
Train Scheduling with Hybrid ASP?

Dirk Abels2, Julian Jordi2, Max Ostrowski1, Torsten Schaub[0000−0002−7456−041X]1,3??,
Ambra Toletti2, and Philipp Wanko[0000−0003−4986−4881]1,3

1 Potassco Solutions, Germany
2 SBB, Switzerland

3 University of Potsdam, Germany

Abstract. We present an ASP-based solution to real-world train scheduling prob-
lems, involving routing, scheduling, and optimization. To this end, we pursue a
hybrid approach that extends ASP with difference constraints to account for a fine-
grained timing. More precisely, we exemplarily show how the hybrid ASP system
clingo[DL] can be used to tackle demanding planning-and-scheduling problems.
In particular, we investigate how to boost performance by combining distinct ASP
solving techniques, such as approximation, heuristic, and optimization strategies.

1 Introduction

Densely-populated railway networks transport millions of people and carry millions of
tons of freight daily; and this traffic is expected to increase even further. Hence, for using
a railway network to capacity, it is important to schedule trains in a flexible and global
way. This is however far from easy since the generation of railway timetables is already
known to be intractable for a single track [3]. While this is not so severe for sparse
traffic, it becomes a true challenge when dealing with dense networks. This is caused by
increasing dependencies among trains due to connections and shared resources.

We take up this challenge and show how to address real-world train scheduling with
hybrid Answer Set Programming (ASP [10]). Our hybrid approach allows us to specifi-
cally account for the different types of constraints induced by routing, scheduling, and
optimization. While we address paths and conflicts with regular ASP, we use difference
constraints (over integers) to capture fine timings. Similarly, to boost (multi-objective)
optimization, we study approximations of delay functions of varying granularity. This
is complemented by various domain-specific heuristics aiming at improving feasibility
checking as well as solution quality. We implement our approach with the hybrid ASP
system clingo[DL] [8], an extension of clingo [7] with difference constraints. Our ap-
proach provides us with an exemplary study of using a variety of techniques for solving
demanding real-world planning-and-scheduling problems with hybrid ASP.

To begin with, we introduce in Section 3 a dedicated formalization of the train
scheduling problem. This is indispensable to master the complexness of the problem.
Moreover, it guides the development of our hybrid ASP encodings, presented in Section 4.
We evaluate our approach along with various enhancements in Section 5 on increasingly
difficult problem instances with up to 467 trains.
? This work was partially funded by DFG grants SCHA 550/9 and 11.

?? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.



2 Authors Suppressed Due to Excessive Length

2 Background

We expect the reader to be familiar with the basic syntax, semantics, and terminology
of logic programs under stable models semantics, and focus below on the introduction
of non-standard concepts. The base syntax of our logic programs follows the one of
clingo [5]; its semantics is detailed in [4].

clingo[DL] extends the input language of clingo by (theory) atoms representing
difference constraints. That is, atoms of the form ‘&diff{u-v}<= d’, where u, v are
symbolic terms and d a numeral term, represent difference constraints such as ‘u−v ≤ d’,
where u, v serve as integer variables and d stands for an integer.4 For instance, assume
that ‘&diff{e(T)-b(T)}<= D’ stands for the condition that the difference between
the end and the beginning of a task T must be less or equal than some duration D. This
may get instantiated to ‘&diff{e(7)-b(7)}<= 42’ to require that e(7) and b(7)
take integer values such that ‘e(7)−b(7) ≤ 42’. Note that u, v can be arbitrary terms; we
exploit this below to use tuples like (T,V) as integer variables. Among the alternative
semantic couplings between (theory) atoms and constraints offered by clingo[DL] (cf. [8,
6]), we follow the defined, non-strict approach (i) tolerating theory atoms in rule heads
and (ii) enforcing their corresponding constraints only if the atoms are derivable. Hence,
if a theory atom is false, its associated constraint is ignored. This approach has the
advantage that we only need to consider difference constraints occurring in the encoding
and not their negations. Obviously, the overall benefit of using such constraints is that
their variables are not subject to grounding.

For boosting performance, we take advantage of clingo’s heuristic directives of form
‘#heuristic a:B.[w,m]’, where a is an atom and B is a body; w is a numeral
term and m a heuristic modifier, indicating how the solver’s heuristic treatment of a
should be changed whenever B holds. We use modifiers sign and false. Whenever
a is chosen by the solver, sign enforces that it becomes either true or false depending
on whether w is positive or negative, respectively. Similarly, with false, a is always
assigned false and additionally pushed on priority level w (where 0 is the default; cf. [5]).

3 Real-world train scheduling

The train scheduling problem can be divided into three distinct tasks: routing, conflict
resolution and scheduling.

