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Abstract. We present a new answer set solver, callednomore++, along with its
underlying theoretical foundations. A distinguishing feature is that it treats heads
and bodies equitably as computational objects. Apart from its operational foun-
dations, we show how it improves on previous work through its new lookahead
and its computational strategy of maintaining unfounded-freeness. We underpin
our claims by selected experimental results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the early
availability of efficient solvers, likesmodels[1] anddlv [2]. Since then, many other sys-
tems, sometimes following different approaches, have emerged, among themassat[3],
cmodels[4], andnoMoRe[5].

We present a new ASP solver, callednomore++, along with its underlying theo-
retical foundations.nomore++ pursues a hybrid approach in combining features from
literal-based approaches, likesmodelsanddlv, with the rule-based approach of its pre-
decessornoMoRe. To this end, it treats heads and bodies of logic programs’ rules equi-
tably as computational objects. We argue that this approach allows for more effective (in
terms of search space pruning) choices than obtainable when dealing with either heads
or bodies only. As a particular consequence of this, we demonstrate that the resulting
lookahead operation allows for more effective propagation than previous approaches.
Finally, we detail a computational strategy of maintaining “unfounded-freeness”.

We empirically show that, thanks to its hybrid approach,nomore++ outperforms
smodelson relevant benchmarks. In fact, we mainly compare our approach to that of
smodels. Our choice is motivated by the fact that both systems primarily address normal
logic programs.1 dlv and many of its distinguishing features are devised for dealing with
the more expressive class of disjunctive logic programs. Also,smodelsandnomore++
share the same concept of “choice points”, on which parts of our experiments rely upon.

The paper is organised as follows. After some preliminary definitions, we start with
a strictly operational specification ofnomore++. In fact, its configurable operator-based
design is a salient feature ofnomore++. We then concentrate on two specific features:
First, we introducenomore++’s lookahead operation and prove that, in terms of propa-
gation, it is more powerful than the ones encountered insmodelsandnoMoRe. Second,
we presentnomore++’s strategy of keeping assignments unfounded-free. Finally, we
provide selected experimental results backing up our claims.

1 Unlike smodels, nomore++cannot (yet) handle cardinality and weight constraints.



2 Background

A logic programis a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, (1)

wheren ≥ m ≥ 0 and eachpi (0 ≤ i ≤ n) is anatomin some alphabetA. A literal
is an atomp or its negationnot p. For r as in (1), lethead(r) = p0 be theheadof r
andbody(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be thebodyof r. Given a setX
of literals, letX+ = {p ∈ A | p ∈ X} andX− = {p ∈ A | not p ∈ X}. Forbody(r),
we then getbody(r)+ = {p1, . . . , pm} andbody(r)− = {pm+1, . . . , pn}.

A logic programΠ is calledbasicif body(r)− = ∅ for all r ∈ Π. Thereduct, ΠX ,
of Π relative to a setX of atoms is defined by

ΠX = {head(r)← body(r)+ | r ∈ Π, body(r)− ∩X = ∅}.

A setX of atoms is closed under a basic programΠ if, for any r ∈ Π, head(r) ∈ X if
body(r)+ ⊆ X. Cn(Π) denotes the smallest set of atoms closed under basic program
Π. A setX of atoms is ananswer setof a logic programΠ if Cn(ΠX) = X.

As an example, consider programΠ1 comprising rules:

r1 : a← not b r3 : c← not d
r2 : b← not a r4 : d← not c

(2)

We get four answer sets, viz.{a, c}, {a, d}, {b, c}, and{b, d}.
For a programΠ, we write head(Π) = {head(r) | r ∈ Π} and body(Π) =

{body(r) | r ∈ Π}. We further extend this notation: Forh ∈ head(Π), define
body(h) = {body(r) | r ∈ Π, head(r) = h}.

Without loss of generality, we restrict ourselves to programsΠ satisfying{p | r ∈
Π, p ∈ body(r)+∪body(r)−} ⊆ head(Π). That is, every body atom must occur as the
head of some rule. Any programΠ can be transformed into such a format, exploiting
the fact that no atom in(A \ head(Π)) is contained in any answer set ofΠ.

3 Operational specification

We provide in this section a detailed operational specification ofnomore++. The firm
understanding ofnomore++’s propagation mechanisms serves as a basis for formal
comparisons with techniques used bysmodelsor dlv. We indicate how the operations
applied bynomore++ are related to well-known propagation principles, in particular,
showing that our basic propagation operations are as powerful as those ofsmodels(cf.
Theorem 1). Beyond this, the hybrid approach ofnomore++ allows for more flexible
choices, in particular, leading to a more powerful lookahead, as we detail in Section 4.

We consider assignments that map heads and bodies of a programΠ into {⊕,	},
indicating whether a head or body is true or false, respectively. Such assignments are
extended in comparison to those used in literal-based solvers, such assmodelsanddlv,
or rule-based solvers, such asnoMoRe. Formally, a (partial) assignment is a partial



mappingA : head(Π) ∪ body(Π) → {⊕,	}. For simplicity, we often represent such
an assignmentA as a pair(A⊕, A	), whereA⊕ = {x | A(x) = ⊕} andA	 = {x |
A(x) = 	}. WheneverA⊕ ∩ A	 6= ∅, thenA is undefined as it is no mapping. We
represent an undefined assignment by(head(Π)∪body(Π), head(Π)∪body(Π)). For
comparing assignmentsA andB, we defineA v B, if A⊕ ⊆ B⊕ andA	 ⊆ B	. Also,
we defineA tB as(A⊕ ∪B⊕, A	 ∪B	).

