegant and compact
encodings in logic programming than in propositional logic. Such logic programming
encodings produceon-tightprograms [11, 12], for which there is a mismatch between
answer sets and the models of programs’ completions [8]. The mismatch is due to the
potential of circular support among atoms. Such circularity is prohibited by the answer
set semantics, but not by the semantics of propositional logic. The necessity of support-
ing true atoms non-circularly is reflected by propagation opetétorSection 3.

We detail in this section how our extended concept of an assignment, incorporating
bodies in addition to heads, can be used for avoiding that atoms assigassl sub-
sequently detected to be unfounded. (Note that such a situation results in a conflict.)
More formally, our goal is to avoid that atoms belonging4® in an assignment

1f B ¢ O, neither variant of lookahead detects unsatisfiability without making choices.

are contained it/ (B) for some extensio® of A, i.e. A C B. We therefore devise a
computational strategy that is based on a modified choice operator, largely preventing
conflicts due to true atoms becoming unfounded as a result of some later step. Finally,
we point out how our computational strategy facilitates the implementation of operator
U and which measures must be taken in the implementation of opetatond L.

Let us first reconsider prograii, in (2) and (3) for illustrating the problem of true
atoms participating in an unfounded set. Assume that the colle@@8i/) of operators
is used for propagation and that we start with = (PBU)*((0,0)) = (0,0). Let our
first choice be applying® to atome. We obtain

Ay = (PBU)"(({e},0)) = ({e, f, body(r7)}, D).

At this point, we cannot determine a rule for deriving the true atoisince we have
two possibilitiesys andrg. Let us applyC® to atomd next. We obtain

Az = (PBU)" (A U ({d},0)) = Ar U ({d, body(ra)}, {c, body(r3)}).

Still we do not know whether to use or r¢ for derivinge. Our next choice is applying
C® to atoma, and propagation vigPB) yields

Ay = (PB)* (A2 U ({a},0))
= Ao U ({a, body(r1), body(re) }, {b, body(rs), body(rs)}).

We haveU(A4%) = {b,c,e, f, body(re), body(r7)}, andU(A,) yields a conflict on
atomse and f and on bodie$ody(r¢) andbody(r7).

The reason for such a conflict is applying choice operéfoto a head or a body
lacking an established non-circular support. Consider a hehédt is inA®, but not in
T(A), that is,h has not been derived by a rule yet. Supposing thiatnot unfounded
with respecttad, i.e.h ¢ U(A), some of the bodies ibody (h) might still be assigned
& in the ongoing computation. As a consequence, all bodies potentially providing a
non-circular support foh might be contained iBB° for some extensio® of A, that
is, A C B. For such an assignmenBt, we then havé, € U(B), and propagation vi&
leads to a conflict. Similarly, a bodythat is inA® but not supported with respectiq
i.e.b & S(A), can be unfounded in an assignméhsuch thatd C B, as some positive
literal in b might be contained i/ (B).

Conflicts due top-assigned heads and bodies becoming unfounded cannot occur
when non-circular support is already established. That is, every hea imust be
derived by a body that is idl®, too. Similarly, the positive paitt of a bodyb in A®
must be derived by other bodiest¥. This leads us to the following definition.

Definition 9. Let IT be a logic program and le#l be an assignment dfead(II) U
body(IT). We defined as unfounded-free, if

(head(IT) N A®) U (Upe poay(mynas b)) € Cn({r € IT | body(r) € A®}7) .

Heads and bodies in the positive patf), of an unfounded-free assignmefhtan-
not be unfounded with respect to any extensior of

Theorem 4. Let IT be a logic program and lefl be an unfounded-free assignment of
head(II) U body(II). Then, A® NU(B) = @ for any assignmenB such thatd C B.

Unfounded-freeness is maintained by forward propagation opefatoilhat
is, when applied to an unfounded-free assignment, opefat@roduces again an
unfounded-free assignment.

Theorem 5. Let IT be a logic program and lefl be an unfounded-free assignment of
head(IT) U body(IT). If P(A) is defined, theP(A) is unfounded-free.