First, each train is routed through a railway network. The directed graph in Figure 1
shows an example of such a network. It consists of all edges regardless of coloring,
and nodes numbered from 1 to 12 mark the entry (or exit) of different edges of the
track. Furthermore, Figure 1 depicts a valid routing of two trains, t1 and t2, through the
network. Blue edges are traveled by t1 and red edges by t2. In this example, both trains
have access to the whole network and may chose among possible start nodes 1,2 and 3,
and end nodes 10, 11 and 12, respectively.

Second, edges of the railway network are associated with resources, and whenever
the paths of two trains lead through an edge associated with the same resource, there

4 Strictly speaking, we had to distinguish the integer from its representation.



Train Scheduling with Hybrid ASP 3

1

2

3

4

5

6

7

8

9

10

11

12

sw1 sw2

t1 t2

connection from t2 to t1p = 1 p = 1

Fig. 1. Routing of two trains through a railway network.

t1 1 4 6 8 9 10
t2 3 4 5 7 9 12

V

t

14

12

10

8

6

4

2

dt1

dt2

Fig. 2. Scheduling of two trains.

is a possible conflict and a decision has to be made which train accesses the edge first.
The train going second has to wait until the first one leaves the edge plus a safety period.
Each edge in the directed graph is associated with a resource representing the track,
thus prohibiting two trains from entering it simultaneously. Furthermore, resources like
railway switches may span several edges. Here, there are two switches, sw1 and sw2,
represented by rectangles cutting the assigned edges. For instance, given the paths of t1
and t2, the two trains have resource conflicts on edges (1, 4) and (3, 4), and similarly, on
(9, 10) and (8, 10), since the pairs of edges are assigned to sw1 and sw2, respectively.

Finally, for each train and each node visited by the trains, a time point has to be
scheduled avoiding conflicts between trains and meeting all timing requirements, such
as earliest arrival at nodes or connections between trains. For all trains and each node, an
earliest point of arrival is defined, as well as, optionally, a latest point of arrival. Together,
these two time points define the time span in which the train might be at a node in its
path. Given the paths in Figure 1, Figure 2 shows the time spans and a valid schedule for
t1 and t2. The horizontal axis indicates the nodes that the trains travel and the vertical
axis the time. The light blue and light red areas show the possible arrival times for t1
and t2, respectively. The light violet area indicates that both trains may arrive in this
time period. For instance, t1 may arrive at node 4 between time points 2 and 7, and t2
at node 5 between 6 and 11. The blue and red lines represent a feasible schedule for t1
and t2, respectively. In our example, every edge takes one time unit to pass, whenever
conflicts are resolved, the second train may enter one time unit after the first has left, and
connecting trains have to arrive one time unit before the train that ought to receive cargo
or passengers leaves. The schedule in Figure 2 always prioritizes t1 in resource conflicts
and schedules the points of arrival as soon as possible. Resource conflicts at switch sw1

do not impact t2’s schedule since t1 leaves these edges several time points before t2 may
arrive. Train t1 has to wait for t2 in between nodes 6 and 8 due to their connection, and
is allowed to leave at the earliest at time point 7, one time point after t2 has entered edge
(5, 7). The resource conflicts induced by switch sw2 forces t2 to wait until time point 10,
one time unit after t1 leaves sw2.

After obtaining a valid routing and scheduling, the resulting solution is evaluated
regarding delay and quality of the trains’ paths. For that purpose, edges are assigned
penalties. Edges with higher penalties represent, for instance, tracks that can take less



4 Authors Suppressed Due to Excessive Length

workload. In our example, only edges (2, 4) and (9, 11) are penalized, viz. p = 1.
Figure 2 shows the time points after which trains t1 and t2 are considered delayed
via dashed lines dt1 and dt2 , respectively. Every time point below the dashed lines is
penalized for the respective train. Since both trains avoid the penalized edges and manage
to travel their routes without delay, the solution shown in Figure 2 is optimal.

We formalize the train scheduling problem as a triple (N,T,C). N stands for the
railway network (V,E,R,m, a, b), where (V,E) is a directed graph, R is a set of
resources, m : E → N assigns the minimum travel time of an edge, a : R → 2E

allocates resources in the railway network, and b : R→ N gives the time a resource is
blocked after it was accessed by a train. Elements (S,L, e, l, w) of T are trains to be
scheduled on network N , where (S,L) is an acyclic sub-graph of (V,E), e : S → N
and l : S → N ∪ {∞} give the earliest and latest time a train may arrive at a node,
respectively, and w : L → N is the time a train has to wait on an edge. Note that
all functions are total unless specified otherwise and we use seconds as the time unit.
Elements (t1, e1, t2, e2, c) of C are connections, denoting that t1 ∈ T on edge e1 ∈ E
has a connection to t2 ∈ T on e2 ∈ E requiring t2 not to leave e2 before t1 has arrived
by at least c seconds at e1.