Forward propagation innomore++ can be divided into two sorts. Head-oriented
propagation assigns⊕ to a head if one of its associated bodies belongs toA⊕, it assigns
	 whenever all of a head’s bodies are inA	. This kind of propagation is captured
by setsTΠ(A) andTΠ(A) in Definition 1. Body-oriented propagation is based on the
concepts ofsupportandblockage. A body issupportedif all its positive literals belong
to A⊕, it is unsupportedif one of its positive literals is inA	. This is reflected by sets
SΠ(A) andSΠ(A) below. Analogously, but with roles partly interchanged, setsBΠ(A)
andBΠ(A) define whether a body isblockedor unblocked, respectively.2

Definition 1. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

1. TΠ(A) = {h ∈ head(Π) | body(h) ∩A⊕ 6= ∅};
2. TΠ(A) = {h ∈ head(Π) | body(h) ⊆ A	};
3. SΠ(A) = {b ∈ body(Π) | b+ ⊆ A⊕};
4. SΠ(A) = {b ∈ body(Π) | b+ ∩A	 6= ∅};
5. BΠ(A) = {b ∈ body(Π) | b− ∩A⊕ 6= ∅};
6. BΠ(A) = {b ∈ body(Π) | b− ⊆ A	}.

We omit the subscriptΠ whenever it is clear from the context. In what follows, we also
adopt this convention for similar concepts without further notice.

Based on the above sets, we define forward propagation operatorP as follows.

Definition 2. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

PΠ(A) = A t (T (A) ∪ (S(A) ∩B(A)), T (A) ∪ S(A) ∪B(A)) .

A head is assigned⊕ if it belongs toT (A); a body must be supported as well as un-
blocked, namely, belong toS(A) ∩ B(A). Conversely, a body is assigned	 whenever
it is unsupported or blocked, i.e. inS(A) ∪B(A); a head must be inT (A).

For example, let us applyP to A0 = ({body(r1)}, ∅) onΠ1:

P(A0) = A1 = ({a, body(r1)}, ∅) by T (A0)
P(A1) = A2 = ({a, body(r1)}, {body(r2)}) by B(A1)
P(A2) = A3 = ({a, body(r1)}, {b, body(r2)}) by T (A2)

Note thatA3 is closed underP, that is,P(A3) = A3.
For describing the saturated result of operators’ application, we need the following

definition. LetO be a collection (possibly a singleton) of operators and letA be a partial

2 We systematically use over-lining for indicating sets with antonymous contents.



assignment. Then, we denote byO∗(A) thev-smallest partial assignment containingA
and being closed under all operators inO. In the above example, we getP∗(A0) = A3.

Backward propagation can be viewed as an inversion ofP. For example, consider
the definition ofT (A) and supposeh ∈ head(Π) ∩ A⊕ whereasbody(h) ∩ A⊕ = ∅,
that is, no body of any rule with headh has been assigned⊕ so far. Hence,h is not
“produced” byT (A). Yet there must be some bodyb ∈ body(h) that is eventually
assigned⊕, otherwiseh cannot be true. However, this body can only be determined if all
other bodies are already inA	. This leads us to the definition ofT [

Π(A).3 Analogously,
we can derive the following sets.4

Definition 3. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

1. T [
Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A⊕, body(h) \ {b} ⊆ A	};

2. T
[

Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A	};
3. S[

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A⊕};
4. S

[

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A	 ∩B(A), b+ \ {h} ⊆ A⊕};
5. B[

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A	 ∩ S(A), b− \ {h} ⊆ A	};
6. B

[

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A⊕}.

Combining the above sets yields backward propagation operatorB.

Definition 4. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

BΠ(A) = A t (T [(A) ∪ S[(A) ∪B[(A), T [(A) ∪ S[(A) ∪B[(A)) .

Adding the ruleb ← c to programΠ1 still givesP(A3) = A3. Due to the fact that
b ∈ A	

3 , iterated application ofB additionally yields:

B(A3) = A4 = A3 t (∅, {{c}}) by T [(A3)
B(A4) = A5 = A3 t (∅, {{c}, c}) by S[(A4)
B(A5) = A6 = A3 t (∅, {{c}, c, body(r3)}) by T [(A5)
B(A6) = A7 = A3 t ({d}, {{c}, c, body(r3)}) by B[(A6)
B(A7) = B∗(A3) = A3 t ({d, body(r4)}, {{c}, c, body(r3)}) by T [(A7)

The next definition elucidates the notion of an unfounded set [6] in our context.
Given an assignmentA, the greatest unfounded setof heads and bodies,UΠ(A), is
defined in terms of the still potentially derivable atoms inUΠ(A).

Definition 5. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

UΠ(A) = {b ∈ body(Π) | b+ 6⊆ UΠ(A)} ∪ {h ∈ head(Π) | h 6∈ UΠ(A)}

where UΠ(A) = Cn((Π \ {r ∈ Π | body(r) ∈ A	})∅).
3 We use the superscript[ to indicate sets used in backward propagation.
4 The relation betweenP andB will be detailed in the full paper.



The setU(A) of potentially derivable atoms is formed by removing all rules whose
bodies belong toA	. The resulting subprogram is reduced with respect to the empty
set so that we can compute its (potential) consequences by means of theCn operator,
as defined for basic programs in Section 2.

The following operatorU falsifies all elements in a greatest unfounded set.