For illustrating the above result, reconsidés in (2) and (3) and assignment =
({body(rs5)},0). A is unfounded-free becausedy(rs)* = 0 C Cn({e «}) = {e}.
We obtainP*(A) = ({body(rs), e, body(rz), f},0), which is again unfounded-free,
since{e, f} U body(rs)* U body(r7)" = {e, f} € Cn({e —, f — e}) = {e, f}.

In order to guarantee unfounded-freeness for choice opéfatahe setX of heads
and bodies to choose from has to be restricted appropriately. To thisxemdyre++
provides the following instance &%

Definition 10. Let I be a logic program and letA be a partial assignment of
head(IT) U body(IT). We define

1. D (A) = C (A, (body(IT) N1 S(A)));
2. Dy (A) = C5 (A, (body(IT) N S(A))).

OperatorD differs from C in restricting its choices to supported bodies. This still
guarantees completeness, as an assignaehat is closed undefPBU) is total if
(body(IT) N S(A)) \ (A® U A®) = (.10

Like P, operatorD maintains unfounded-freeness.

Theorem 6. Let IT be a logic program and letl be an unfounded-free partial assign-
ment ofhead (IT) U body(IT) such that(body(I1) N S(A)) \ (A® U A°) # (. Then,
D°(A) is unfounded-free fos € {®, ©}.

Note that there is no choice operator liRefor heads. A head having a true body,
i.e.body(h)NA® £ (), is already decided through. Thus,i cannot be assigned and
is no reasonable choice. On the other hand, if we concentrate on heads having a body
that is supported but not already decided, i.e. there is a baglybody(h) N S(A)) \
(B(A) U B(A)), such ab can still be assigned in some later step. That is, a head
chosen to be true can still become unfounded later on.

Unlike P andD, backward propagatiofi and lookahead can generally not main-
tain unfounded-freeness, as they assigfor other reasons than support. That is why
we introduce at the implementation levelaak counterpart ofp, denoted byw.'t
Value ® indicates that some head or body, for which non-circular support is not yet es-
tablished, must eventually be assigredin the implementation, onl? andD assign

10 Note that any body whose literals are true isdifi due toP. All other bodies either contain a
false literal and are itl® due toP, or they positively depend on unfounded atomg/ifA)
and are inA® due tol/.

1 Similar todIv's must-be-trug13]; see Section 7.

@, while operators3, C, and£ can only assigm® (or ©).* Any head or body inA®

can be turned intes by P without causing a conflict. So, by distinguishing two types

of “true”, we guarantee unfounded-freeness fordhassigned part of an assignment.
Maintaining unfounded-freeness allows for a lazy implementation of opetator

Thatis, the scope df (A) (cf. Definition 5) can be restricted td.ead (IT) Ubody (IT))\

(A®U A®), taking the non-circular support gf® for granted. In other words, the com-

putation ofU(A) is restricted to heads and bodies being either unassigned or assigned

®. Beside the fact thaD can assigne andC only ®, usingD instead ofC helps in

avoiding that true atoms lead to a conflict by participating in an unfounded set. This can

be crucial for efficiently computing answer sets of non-tight programs, as the bench-

mark results in the next section demonstrate.

6 System design and experimental results

nomore++ is implemented in C++ and usdégarse as parser. A salient feature of
nomore++ is that it facilitates the use of different sets of operators. For instance, if
called with command line option-“choice-op C --lookahead-op PB "t
uses operatof for choices andPB) for propagation within lookahead. The default
strategy ofnomore++is applying (PBUL) for propagation, where lookahead iy
works as detailed in Section 4, afdas choice operator. By defaul?BL{) is used for
propagation within lookahead. The system is freely available at [14].

Due to space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features efomore++ A complete evaluation, including further
ASP solvers, e.gassatandcmodelscan be found at the ASP benchmarking site [15].
All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. As in the context
of [15], a memory limit of 256MB as well as a time limit of 900s have been enforced.
All results are given in terms of number of choices and seconds (in parentheses), re-
flecting the average of 10 runs.