In Figure 1, the train scheduling problem is defined as: V = {1, . . . , 12}, E =
{(1, 4), (2, 4), . . . , (9, 11), (9, 12)}, R = {sw1, sw2} ∪ {re | e ∈ E}, m(e) = 1 and
a(re) = {e} for e ∈ E, a(sw1) = {(1, 4), (2, 4), (3, 4), (4, 5), (4, 6)}, a(sw2) =
{(7, 9), (8, 9), (9, 10), (9, 11), (9, 12)}, b(r) = 1 for r ∈ R, T = {t1, t2} with t1 =
(S1, L1, e1, l1, w1), t2 = (S2, L2, e2, l2, w2), where (V,E) equals (S1, L1) = (S2, L2),
e1, l1, e2, l2 are the upper and lower coordinates of the colored areas in Figure 2, w1(e) =
w2(e) = 0 for e ∈ E, and C = {(t2, (5, 7), t1, (6, 8), 1), (t2, (6, 8), t1, (5, 7), 1)}.

A solution (P,A) to a train scheduling problem (N,T,C) is a pair of (i) a function
P assigning each train the path it takes through the network, and (ii) an assignment A of
arrival times to each train at each node on their path.

A path p is a connected sequence of nodes. We write v ∈ p and e ∈ p to denote
that node v ∈ V and edge e ∈ E are contained in path p, respectively. A path P (t) =
(v1, . . . , vn) for t = (S,L, e, l, w) ∈ T with vi ∈ S for 1 ≤ i ≤ n has to satisfy:

(vj , vj+1) ∈ L for 1 ≤ j ≤ n− 1 (1)
in(v1) = 0 and out(vn) = 0, (2)

where in and out give the in- and out-degree of a node in graph (S,L), respectively.
Intuitively, Condition (1) forces the path to be connected and feasible for the train in
question and Condition (2) ensures that the path is between a possible start and end node.

An assignment A is a partial function T × V → N, where A(t, v) is undefined for
v 6∈ P (t). Given paths P , an assignment has to satisfy:

A(t, vi) ≥ e(vi) (3)
A(t, vi) ≤ l(vi) (4)

A(t, vj) +m((vj , vj+1)) + w((vj , vj+1)) ≤ A(t, vj+1) (5)

for all t = (S,L, e, l, w) ∈ T, P (t) = (v1, . . . , vn), 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,

either A(t1, v
′) + b(r) ≤ A(t2, u) or A(t2, u

′) + b(r) ≤ A(t1, v) (6)



Train Scheduling with Hybrid ASP 5

for r ∈ R, {t1, t2} ⊆ T, t1 6= t2, (v, v
′) ∈ P (t1), (u, u

′) ∈ P (t2) with {(v, v′), (u, u′)} ⊆
a(r), and

A(t1, v) + c ≤ A(t2, u
′) (7)

for (t1, (v, v′), t2, (u, u′), c) ∈ C with (v, v′) ∈ P (t1) and (u, u′) ∈ P (t2).
Intuitively, conditions (3), (4) and (5) ensure that a train arrives neither too early nor

too late and that waiting and traveling times are accounted for. Furthermore, Condition (6)
resolves conflicts between two trains that travel edges sharing a resource, so that either
the second train can only enter after the first train has left for a specified time or vice
versa. Finally, Condition (7) handles connections between two trains: a train with a
connection can only leave if the other train has arrived for a specified time. Note that
connections only apply if both trains travel the specified edges.

For our solution in Figure 2, P (t1) = (1, 4, 6, 8, 9, 10), P (t2) = (3, 4, 5, 7, 9, 12),
and A(t1, 1) = 0, . . . , A(t1, 8) = 7, . . . , A(t1, 10) = 9, A(t2, 3) = 4, . . . , A(t2, 5) =
6, A(t2, 7) = 10, . . . , A(t2, 12) = 12.

To determine the quality of a solution, the aggregated delay of all trains as well as
the quality of the paths through the network is taken into account. For that purpose, we
consider two functions: the delay function d and route penalty function rp. Given train
t = (S,L, e, l, w) ∈ T and a node s ∈ S, d(t, s) ∈ N returns the time point after which
the train t is considered late at node s. Note that e(s) ≤ d(t, s) ≤ l(s). Given an edge
e ∈ E, rp(e) ∈ N is the penalty a solution receives for each train traveling edge e. The
quality of a solution (P,A) is determined via the following equation:∑

((t,v),a)∈A max{(a− d(t, v)), 0}/60 +
∑

e∈{u|p∈P,u∈p,e∈E} rp(e) (8)

In our example, we get rp((2, 4)) = 1, rp((9, 11)) = 1 and rp(v) = 0 for v ∈
V \ {(2, 4), (10, 12)}, and, for instance, d(t1, 1) = 4, d(t1, 10) = 9 and d(t2, 3) =
7, d(t2, 12) = 12. As mentioned, our solution obtains the optimal quality value of 0.

4 An ASP-based solution to real-world train scheduling

In this section, we present our hybrid solution to the train scheduling problem. We
start by describing the factual representation of problem instances, continue with the
problem encoding and finish by introducing several domain-specific heuristics aimed at
improving solving performance and solution quality.