Definition 6. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). We define

UΠ(A) = A t (∅, U(A)) .

Consider programΠ2, obtained fromΠ1 by adding rules

r5 : e← not a,not c, r6 : e← f,not b, r7 : f ← e, (3)

and assignmentA = (∅, {body(r5)}).5 We then haveU(A) = Cn((Π2 \ {r5})∅) =
Cn({a ←, b ←, c ←, d ←, e ← f, f ← e}) = {a, b, c, d}, and thus we obtain
U(A) = (∅, {body(r5), e, body(r6), f, body(r7)}). As we detail in the full paper, the
assignment(PU)∗((∅, ∅)) amounts to a program’s well-founded semantics [6].

Let us compare the introduced operators to propagation insmodels, which is based
on two functions, calledatleastandatmost. Functionatleastcomputes deterministic
consequences by forward and backward propagation, Functionatmostis the counter-
part ofU(A) and amounts toCn((Π \ {r | body(r)+ ∩A	 6= ∅})A⊕∩head(Π)). In [1],
smodels’ assignments are represented as sets of literals. Although we refrain from giv-
ing a formal definition, we however mention thatatleastbounds the set of true literals
from “below” and thatatmostbounds the set of true atoms from “above”.

Theorem 1. Let Π be a logic program. LetX be a partial assignment ofhead(Π)
and let A be a partial assignment ofhead(Π) ∪ body(Π) such that(A⊕, A	) =
(X+, X−).6 Then, we have the following results.

1. LetY = atleast(Π,X) andB = (PB)∗(A).
If Y + ∩ Y − = ∅ andB⊕ ∩ B	 = ∅, then(Y +, Y −) = (B⊕ ∩ head(Π), B	 ∩
head(Π)); otherwise,Y + ∩ Y − 6= ∅ andB⊕ ∩B	 6= ∅.

2. LetY = X t (∅, head(Π) \ atmost(Π,X)) andB = U(P(A)).
If Y + ∩ Y − = ∅ andB⊕ ∩ B	 = ∅, then(Y +, Y −) = (B⊕ ∩ head(Π), B	 ∩
head(Π)); otherwise,Y + ∩ Y − 6= ∅ andB⊕ ∩B	 6= ∅.

The above results show thatnomore++’s basic propagation operationsP, B, andU are
as powerful as those ofsmodels. The reason whyP is applied once in2. is that initially
A assigns no values to bodies in order to be comparable tosmodels’ assignmentX.

Concluding with basic propagation, we mention thatP corresponds to Fitting’s op-
erator [7],(PB) coincides to unit propagation on a program’s completion [8],(PU)
amounts to propagation via well-founded semantics [6], and(PBU) matchessmodels’
propagation, that is, well-founded semantics enhanced by backward propagation.

5 The situation that a body is inA	 without belonging toS(A)∪B(A) is common innomore++,
as bodies can be taken as choices.

6 Note that(A⊕ ∩ body(Π), A	 ∩ body(Π)) = (∅, ∅).



The first differences to well-known approaches are encountered at choices. Insmod-
els anddlv, choices are restricted to heads;noMoRechooses on rules (comparable to
bodies) only. Unlike this,nomore++generally allows for choosing to assign values to
heads as well as bodies, and we definenomore++’s choice operatorC as follows.

Definition 7. Let Π be a logic program, letA be a partial assignment ofhead(Π) ∪
body(Π), and letX ⊆ head(Π) ∪ body(Π). We define

1. C⊕Π(A,X) = (A⊕ ∪ {x}, A	) for somex ∈ X \ (A⊕ ∪A	);
2. C	Π(A,X) = (A⊕, A	 ∪ {x}) for somex ∈ X \ (A⊕ ∪A	).

The setX delineates the set of possible choices. In general, the chosen objectx ∈ X
can be any unassigned head or body.

The possibility of choosing among heads and bodies provides us with great flexibil-
ity. Notably, some choices have a higher information gain than others. On the one hand,
setting a head to	 yields more information than choosing some body to be	. Negat-
ing some headh by	 implies that all bodies inbody(h) are false (viaB). Conversely,
choosing a body to be	 has generally no direct effect on the body’s heads because there
may be alternative rules (i.e. other bodies) sharing the same heads. Also, we normally
gain no information on the constituent literals of the body. On the other hand, assigning
⊕ to bodies is superior to assigning⊕ to heads. When we choose⊕ for a body, we infer
that its heads must be assigned⊕ as well (viaP). Moreover, assigning⊕ to a body
b implies that every literal inb is true (viaB). Unlike this, choosing⊕ for some head
does generally not allow to determine a corresponding body that justifies this choice
and would then be assigned⊕, too. The observation that assigning	 to heads and⊕
to bodies, respectively, subsumes the opposite assignments also fortifiesnomore++’s
lookahead strategy, detailed in Section 4.

Following [9], we characterise the process of answer set formation by a sequence
of assignments.

Theorem 2. Let Π be a logic program, letA be a total assignment ofhead(Π) ∪
body(Π), and letX = head(Π)∪ body(Π). Then,A⊕ ∩ head(Π) is an answer set of
Π iff there exists a sequence(Ai)0≤i≤n of assignments with the following properties:

1. A0 = (PBU)∗((∅, ∅));
2. Ai+1 = (PBU)∗(C◦(Ai, X)) for some◦ ∈ {⊕,	} and0 ≤ i < n;
3. An = A.

The intersectionA⊕ ∩ head(Π) accomplishes a projection to heads and thus to the
atoms forming an answer set. Many different strategies can be shown to be sound and
complete. For instance, the above result still holds after eliminatingB. (For simplicity,
we refer to these strategies by(PBU)∗C or (PU)∗C, respectively. We also drop super-
scripts⊕ and	 from C when referring to either case.) As with computational strategies,
alternative choices, expressed byX, are possible. For example, Theorem 2 also holds
for X = head(Π) or X = body(Π), respectively, mimicking a literal-based approach
such assmodels’ one or a rule-based approach as the one ofnoMoRe. A further restric-
tion of choices is discussed in Section 5.