Let us note that, due to the fairly early development stateashore++, its base
speed is still inferior to more mature ASP solvers, lgmodelsor div. This can for
instance be seen in the results of the “Same Generation” benchmark, svhedels
outperformsiomore++roughly by a factor of two (cf. [15]}2 Despite this, the selected
experiments demonstrate the computational value of crucial featuresyafre++and
provide an indication of the prospect of the overall approach.

In all test series, we rarmsmodelswith its (head-based) lookahead awdl.

For a complement, we also give tests foomore++ with body-based looka-
head £(PBU) (A, body(IT)) for an assignmentd and a programil, abridged.y,.
The tests withnomore++s hybrid lookahead rely onC®(FPBU (A body(IT)) U
L PBU) (A head(IT)), abbreviated by, .

For illustrating the effect of maintaining unfounded-freeness, Table 1 shows results
obtained on Hamiltonian cycle problems on complete graphsmitbdes {C,,), both

12 please note th&® retains® when propagating fror®. Also, a bodyb cannot be chosen b9
if someh € b isin A®.

13 Other apt benchmarks are “Factoring” and “Schur Numbers” (cf. [15]); in both carpesiels
still outperformsnomore++by an order of magnitude.

div smodels | nomore++| nomore++ div smodels nomore++ nomore++

HC, (PBV Ly)* D|(PBV Ly,)* D (PBV Ly)*D (PBV Ly)* D
3 [(0.00 1 (0.00) 1 (0.00) 1 (0.00) (0.00) 1 (0.00) 1 (0.00) 1 (0.00)
4 ((0.00 2(0.01) 2(0.01) 2 (0.00) (0.00) 5 (0.00) 5 (0.00) 5 (0.00)
5 [(0.00; 3(0.00) 3(0.00) 3(0.01) (0.01) 26 (0.00) 23(0.02) 23(0.02)
6 [(0.01 4(0.01) 4(0.01) 4(0.01) (0.02) 305 (0.02) 119 (0.11) 119 (0.11)
7 |(0.01 3(0.01) 5(0.02) 5(0.02) (0.14) 4,814 (0.38) 719 (0.83) 719 (0.85)
8 |(0.01 8 (0.00) 6 (0.03) 6 (0.03) (1.06) | 86,364 (7.29) 5,039 (7.40) 5,039 (7.60)
9 |(0.02 48 (0.01) 7 (0.05) 7 (0.05) (10.02)(1,864,470(177.91)40,319 (73.94)| 40,319 (76.09)
10 ((0.03) 1,107 (0.18) | 8(0.08) 8(0.08) [|(109.21 n/a 362,879 (818.73362,879 (842.57)
11 [(0.03) 18,118 (2.88)] 9 (0.13) 9 (0.12) n/a n/a n/a n/a
12 {(0.05)398,306 (65.29) 10 (0.19) | 10 (0.20) n/a n/a n/a n/a
13 [(0.06 n/a 11(0.29) | 11(0.30) n/a n/a n/a n/a

Table 1. Experiments forHH C,, computing (a) one answer set; (b) all answer sets

div smodels nomore++| nomore++ dlv [smodels nomore++ nomore++
Hz:l (PBV Ly)* D|(PBV Ly,)* D H}? (PBVLy)*D (PBV Ly)* D
0 | (0.04) 0 (0.00) 0(0.01) 0(0.01) 0 | (0.07) [0 (0.01 0 (0.01) 0(0.01)
2 | (0.04) 0 (0.00) 0 (0.01) 0 (0.01) 2 | (0.04) |0 (0.01 0 (0.01) 0 (0.01)
4 | (0.04) 3(0.00) 0(0.01) 0(0.01) 4 | (0.04) [0 (0.01 3(0.01) 0 (0.01)
6 | (0.04) 15 (0.00) 0(0.01) 0(0.01) 6 | (0.04) |0 (0.01 15 (0.01) 0(0.01)
8 | (0.05) 63 (0.00) 0(0.01) 0(0.01) 8 | (0.05) |0 (0.01 63 (0.01) 0(0.01)
10| (0.06) 255 (0.00) 0(0.01) 0 (0.01) 10| (0.06) |0 (0.01 255 (0.03) 0(0.01)