Fact format. A train scheduling problem (N,T,C) with N = (V,E,R,m, a, b) is
represented by

train(t) edge(t, v, v′) m((v, v′),m((v, v′))) w(t, (v, v′), w((v, v′)))

for every t = (S,L, e, l, w) ∈ T and (v, v′) ∈ L. For every s ∈ S, we add

e(t, s, e(s)) l(t, s, l(s)), and start(t, s) or end(t, s)

if in(s) = 0 or out(s) = 0 in (S,L), respectively. We assign unique terms to each train
for identifiability. For example, facts train(t1), edge(t1,1,4), e(t1,1,0),



6 Authors Suppressed Due to Excessive Length

l(t1,1,6), start(t1,1), m((1,4),1) and w(t1,(1,4),0) express that
train t1 may travel between nodes 1 and 4 taking at least 1 second, waiting on this edge
for 0 seconds, and arrives between time points 0 and 6 at node 1, which is a possible
start node. Furthermore, we add

resource(r, e) b(r, b(r))

for r ∈ R and e ∈ a(r). Akin to trains, resources are assigned unique terms to distinguish
them. For example, facts resource(sw1,(1,4)), resource(sw1,(4,5)) and
b(sw1,1) assign resource sw1 to edges (1, 4) and (4, 5) and the resource is blocked
for 1 second after a train has left it. Finally, we add

connection(t, (v, v′), t′, (u, u′), c)

for all (t, (v, v′), t′, (u, u′), c) ∈ C. The fact that t1may not leave (6, 8) before t2 spent
at least 1 second in (5, 7) is encoded by connection(t2,(5,7),t1,(6,8),1).

Given delay and route penalty functions d and rp, we add

potlate(t, s, u, p) penalty(m, rp(m))

for t = (S,L, e, l, w) ∈ T, s ∈ S,m ∈ L with {u, p} ⊆ N, d(t, s) < u ≤ l(t, s)
to evaluate a solution. While we encode route penalty optimization exactly, delay op-
timization is approximated via a combination of difference constraints and standard
ASP optimization schemes. Intuitively, a fact potlate(t1,1,5,1) denotes that a
solution receives a penalty of 1 if train t1 travels over node 1 and arrives there at time
point 5 or later. In Section 4, we introduce several schemes to create such facts and
approximate the objective function to different degrees. For brevity, we cannot present
the full instance representing the example in figures 1 and 2 but make it available here5.

Encoding. In the following, we describe the general problem encoding. We separate
it into three parts handling path constraints, conflict resolution and scheduling.

Listing 1.1. Encoding of path constraints.
1 1 { visit(T,V) : start(T,V) } 1 :- train(T).
2 1 { route(T,(V,V’)) : edge(T,V,V’) } 1 :- visit(T,V), not end(T,V).
3 visit(T,V’) :- route(T,(V,V’)).

The first part of the encoding in Listing 1.1 covers routing. First, exactly one valid start
node is chosen for each train to be visited (Line 1). From a node that is visited by a train
and is not an end node, an edge in the relevant sub-graph is chosen as the next route
(Line 2). The new route in turn leads to a node being visited by the train (Line 3). This
way, each train is recursively assigned a valid path. Since those paths begin at a start
node, finish at an end node and are connected via edges valid for the respective trains,
conditions (1) and (2) are ensured.

Listing 1.2. Encoding of conflict resolution.
4 shared(T,(V,V’),T’,(U,U’)) :- edge(T,V,V’), edge(T’,U,U’), T!=T’,
5 resource(R,(V,V’)), resource(R,(U,U’)), b(R,B),
6 e(T,V,E), l(T,V’,L), e(T’,U,E’),
7 E <= E’, E’ < L+B.
8 shared(T’,E’,T,E) :- shared(T,E,T’,E’).

5 github.com/potassco/train-scheduling-with-clingo-dl/blob/master/example.lp



Train Scheduling with Hybrid ASP 7

9 conflict(T,E,T’,E’) :- shared(T,E,T’,E’), T < T’,
10 route(T,E), route(T’,E’).
11 { seq(T,E,T’,E’) } :- conflict(T,E,T’,E’).
12 seq(T’,E’,T,E) :- conflict(T,E,T’,E’), not seq(T,E,T’,E’).

The next part of the encoding shown in Listing 1.2 detects and resolves resource conflicts.
A resource conflict is possible, if two trains have an edge in their sub-graphs that is
assigned the same resource (lines 4 and 5), and they travel through the edges around
the same time (lines 6 and 7), more precisely, whenever the time intervals in which the
trains may enter and leave the edges in question, extended by the time the resource is
blocked, overlap. Now, if both trains are routed through those edges a conflict occurs
(lines 9 and 10). We resolve the conflict by making a choice which train passes through
their edge first (lines 11 and 12).