Although we cannot provide the details here, it is noteworthy to mention that al-
lowing X = head(Π) ∪ body(Π) as choices leads to an exponentially stronger proof



system (in terms of proof complexity [10], i.e. minimal proofs for unsatisfiability) in
comparison to eitherX = head(Π) or X = body(Π). The comparison between dif-
ferent proof systems and proof complexity results will be key issues in the full paper.

4 Lookahead

We have seen thatnomore++’s basic propagation is as powerful as that ofsmodels. An
effective way of strengthening propagation is to uselookahead.7 Apart from specifying
nomore++’s lookahead, we demonstrate below that ahybrid lookahead strategy, incor-
porating heads and bodies, allows for stronger propagation than auniform one using
only either heads or bodies. Uniform lookahead is for instance used insmodelson lit-
erals and innoMoReon rules (comparable to bodies). However, we do not want to put
more computational effort into hybrid lookahead than needed in the uniform case. The
solution is simple: Assigning	 to heads and⊕ to bodies within lookahead is, in combi-
nation with propagation, powerful enough to compensate for the omitted assignments.

First of all, we operationally define our lookahead operatorL as follows.

Definition 8. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). Furthermore, letO be a collection of operators.

For x ∈ (head(Π) ∪ body(Π)) \ (A⊕ ∪A	), we define:

`⊕,O
Π (A, x) =

{
(A⊕, A	 ∪ {x}) if O∗((A⊕ ∪ {x}, A	)) is undefined
A otherwise

`	,O
Π (A, x) =

{
(A⊕ ∪ {x}, A	) if O∗((A⊕, A	 ∪ {x})) is undefined
A otherwise

For X ⊆ head(Π) ∪ body(Π), we define:

L⊕,O
Π (A,X) =

⊔
x∈X\(A⊕∪A	) `⊕,O

Π (A, x)

L	,O
Π (A,X) =

⊔
x∈X\(A⊕∪A	) `	,O

Π (A, x)

LOΠ(A,X) = L⊕,O
Π (A,X) t L	,O

Π (A,X)

Observe that, according to the above definition, elementary lookahead` can only be
applied to an unassigned head or bodyx. For such anx, ` tests whether assigning and
propagating a value leads to a conflict. If so, the opposite value is assigned. We stipulate
x to be unassigned because the intended purpose of lookahead is gaining information
from imminent conflicts when basic propagation is stuck, hence the name “lookahead”.

Our lookahead operatorL can be parametrised in several ways. First, one can decide
on a setX ⊆ head(Π) ∪ body(Π) to apply` to. Second, either⊕,	, or both of them,
one after the other, can be temporarily assigned and propagated. Third, the collection
O determines the propagation operators to be applied inside lookahead, which can be

7 Note that we consider lookahead primarily as a propagation operation, such asP, B, andU .
Supplementary, lookahead is often also used for gathering heuristic values for the selection of
choices. As withsmodelsanddlv, this information is exploited bynomore++as well.



different from the ones used outside lookahead. The general definition allows us to
describe and to compare different variants of lookahead.

In what follows, we detailnomore++’s hybrid lookahead on heads and bodies and
show that it is strictly stronger than uniform lookahead on only either heads or bodies,
without being computationally more expensive. To start with, observe thatfull hybrid
lookahead byLO(A, head(Π) ∪ body(Π)) is the most powerful lookahead operation
with respect to someO. That is, anything inferred by a restricted lookahead is also
inferred by full hybrid lookahead. Given that full hybrid lookahead has to temporarily
assign both values,⊕ and	, to each unassigned head and body, it is also the com-
putationally most expensive lookahead operation. In the worst case, there might be
2 ∗ (|head(Π)|+ |body(Π)|) applications of̀ without inferring anything.

The high computational cost of full hybrid lookahead is the reason whynomore++
applies arestricted hybrid lookahead. Despite the restrictions,nomore++’s hybrid
lookahead does not sacrifice propagational strength and is in combination with prop-
agation as powerful as full hybrid lookahead (see3. in Theorem 3 below). The obser-
vations made on choices in the previous section provide an explanation on how a more
powerful hybrid lookahead operation can be obtained without reasonably increasing the
computational cost in comparison to uniform lookahead on only either heads or bodies:
Assigning	 to a head subsumes assigning	 to one of its bodies, assigning⊕ to a body
subsumes assigning⊕ to one of its heads. That is whynomore++’s hybrid lookahead
applies`	,O to heads and̀⊕,O to bodies only. Provided thatP belongs toO and that
all operators inO are monotonic (like, for instance,P, B, andU), nomore++’s hybrid
lookahead has the same propagational strength as full hybrid lookahead.

Theorem 3. Let Π be a logic program. LetA be a partial assignment ofhead(Π) ∪
body(Π) and let

B = P(L⊕,O(A, body(Π))) t L	,O(A, head(Π)) .