12| (0.10)| 1,023 (0.01) | 0(0.01) | 0(0.01) | 12| (0.10)|0(0.01] 1,023 (0.09) | 0 (0.02)
14| (0.26) | 4,005(0.03) | 0(0.02) | 0(0.02) |[14| (0.29)|0(0.01] 4,095(0.33) | 0(0.02)
16| (0.93)| 16,383 (0.11) | 0(0.02) | 0(0.02) || 16 (1.06)|0(0.01] 16,383 (L.27) | 0(0.02)
18| (3.60) | 65,535(0.43) | 0(0.03) | 0(0.02) || 18| (4.14)|0(0.01] 65,535 (5.04) | 0(0.02)
20| (14.46)] 262,143 (1.71) | 0(0.03) | 0(0.03) || 20| (16.61)[0(0.01) 262,143 (20.37)] 0(0.02)
22[(57.91)] 1,048,575 (6.92)] 0(0.03) | 0(0.03) || 22 (66.80)[0 (0.01) 1,048,575 (81.24) 0 (0.03)
24((233.44) 4,194,303 (27.70] 0(0.03) | 0(0.03) || 24|(270.43)0 (0.01)4,194,303 (322.73) 0(0.03)

26| nla [16,777,215 (111.42) 0 (0.03) 0(0.03) [[26] n/a [0(0.01 n/a 0 (0.04)
28| n/a 67,108,863 (449.44) 0 (0.04) 0(0.04) [[28] n/a [0(0.01 n/a 0(0.04)
30| n/a n/a 0 (0.04) 0(0.04) 30| n/a [0(0.01 n/a 0 (0.04)

Table 2.Results for (a)1;'; (b) II};

for the first and for all answer sets. Whilemore++does not make any wrong choices
leading to a linear performance in Table 1(sfnodelsneeds an exponential number
of choices, even for finding the first answer set. The usage of choice op&ransf
forces that rules are chained in the appropriate way for solki6lg programs. We note
that, onHC;,, programsglv performs even better regarding time (cf. [15]); the different
concept of “choice points” makesmore++anddlv incomparable in this respect.

The results in Table 2, obtained on prograiig and I}’ from Figure 1, aim at
supportingnomore++s hybrid lookahead. We see that a hybrid approach is superior
to both kinds of uniform lookaheadmodelsemploys a head-based lookahead, lead-
ing to a good performance on programg’, yet a bad one odI;'. The converse
is true when restrictingnomore++to lookahead on bodies only (command line op-
tion “--body-lookahead "). nomore++ with hybrid lookahead performs optimal
regarding choice points on both types of programs. Also, a comparison of the two
nomore++ variants shows that hybrid lookahead does not introduce a computational
overhead. Note thatlv performs similar to the worst approach on béfft and /1.

7 Discussion

We have presented a new ASP solver, along with its underlying theory, design and
some experimental results. Its distinguishing features are (i) the extended concept of
an assignment, including bodies in addition to atoms, (ii) the more powerful looka-
head operation, and (iii) the computational strategy of maintaining unfounded-freeness.
We draw from previous work on theoMoResystem [5], whose approach to answer
set computation is based on “colouring” the rule dependency graph (RDG) of a pro-
gram.noMoRepursues a rule-based approach, which amounts to restricting the domain
of assignments tdody(IT). The functionality ofnoMoRehas been described in [9]
by graph-theoretical operators similar B U/, C, andD. nomore++s operators for
backward propagatior3) and lookaheadq) were presented here for the first tirffe.
In general, operator-based specifications facilitate formal comparisons between tech-
niques used by different ASP solvers. Operators capturing propagatiwane given
in [18]. Pruning operators based on Fitting’s [7] and well-founded semantics [6] are
investigated in [19]. The full paper contains a detailed comparison of these operators.
smodelq1] and dlv [2] pursue a literal-based approach, which boils down to re-
stricting the domain of assignmentstead (I7). However, in both systems, propaga-
tion keeps track of the state of rules, which bears more redundancy than using®5odies.
nomore++s strategy of maintaining unfounded-freeness is closely related to some con-
cepts used idlv, but still different. In fact, the term “unfounded-free” is borrowed from
[20], where it is used for assessing the complexity of unfounded set checks and charac-
terising answer sets in the context of disjunctive logic programs. We, however, address
assignments in which the non-circular support of true atoms is guaranteeddiise;
lects its choices among so-callpdssibly-true literal413], corresponding to a literal-
based version of choice operafr But, as discussed in Section 5, unfounded-freeness
in our context cannot be achieved by choosing atoms to be true.