Listing 1.3. Encoding of scheduling.
13 &diff{ 0-(T,V) } <= -E :- e(T,V,E), visit(T,V).
14 &diff{ (T,V)-0 } <= L :- l(T,V,L), visit(T,V).
15 &diff{ (T,V)-(T,V’) } <= -D :- route(T,(V,V’)), E = (V,V’),
16 D=#sum{ M,m : m(E,M); W,w : w(T,E,W) }.
17 &diff{ (T,V’)-(T’,U) } <= -M :- seq(T,(V,V’),T’,(U,U’)),
18 M = #max{ B : resource(R,(V,V’)), b(R,B) }.
19 &diff{ (T,V)-(T’,U’) } <= -W :- connection(T,(V,V’),T’,(U,U’),W),
20 route(T,(V,V’)), route(T’,(U,U’)).

Finally, Listing 1.3 displays the encoding of scheduling via difference constraints. We
represent arrival times of train t at node v with an integer variable (t,v). In the
following, we use ground terms to describe how the rules function while in the encoding
variables are used. Lines 13 and 14 encode that every train arrives at a node in their path
neither too early nor too late, respectively. Given the earliest arrival e and latest arrival l
of a train t at node v in their path, difference constraint atoms &diff{0-(t,v)}<=
−e and &diff{(t,v)-0}<= l are derived. This ensures that e ≤ (t,v) ≤ l holds,
therefore fulfilling conditions (3) and (4). The rule in lines 15 and 16 first calculates
the sum d of minimal travel and waiting time for train t at edge (v,v’) in their path,
which is the minimal difference between arrival times at nodes v and v’ for train t.
Then, difference constraint atom &diff{(t,v)-(t,v’)}<=−d is derived, which in
turn ensures (t,v)+ d ≤ (t,v’) (Condition (5)). The rule in lines 17 and 18 utilizes
conflict detection and resolution from Listing 1.2. Given the maximum blocked time b
of resources shared on (v,v’) and (u,u’), and the decision that t takes precedence
over t’, we derive difference constraint atom &diff{(t,v’)-(t’,u)}<= −b ex-
pressing linear constraint (t,v’)+ b ≤ (t′, u) for two conflicting trains t and t’ on
edges (v,v’) and (u,u’). Hence, t’may only enter edge (u,u’) b seconds after t
has left (v,v’) (Condition (6)). Note that if several resources induce a conflict for two
trains on the same edges, only one difference constraint with the maximum blocked time
suffices since x+ k ≤ y implies x+ k′ ≤ y for k ≥ k′. Finally, Line 19 handles connec-
tions in a similar fashion. If train t on (v,v’) has a connection to t’ on (u,u’) with
connection time w, a difference constraint atom &diff{(t,v)-(t’,u’)}<= −w is
derived, ensuring linear constraint (t,v) + w ≤ (t’,u’) to hold (Condition (7)).
This condition is required if both trains are routed through the edges (Line 20).

Optimization. As mentioned above, we use instances of potlate/4 to indicate
when a train is considered late at a node and how to penalize its delay. For this purpose,
we choose sets Dt,v ⊆ N whose elements act as thresholds for arrival time of train



8 Authors Suppressed Due to Excessive Length

t at node v. Given delay function d, d(t, v) ≤ u ≤ l(v) for every u ∈ Dt,v, train
t = (S,L, e, l, w) ∈ T and v ∈ S. We create facts potlate(t,v,u,u− u′) for
u, u′ ∈ Dt,v with u′ < u such that there is no u′′ ∈ Dt,v with u′ < u′′ < u. We add
potlate(t,v,u,u− d(t, v)) for u = min(Dt,v). Intuitively, we choose the penalty
of a potential delay as the difference to the previous potential delay, or, if there is no
smaller threshold, the difference to the time point after which the train is considered
delayed. This way, the sum of penalties amounts to a lower bound on the train’s actual
delay in seconds. For example, for Dt,v = {6, 10, 14} and d(t, v) = 5, we create facts
potlate(t,v,6,1), potlate(t,v,10,4) and potlate(t,v,14,4). Now, if
t arrives at v at 12, it is above thresholds 6 and 10 and should receive a penalty of 5. This
penalty is a lower bound on the actual delay of 7, and we know that the value has to be
between 5 and 9 since the next threshold adds a penalty of 4. This method approximates
the exact objective function in (8) in two ways. First, we do not divide by 60 and penalize
in minutes since this would lead to rounding problems. Second, our penalty only gives a
lower bound to the actual delay if thresholds are more than one second apart. While our
method allows us to be arbitrarily precise in theory, in practice, creating a threshold for
each possible second of delay leads to a explosion in size. We employ two schemes for
generating sets Dt,v given t = (S,L, e, l, w) ∈ T , v ∈ S and delay function d.

Binary. This approximation detects if a train is a second late and penalizes it by one,
therefore, only the occurrence of a delay is detected while its amount disregarded. We
set Dt,v = Bint,v = {d(t, v) + 1}.