Then, for every collectionO ofv-monotonic operators such thatP ∈ O, we have

1. LO(A, head(Π)) v B;
2. LO(A, body(Π)) v P(B);
3. LO(A, head(Π) ∪ body(Π)) v P(B).

Fact3. states thatnomore++’s lookahead is, in combination with propagation, as pow-
erful as full hybrid lookahead. Facts1. and 2. constitute that it is always at least as
powerful as any kind of uniform lookahead. Thereby, conditionP ∈ O stipulates that
propagation (within lookahead) must be at least as powerful as Fitting’s operator. Un-
like this, the occurrences ofP in B, 2., and3. are only of formal nature and needed for
synchronising heads and bodies. In practise, lookahead is interleaved withP anyway,
since it is integrated into propagation, viz.(PBUL)∗. More importantly,nomore++’s
restricted hybrid lookahead, assigning	 to heads and⊕ to bodies only, faces approxi-
mately the same computational efforts as encountered in the uniform case and not more
than the most consuming uniform lookahead, since2 ∗min{|head(Π)|, |body(Π)|} ≤
|head(Π)|+ |body(Π)| ≤ 2 ∗max{|head(Π)|, |body(Π)|}.8

8 For both, heads and bodies, we have|head(Π)| ≤ |Π| and|body(Π)| ≤ |Π|, respectively.
In uniform cases, factor 2 accounts for assigningbothvalues,⊕ and	, one after the other.



Πn
b =

8>>><>>>:
r0 : x← not x
r1 : x← a1, b1 r2 : a1 ← not b1 r3 : b1 ← not a1

...
r3n−2 : x← an, bn r3n−1 : an ← not bn r3n : bn ← not an

9>>>=>>>;

Πn
h =

8>>><>>>:
r0 : x← c1, . . . , cn,not x
r1 : c1 ← a1 r2 : c1 ← b1 r3 : a1 ← not b1 r4 : b1 ← not a1

...
r4n−3 : cn ← an r4n−2 : cn ← bn r4n−1 : an ← not bn r4n : bn ← not an

9>>>=>>>;
Fig. 1.Lookahead programsΠn

b andΠn
h for somen ≥ 0.

Finally, let us demonstrate thatnomore++’s hybrid lookahead is in factstrictly more
powerful than uniform ones. Consider ProgramsΠn

b andΠn
h , given in Figure 1. Both

programs have, due to ruler0 in the respective program, no answer sets and are thus
unsatisfiable. For ProgramΠn

b , this can be found out by assigning⊕ to bodies of the
form {ai, bi} (1 ≤ i ≤ n) and by backward propagation viaB. With ProgramΠn

h ,
assigning	 to an atomci (1 ≤ i ≤ n) leads to a conflict by backward propagation via
B. Provided thatB belongs toO in LO,9 body-based lookahead detects the unsatisfi-
ability of Πn

b , and head-based lookahead does the same forΠn
h . Hence,nomore++’s

hybrid lookahead detects the unsatisfiability of both programs without any choices be-
ing made. Unlike this, detecting the unsatisfiability ofΠn

b with head-based lookahead
and choices restricted to heads (smodels’ strategy) requires exponentially many choices
in n. The same holds forΠn

h with body-based lookahead and choices restricted to bod-
ies (noMoRe’s strategy). Respective benchmark results are provided in Section 6.

5 Maintaining unfounded-freeness

A characteristic feature, distinguishing logic programming from propositional logic, is
that true atoms must be derived via the rules of a logic program. For problems that
involve reasoning, e.g. Hamiltonian cycles, this allows for more elegant and compact
encodings in logic programming than in propositional logic. Such logic programming
encodings producenon-tightprograms [11, 12], for which there is a mismatch between
answer sets and the models of programs’ completions [8]. The mismatch is due to the
potential of circular support among atoms. Such circularity is prohibited by the answer
set semantics, but not by the semantics of propositional logic. The necessity of support-
ing true atoms non-circularly is reflected by propagation operatorU in Section 3.

We detail in this section how our extended concept of an assignment, incorporating
bodies in addition to heads, can be used for avoiding that atoms assigned⊕ are sub-
sequently detected to be unfounded. (Note that such a situation results in a conflict.)
More formally, our goal is to avoid that atoms belonging toA⊕ in an assignmentA

9 If B 6∈ O, neither variant of lookahead detects unsatisfiability without making choices.



are contained inU(B) for some extensionB of A, i.e.A v B. We therefore devise a
computational strategy that is based on a modified choice operator, largely preventing
conflicts due to true atoms becoming unfounded as a result of some later step. Finally,
we point out how our computational strategy facilitates the implementation of operator
U and which measures must be taken in the implementation of operatorsB andL.

Let us first reconsider programΠ2 in (2) and (3) for illustrating the problem of true
atoms participating in an unfounded set. Assume that the collection(PBU) of operators
is used for propagation and that we start withA0 = (PBU)∗((∅, ∅)) = (∅, ∅). Let our
first choice be applyingC⊕ to atome. We obtain

A1 = (PBU)∗(({e}, ∅)) = ({e, f, body(r7)}, ∅).

At this point, we cannot determine a rule for deriving the true atome, since we have
two possibilities,r5 andr6. Let us applyC⊕ to atomd next. We obtain

A2 = (PBU)∗(A1 t ({d}, ∅)) = A1 t ({d, body(r4)}, {c, body(r3)}).

Still we do not know whether to user5 or r6 for derivinge. Our next choice is applying
C⊕ to atoma, and propagation via(PB) yields

A′
2 = (PB)∗(A2 t ({a}, ∅))

= A2 t ({a, body(r1), body(r6)}, {b, body(r2), body(r5)}).