We conclude with outlining some subjects to future development and research. First,
the low-level implementation ofiomore++ will be improved further in order to be
closer to more mature ASP solvers, suctsamdelsanddlv. Second, aggregates, like
smodels cardinality and weight constraints, will be supported in future versions of
nomore++, in order to enable more compact problem encodings. Finally, we detail in
the full paper that restricting choices to either heads or bodies leads to exponentially
worse proof complexity. Although choice operai@iis valuable for handling non-tight
programs, it is directly affected, as it restricts choices to botfi@hus, conditions
for allowing non-supported choices, though still preferring supported choices, will be
explored, which might lead to new powerful heuristics for answer set solving.

AcknowledgementdMe are grateful to Yuliya Lierler, Tomi Janhunen, and anonymous
referees for their helpful comments. This work was supported by DFG under grant
SCHA 550/6-4 as well as the EC through IST-2001-37004 WASP project.

14 Short or preliminary, respectively, notes momore++can be found in [16, 17].

15 The number of unique bodies in a program is always less than or equal to the number of rules.

16 Note that literal-based solvers, suchsmsodelsanddlv, suffer from exponential worst-case
complexity as well.

References

1

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

. Simons, P., Niemél ., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligencel38(2002) 181-234

Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scar-

cello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions

on Computational Logic (2005) To appear.

. Lin, k., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Atrtificial
Intelligencel57(2004) 115-137

. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight pro-
grams. In Lifschitz, V., Niemd, |., eds.: Proceedings of the Seventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’04). Springer (2004)
346-350

. Anger, C., Konczak, K., Linke, T.noMoRe A system for non-monotonic reasoning un-
der answer set semantics. In Eiter, T., Faber, W., Trusmkiy M., eds.: Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’01), Springer (2001) 406-410

. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM38 (1991) 620—650

. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer
Science278(2002) 25-51

. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press (1978) 293-322

. Konczak, K., Linke, T., Schaub, T.. Graphs and colorings for answer set programming:

Abridged report. In Vos, M.D., Provetti, A., eds.: Proceedings of the Second International

Workshop on Answer Set Programming (ASP’03). CEUR (2003) 137-150

Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Journal of

Symbolic Logic44 (1979) 36-50

Fages, F.: Consistency of clark’s completion and the existence of stable models. Journal of

Methods of Logic in Computer Sciendq1994) 51-60

Erdem, E., Lifschitz, V.. Tight logic programs. Theory and Practice of Logic Programming

3(2003) 499-518

Faber, W., Leone, N., Pfeifer, G.: Pushing goal derivation in DLP computations. In Gelfond,

M., Leone, N., Pfeifer, G., eds.: Proceedings of the Fifth International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’99). Springer (1999) 177-191
(http://www.cs.uni-potsdam.de/nomore)

(http://asparagus.cs.uni-potsdam.de)

Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: Admore++ system. In

Baral, C., Greco, G., Leone, N., Terracina, G., eds.: Proceedings of the Eighth International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05). Springer

(2005) 422-426

Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: Adraore++ approach to

answer set solving. In Vos, M.D., Provetti, A., eds.: Proceedings of the Third International

Workshop on Answer Set Programming (ASP’05). CEUR (2005) 163-177

Faber., W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems.

Dissertation, Technische Unive&itWien (2002)

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning operators for answer set programming

systems. In Benferhat, S., Giunchiglia, E., eds.: Proceedings of the Nineth International

Workshop on Non-Monotonic Reasoning (NMR’02). (2002) 200-209

Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-

mantics, and computation. Information and Computali®f(1997) 69-112