Linear. This scheme for Dt,v evenly distributing thresholds m seconds apart across
the time span in which a delay might occur. Here, if train t arrives at or after n∗m+d(t, v)
at v, we know that the real delay is between n ∗m and (n+1) ∗m for n ∈ N \ {0}. We
also add Bint,v to detect solutions without delay. We set Dt,v = Bint,v ∪ Linm

t,v with
Linm

t,v = {y ∈ N | y = x ∗m+ d(t, v), x ∈ N \ {0}, y ≤ l(v)}.

Listing 1.4. Delay and routing penalty minimization.
1 { late(T,V,D,W) : visit(T,V) } :- potlate(T,V,D,W).
2 &diff{ 0-(T,V) } <= -D :- late(T,V,D,W).
3 &diff{ (T,V)-0 } <= N :- not late(T,V,D,W), potlate(T,V,D,W),
4 N=D-1, visit(T,V).
5 #minimize{ W,T,V,D : late(T,V,D,W) }.
6 #minimize{ P,T,E : penalty(E,P), route(T,E) }.

Given thresholds Dt,v for all trains and nodes and the corresponding instances of
predicate potlate/4, Listing 1.4 shows the implementation of the delay minimization.
The basic idea is to use regular atoms to choose whether a train is delayed on its path
for every potential delay (Line 1), deriving difference constraint atoms expressing this
information (lines 2–4), and ultimately using the regular atoms in a standard minimize
statement (Line 5). In detail, for every potlate(t,v,u,w), a late(t,v,u,w) can
be chosen if t visits v. If late(t,v,u,w) is chosen to be true, a difference constraint
atom &diff{0-(t,v)}<= −u is derived expressing (t, v) ≥ u and, therefore, that t is
delayed at v at threshold u. Otherwise, &diff{(t,v)-0}<= u − 1 becomes true so
that (t, v) < u holds. The difference constraints ensure that if the truth value of a late
atom is decided, the schedule has to reflect this information. The minimize statement
then sums up and minimizes the penalties of the late atoms that are true.



Train Scheduling with Hybrid ASP 9

Finally, Line 6 in Listing 1.4 shows the straight forward encoding of the routing
penalty minimization. The minimize statement merely collects the paths of the trains,
sums up their penalties, and minimizes this sum.

Domain-specific heuristics. We devise several domain-specific heuristics to, first,
improve solving performance, and second, improve quality of solutions regarding delay
and routing.

Sequence heuristic. The heuristic in Listing 1.5 attempts to order conflicting trains
by their possible arrival times at the edges where the conflict is located. In essence,
we analyze how the time intervals of the trains are situated and prefer their sequence
accordingly. Line 1 derives those intervals by collecting the earliest and latest time a
train might be at an edge. Given two trains t and t’ with intervals [e, l] and [e′, l′] at the
conflicting edges, respectively, we calculate s = e′ − e− (l − l′) to determine whether
t should be scheduled before t’. If s is positive, the preferred sign of the sequence
atom is also positive, thus preferring t to go before t’, if it is negative, the opposite
is expressed. In detail, e′ − e is positive if t’ may arrive later than t thus making it
more likely that t can go first without delaying t’. Similarly, if l − l′ is negative, t’
may leave later, suggesting t to go first. If the results of both expressions have the same
sign, one interval is contained in the other and if the difference is positive, the center of
the interval of t is located earlier than the center of the interval of t’. For example, in
Figure 2, we see that t1 and t2 share a resource in (1, 4) and (3, 4) and the time intervals
in which they potentially arrive at those edges are [0, 7] and [4, 10], respectively. Due
to 4− 0− (7− 10) = 7, we prefer t1 to be scheduled before t2, which in the example
clearly is the correct decision, since t1 precedes t2 without delaying t2.

Listing 1.5. Heuristic that orders conflicting trains by their possible arrival times.
1 range(T,(V,V’),E,L) :- edge(T,V,V’),e(T,V,E), l(T,V’,L).
2 #heuristic seq(T,E,T’,E’) : shared(T,E,T’,E’),
3 range(T,E,L,U),
4 range(T’,E’,L’,U’). [L’-L - (U-U’),sign]

Delay heuristic. Listing 1.6 gives a heuristic aimed at avoiding delay at earlier nodes
in the paths. For that purpose, we first assign each node in the sub-graph of a train a
natural number signifying their relative position (lines 1–4). Start nodes receive position
0, and from there, the number increases the farther a node is apart from the start nodes,
indicating that they are visited later in the possible paths of the train. The maximum
position of the end nodes is also the longest possible path minus one (Line 5). For a
potential delay, we then select the position p and the maximum position m and modify
the delay atom with value m− p and modifier false. This accomplishes two things.
First, the earlier the node, the higher the value, thus delays for earlier nodes are decided
first. Second, the preferred sign of all delays is false. Intuitively, we assume that early
delays are to be avoided since they likely lead to delays at subsequent nodes. Considering
again our example in Figure 2, node 1 for t1 receives position 0 and node 5 position 3,
respectively, while the maximum position is 5. Therefore, we receive values 5 and 2 for
nodes 1 and 5, respectively, avoiding the delay at node 1 first, while also preferring t1 to
be on time at both nodes.