We haveU(A′
2) = {b, c, e, f, body(r6), body(r7)}, andU(A′

2) yields a conflict on
atomse andf and on bodiesbody(r6) andbody(r7).

The reason for such a conflict is applying choice operatorC⊕ to a head or a body
lacking an established non-circular support. Consider a headh that is inA⊕, but not in
T (A), that is,h has not been derived by a rule yet. Supposing thath is not unfounded
with respect toA, i.e.h 6∈ U(A), some of the bodies inbody(h) might still be assigned
	 in the ongoing computation. As a consequence, all bodies potentially providing a
non-circular support forh might be contained inB	 for some extensionB of A, that
is, A v B. For such an assignmentB, we then haveh ∈ U(B), and propagation viaU
leads to a conflict. Similarly, a bodyb that is inA⊕ but not supported with respect toA,
i.e.b 6∈ S(A), can be unfounded in an assignmentB such thatA v B, as some positive
literal in b+ might be contained inU(B).

Conflicts due to⊕-assigned heads and bodies becoming unfounded cannot occur
when non-circular support is already established. That is, every head inA⊕ must be
derived by a body that is inA⊕, too. Similarly, the positive partb+ of a bodyb in A⊕

must be derived by other bodies inA⊕. This leads us to the following definition.

Definition 9. Let Π be a logic program and letA be an assignment ofhead(Π) ∪
body(Π). We defineA as unfounded-free, if

(head(Π) ∩A⊕) ∪ (
⋃

b∈body(Π)∩A⊕ b+) ⊆ Cn({r ∈ Π | body(r) ∈ A⊕}∅) .

Heads and bodies in the positive part,A⊕, of an unfounded-free assignmentA can-
not be unfounded with respect to any extension ofA.



Theorem 4. Let Π be a logic program and letA be an unfounded-free assignment of
head(Π)∪ body(Π). Then,A⊕ ∩U(B) = ∅ for any assignmentB such thatA v B.

Unfounded-freeness is maintained by forward propagation operatorP. That
is, when applied to an unfounded-free assignment, operatorP produces again an
unfounded-free assignment.

Theorem 5. Let Π be a logic program and letA be an unfounded-free assignment of
head(Π) ∪ body(Π). If P(A) is defined, thenP(A) is unfounded-free.

For illustrating the above result, reconsiderΠ2 in (2) and (3) and assignmentA =
({body(r5)}, ∅). A is unfounded-free becausebody(r5)

+ = ∅ ⊆ Cn({e ←}) = {e}.
We obtainP∗(A) = ({body(r5), e, body(r7), f}, ∅), which is again unfounded-free,
since{e, f} ∪ body(r5)

+ ∪ body(r7)
+ = {e, f} ⊆ Cn({e←, f ← e}) = {e, f}.

In order to guarantee unfounded-freeness for choice operatorC⊕, the setX of heads
and bodies to choose from has to be restricted appropriately. To this end,nomore++
provides the following instance ofC.

Definition 10. Let Π be a logic program and letA be a partial assignment of
head(Π) ∪ body(Π). We define

1. D⊕Π(A) = C⊕Π(A, (body(Π) ∩ S(A)));
2. D	Π(A) = C	Π(A, (body(Π) ∩ S(A))).

OperatorD differs from C in restricting its choices to supported bodies. This still
guarantees completeness, as an assignmentA that is closed under(PBU) is total if
(body(Π) ∩ S(A)) \ (A⊕ ∪A	) = ∅.10

Like P, operatorD maintains unfounded-freeness.

Theorem 6. LetΠ be a logic program and letA be an unfounded-free partial assign-
ment ofhead(Π) ∪ body(Π) such that(body(Π) ∩ S(A)) \ (A⊕ ∪ A	) 6= ∅. Then,
D◦(A) is unfounded-free for◦ ∈ {⊕,	}.

Note that there is no choice operator likeD for heads. A headh having a true body,
i.e.body(h)∩A⊕ 6= ∅, is already decided throughP. Thus,h cannot be assigned	 and
is no reasonable choice. On the other hand, if we concentrate on heads having a body
that is supported but not already decided, i.e. there is a bodyb ∈ (body(h) ∩ S(A)) \
(B(A) ∪ B(A)), such ab can still be assigned	 in some later step. That is, a head
chosen to be true can still become unfounded later on.

UnlikeP andD, backward propagationB and lookaheadL can generally not main-
tain unfounded-freeness, as they assign⊕ for other reasons than support. That is why
we introduce at the implementation level aweakcounterpart of⊕, denoted by⊗.11

Value⊗ indicates that some head or body, for which non-circular support is not yet es-
tablished, must eventually be assigned⊕. In the implementation, onlyP andD assign

10 Note that any body whose literals are true is inA⊕ due toP. All other bodies either contain a
false literal and are inA	 due toP, or they positively depend on unfounded atoms inU(A)
and are inA	 due toU .

11 Similar todlv’s must-be-true[13]; see Section 7.



⊕, while operatorsB, C, andL can only assign⊗ (or 	).12 Any head or body inA⊗

can be turned into⊕ by P without causing a conflict. So, by distinguishing two types
of “true”, we guarantee unfounded-freeness for the⊕-assigned part of an assignment.