Listing 1.6. Heuristic discouraging delays early on.
1 node(T,(V;V’)) :- edge(T,V,V’).



10 Authors Suppressed Due to Excessive Length

2 node_pos(T,V,0) :- start(T,V).
3 node_pos(T,V’,M+1) :- node(T,V’), not start(T,V’),
4 M = #max{ P : node_pos(T,V,P), edge(T,V,V’)}.
5 last_node(T,M) :- train(T), M = #max{ P : node_pos(T,V,P), end(T,V) }.
6 #heuristic late(T,V,U,W) : potlate(T,V,U,W),
7 node_pos(T,V,P),
8 last_node(T,Max). [Max-P,false]

Routing heuristic. Akin to the straight-forward routing penalty minimization, the
heuristic in Listing 1.7 merely tries to avoid routes where there is a penalty. The higher
the penalty, the more those routes are to be avoided. In our example (Figure 1), this
amounts to t1 and t2 equally shunning (2, 4) and (9, 11).

Listing 1.7. Heuristic for avoiding paths with penalties.
1 #heuristic route(T,E) : train(T), penalty(E,P). [P,false]

Note that all three domain-specific heuristics are static, i.e., they are active immedi-
ately at the start of solving.

5 Experiments

We evaluate our train scheduling solution using the hybrid solver clingo[DL] v1.0,
which is build upon the API of clingo 5.3.6 We use nine real-world instances published
by Swiss Federal Railway (SBB) to test different configurations of clingo[DL] with
optimization strategies and domain-specific heuristics (60 in total). For brevity, we omit
slight grounding and propagation optimizations in the encoding presented in Section 4;
the full encoding and instance set is at github.com/potassco/train-scheduling-with-clingo-
dl. We validate solution feasibility and quality via an external program also provided
by SBB.7 All benchmarks ran on Linux with a Xeon E3-1260L quad-core 2.9 GHz
processors and 32 GB RAM; each run limited to 3 hours and 32GB RAM. In detail, we
examine the following techniques:

Optimization schemes. (BB) Model-guided optimization iteratively producing mod-
els of descending cost until the optimum is found by establishing unsatisfiability of
finding a model with lower cost. (USC) Core-guided optimization relying on successively
identifying and relaxing unsatisfiable cores until a model is obtained. (nT) Natural
number n determines the number of threads with which the solver is run. Threads use
the same search space but might learn different clauses that are exchanged. If either BB
or USC is additionally specified, both threads use the respective optimization scheme.

All other parameters are using the default of clingo[DL]. In particular, the default
for 2T configures thread 1 with BB and thread 2 with USC in the hope that the shared
information improves overall performance and solution quality.

Objective function approximation. We only vary delay optimization and use the
same minimize statement for route penalty (see Section 4). (BIN) Delay approximation
only penalizing instances and not amount of delay. We set Dt,v = Bint,v for each train
t at node v. (LIN) Delay approximation creating thresholds evenly within time span

6 We use the releases for both clingo[DL] and clingo that are available at github.com/potassco/
clingoDL and github.com/potassco/clingo.

7 www.crowdai.org/challenges/train-schedule-optimisation-challenge.



Train Scheduling with Hybrid ASP 11

of possible delay. We set Dt,v = Bint,v ∪ Lin180
t,v for each train t at node v. For LIN,

we chose the distance of thresholds, viz. 180, such that there are 5 thresholds with a
maximum threshold of 15 minutes. We also examined an exponential distribution of
thresholds where the distance doubles every time so that the precision is higher for lower
delays, and significant delays receive a greater penalty. We omit the results since the
approach does not improve quality and displays worse performance compared to LIN.

Domain-specific heuristics. For details, see Section 4. (NONE) Domain-specific
heuristics are disabled. (SEQ) Sequence heuristic in Listing 1.5. (DELAY) Delay heuristic
in Listing 1.6. (ROUTES) Routing heuristic in Listing 1.7. (ALL) All heuristics SEQ,
DELAY and ROUTES are enabled.

HHHHOPT
HEU NONE SEQ DELAY ROUTES ALL

T QU T QU T QU T QU T QU
BIN-1T 4767 175 4136 165 2578 165 3215 175 684 165
BIN-2T 933 181 *575 184 937 173 909 175 574 165
BIN-2T-BB 5050 166 4723 175 2481 165 1916 177 600 165
BIN-2T-USC *877 165 581 184 *881 165 *881 175 574 173
LIN-1T – – 23343 33 6380 33 – – 705 33
LIN-2T 1118 33 694 33 1264 33 926 33 611 33
LIN-2T-BB – – 16495 33 4561 33 11667 33 605 33
LIN-2T-USC 4047 33 2351 33 – – – – – –

Table 1. Aggregated wall time and quality.