Maintaining unfounded-freeness allows for a lazy implementation of operatorU .
That is, the scope ofU(A) (cf. Definition 5) can be restricted to(head(Π)∪body(Π))\
(A⊕∪A	), taking the non-circular support ofA⊕ for granted. In other words, the com-
putation ofU(A) is restricted to heads and bodies being either unassigned or assigned
⊗. Beside the fact thatD can assign⊕ andC only ⊗, usingD instead ofC helps in
avoiding that true atoms lead to a conflict by participating in an unfounded set. This can
be crucial for efficiently computing answer sets of non-tight programs, as the bench-
mark results in the next section demonstrate.

6 System design and experimental results

nomore++ is implemented in C++ and useslparse as parser. A salient feature of
nomore++ is that it facilitates the use of different sets of operators. For instance, if
called with command line option “--choice-op C --lookahead-op PB ”, it
uses operatorC for choices and(PB) for propagation within lookahead. The default
strategy ofnomore++ is applying(PBUL) for propagation, where lookahead byL
works as detailed in Section 4, andD as choice operator. By default,(PBU) is used for
propagation within lookahead. The system is freely available at [14].

Due to space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features ofnomore++. A complete evaluation, including further
ASP solvers, e.g.assatandcmodels, can be found at the ASP benchmarking site [15].
All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. As in the context
of [15], a memory limit of 256MB as well as a time limit of 900s have been enforced.
All results are given in terms of number of choices and seconds (in parentheses), re-
flecting the average of 10 runs.

Let us note that, due to the fairly early development state ofnomore++, its base
speed is still inferior to more mature ASP solvers, likesmodelsor dlv. This can for
instance be seen in the results of the “Same Generation” benchmark, wheresmodels
outperformsnomore++roughly by a factor of two (cf. [15]).13 Despite this, the selected
experiments demonstrate the computational value of crucial features ofnomore++and
provide an indication of the prospect of the overall approach.

In all test series, we ransmodelswith its (head-based) lookahead anddlv.
For a complement, we also give tests fornomore++ with body-based looka-
headL(PBU)(A, body(Π)) for an assignmentA and a programΠ, abridgedLb.
The tests withnomore++’s hybrid lookahead rely onL⊕,(PBU)(A, body(Π)) t
L	,(PBU)(A, head(Π)), abbreviated byLbh.

For illustrating the effect of maintaining unfounded-freeness, Table 1 shows results
obtained on Hamiltonian cycle problems on complete graphs withn nodes (HCn), both

12 Please note thatP retains⊗ when propagating from⊗. Also, a bodyb cannot be chosen byD
if someh ∈ b+ is in A⊗.

13 Other apt benchmarks are “Factoring” and “Schur Numbers” (cf. [15]); in both cases,smodels
still outperformsnomore++by an order of magnitude.



HCn

dlv smodels nomore++ nomore++ dlv smodels nomore++ nomore++
(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

3 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) (0.00) 1 (0.00) 1 (0.00) 1 (0.00)
4 (0.00) 2 (0.01) 2 (0.01) 2 (0.00) (0.00) 5 (0.00) 5 (0.00) 5 (0.00)
5 (0.00) 3 (0.00) 3 (0.00) 3 (0.01) (0.01) 26 (0.00) 23 (0.02) 23 (0.02)
6 (0.01) 4 (0.01) 4 (0.01) 4 (0.01) (0.02) 305 (0.02) 119 (0.11) 119 (0.11)
7 (0.01) 3(0.01) 5 (0.02) 5 (0.02) (0.14) 4,814 (0.38) 719 (0.83) 719 (0.85)
8 (0.01) 8 (0.00) 6 (0.03) 6 (0.03) (1.06) 86,364 (7.29) 5,039 (7.40) 5,039 (7.60)
9 (0.02) 48 (0.01) 7 (0.05) 7 (0.05) (10.02) 1,864,470(177.91)40,319 (73.94) 40,319 (76.09)
10 (0.03) 1,107 (0.18) 8 (0.08) 8 (0.08) (109.21) n/a 362,879 (818.73)362,879 (842.57)
11 (0.03) 18,118 (2.88) 9 (0.13) 9 (0.12) n/a n/a n/a n/a
12 (0.05)398,306 (65.29) 10 (0.19) 10 (0.20) n/a n/a n/a n/a
13 (0.06) n/a 11 (0.29) 11 (0.30) n/a n/a n/a n/a

Table 1.Experiments forHCncomputing (a) one answer set; (b) all answer sets

Πn
b

dlv smodels nomore++ nomore++
Πn

h

dlv smodels nomore++ nomore++
(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

0 (0.04) 0 (0.00) 0 (0.01) 0 (0.01) 0 (0.07) 0 (0.01) 0 (0.01) 0 (0.01)
2 (0.04) 0 (0.00) 0 (0.01) 0 (0.01) 2 (0.04) 0 (0.01) 0 (0.01) 0 (0.01)
4 (0.04) 3 (0.00) 0 (0.01) 0 (0.01) 4 (0.04) 0 (0.01) 3 (0.01) 0 (0.01)
6 (0.04) 15 (0.00) 0 (0.01) 0 (0.01) 6 (0.04) 0 (0.01) 15 (0.01) 0 (0.01)
8 (0.05) 63 (0.00) 0 (0.01) 0 (0.01) 8 (0.05) 0 (0.01) 63 (0.01) 0 (0.01)
10 (0.06) 255 (0.00) 0 (0.01) 0 (0.01) 10 (0.06) 0 (0.01) 255 (0.03) 0 (0.01)
12 (0.10) 1,023 (0.01) 0 (0.01) 0 (0.01) 12 (0.10) 0 (0.01) 1,023 (0.09) 0 (0.02)
14 (0.26) 4,095 (0.03) 0 (0.02) 0 (0.02) 14 (0.29) 0 (0.01) 4,095 (0.33) 0 (0.02)
16 (0.93) 16,383 (0.11) 0 (0.02) 0 (0.02) 16 (1.06) 0 (0.01) 16,383 (1.27) 0 (0.02)
18 (3.60) 65,535 (0.43) 0 (0.03) 0 (0.02) 18 (4.14) 0 (0.01) 65,535 (5.04) 0 (0.02)
20 (14.46) 262,143 (1.71) 0 (0.03) 0 (0.03) 20 (16.61) 0 (0.01) 262,143 (20.37) 0 (0.02)
22 (57.91) 1,048,575 (6.92) 0 (0.03) 0 (0.03) 22 (66.80) 0 (0.01) 1,048,575 (81.24) 0 (0.03)
24 (233.44) 4,194,303 (27.70) 0 (0.03) 0 (0.03) 24 (270.43)0 (0.01)4,194,303 (322.73) 0 (0.03)
26 n/a 16,777,215 (111.42) 0 (0.03) 0 (0.03) 26 n/a 0 (0.01) n/a 0 (0.04)
28 n/a 67,108,863 (449.44) 0 (0.04) 0 (0.04) 28 n/a 0 (0.01) n/a 0 (0.04)
30 n/a n/a 0 (0.04) 0 (0.04) 30 n/a 0 (0.01) n/a 0 (0.04)

Table 2.Results for (a)Πn
b ; (b) Πn

h

for the first and for all answer sets. Whilenomore++does not make any wrong choices
leading to a linear performance in Table 1(a),smodelsneeds an exponential number
of choices, even for finding the first answer set. The usage of choice operatorD en-
forces that rules are chained in the appropriate way for solvingHCn programs. We note
that, onHCn programs,dlv performs even better regarding time (cf. [15]); the different
concept of “choice points” makesnomore++anddlv incomparable in this respect.

The results in Table 2, obtained on programsΠn
b andΠn

h from Figure 1, aim at
supportingnomore++’s hybrid lookahead. We see that a hybrid approach is superior
to both kinds of uniform lookahead.smodelsemploys a head-based lookahead, lead-
ing to a good performance on programsΠn

h , yet a bad one onΠn
b . The converse

is true when restrictingnomore++ to lookahead on bodies only (command line op-
tion “--body-lookahead ”). nomore++ with hybrid lookahead performs optimal
regarding choice points on both types of programs. Also, a comparison of the two
nomore++ variants shows that hybrid lookahead does not introduce a computational
overhead. Note thatdlv performs similar to the worst approach on bothΠn

b andΠn
h .



7 Discussion

We have presented a new ASP solver, along with its underlying theory, design and
some experimental results. Its distinguishing features are (i) the extended concept of
an assignment, including bodies in addition to atoms, (ii) the more powerful looka-
head operation, and (iii) the computational strategy of maintaining unfounded-freeness.
We draw from previous work on thenoMoResystem [5], whose approach to answer
set computation is based on “colouring” the rule dependency graph (RDG) of a pro-
gram.noMoRepursues a rule-based approach, which amounts to restricting the domain
of assignments tobody(Π). The functionality ofnoMoRehas been described in [9]
by graph-theoretical operators similar toP, U , C, andD. nomore++’s operators for
backward propagation (B) and lookahead (L) were presented here for the first time.14

In general, operator-based specifications facilitate formal comparisons between tech-
niques used by different ASP solvers. Operators capturing propagation indlv are given
in [18]. Pruning operators based on Fitting’s [7] and well-founded semantics [6] are
investigated in [19]. The full paper contains a detailed comparison of these operators.

smodels[1] and dlv [2] pursue a literal-based approach, which boils down to re-
stricting the domain of assignments tohead(Π). However, in both systems, propaga-
tion keeps track of the state of rules, which bears more redundancy than using bodies.15

nomore++’s strategy of maintaining unfounded-freeness is closely related to some con-
cepts used indlv, but still different. In fact, the term “unfounded-free” is borrowed from
[20], where it is used for assessing the complexity of unfounded set checks and charac-
terising answer sets in the context of disjunctive logic programs. We, however, address
assignments in which the non-circular support of true atoms is guaranteed. Also,dlv se-
lects its choices among so-calledpossibly-true literals[13], corresponding to a literal-
based version of choice operatorD. But, as discussed in Section 5, unfounded-freeness
in our context cannot be achieved by choosing atoms to be true.

We conclude with outlining some subjects to future development and research. First,
the low-level implementation ofnomore++ will be improved further in order to be
closer to more mature ASP solvers, such assmodelsanddlv. Second, aggregates, like
smodels’ cardinality and weight constraints, will be supported in future versions of
nomore++, in order to enable more compact problem encodings. Finally, we detail in
the full paper that restricting choices to either heads or bodies leads to exponentially
worse proof complexity. Although choice operatorD is valuable for handling non-tight
programs, it is directly affected, as it restricts choices to bodies.16 Thus, conditions
for allowing non-supported choices, though still preferring supported choices, will be
explored, which might lead to new powerful heuristics for answer set solving.
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14 Short or preliminary, respectively, notes onnomore++can be found in [16, 17].
15 The number of unique bodies in a program is always less than or equal to the number of rules.
16 Note that literal-based solvers, such assmodelsanddlv, suffer from exponential worst-case

complexity as well.
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