ALL-BIN-2T ALL-LIN-2T-BB
INS #T #N #E T AQU QU T AQU QU
1 4 159 159 2 0 0 2 0 0
2 58 1839 1816 5 0 0 5 0 0
3 143 2117 2090 8 0 0 9 0 0
4 148 2371 2352 12 0 0 13 0 0
5 149 2376 2356 19 8 165 42 21 33
6 365 3128 3109 149 0 0 144 0 0
7 467 3128 3109 252 0 0 251 0 0
8 133 3228 3314 127 0 0 139 0 0
9 287 34488 34827 – – – – – –
Table 2. Instance details and best results.

In our experiments, we used clingo[DL] to report one optimal solution for each
configuration. Table 1 shows the sum of wall time in seconds in columns T, and the value
of the exact objective function as reported by the external validation tool in columns QU,
for all combinations of optimization strategy (rows of the table) and domain-specific
heuristics (columns of the table) that were able to report one valid optimal solution for
instances 1 through 8. Note that all values are rounded to integers. We omit results for
instance 9 since grounding was not possible within 32GB of memory. Combinations
where some instances timed out are marked with –. This way, we are able to exclude
inferior results while being able to accurately compare performance and solution quality
of successful configurations. The best results in a row and in a column for wall time
and quality are marked bold and with *, respectively, unless at least two configurations
achieved the same result.

Regarding wall time, ALL clearly performs best and improves performance up to
one order of magnitude compared to NONE. While each domain-specific heuristic has a
positive impact, either reducing wall time or allowing all instances to be solved optimally,
we observe that SEQ has the most benefit on its own, but the joint effect of the three
heuristics is vital in achieving the best possible performance. Furthermore, optimization
approximation BIN performs best, displaying no timeouts and best aggregate wall time
by a slight margin. Since weights in the optimization statement for BIN are all one, USC is
very effective for it. For LIN, on the other hand, running both BB and USC simultaneously
proved to be successful, most likely due to a mixture of different weight values and the
benefit of the shared clauses between threads. As expected, the simple approximation of
the objective function BIN is easier to solve but provides solutions of less quality. Note
that while all the solutions returned by clingo[DL] were optimal, the value of the exact
objective function varies. If there are several optimal solutions, a different one might be
reported depending on heuristics or thread-based interference, i.e., we cannot guarantee



12 Authors Suppressed Due to Excessive Length

that the same optimal model is found for different configurations. Approximations LIN
has overall more timeouts and worse wall time, but solution quality is higher.

Table 2 shows for all instances the number of trains(#T), nodes(#N) and edges(#E)
along with wall time(T), approximated quality(AQU) and exact quality(QU) for the
configuration with the best performance, viz. ALL-BIN-2T, and best quality-performance
ratio, viz. ALL-LIN-2T-BB. We found optimal solutions to the approximated objective
functions for instances with up to 467 trains, 3228 nodes and 3314 edges within 5 minutes.
Except for instances 4 and 5, which were crafted specifically to contain obstructions
inducing delay, we could provide solutions without any penalties regarding the exact
objective function. For Instance 4, the delay is negligible and for Instances 5, we achieve
a value close to the best possible solution according to SBB. We see that BIN is a good
choice for instances that are expected to be solvable without delay, but for more difficult
instances, like Instance 5, the approximation is too inaccurate. On the other hand, LIN
achieves more accuracy with similar performance mostly thanks to the domain-specific
heuristics that steer the solving process to promising regions of the search space.

Overall, we observe that all domain-specific heuristics, SEQ in particular, linear
approximation of delay optimization, and several threads with multiple optimization
strategies, allow us to successfully solve the train scheduling problem for a variety of
real-world instances in acceptable time.

6 Discussion

At its core, train scheduling is similar to classical scheduling problems that were already
tackled by ASP. Foremost, job shop scheduling [16] is also addressed by clingo[DL]
and compared to other hybrid approaches in [8]; solutions based on SMT, CP and MILP
are given in [9, 2], [1], and [11], respectively. In fact, job shop scheduling can be seen
as a special case of our setting, in which train paths are known beforehand. Solutions
to this restricted variant via MILP and CP are presented in [12, 15]. The difference to
our setting is twofold: first, resource conflicts are not known beforehand since we take
routing and scheduling simultaneously into account. Second, our approach encompasses
a global view of arbitrary precision, i.e., we model all routing and scheduling decisions
across hundreds of trains and possible lines down to inner-station conflict resolution.
Furthermore, using hybrid ASP with difference constraints gives us inherent advantages
over pure ASP and MILP. First, we show in [6] that ASP is not able to solve most shop
scheduling instances since grounding all the integer variables leads to an explosion
in problem size. We avoid this bottleneck by encapsulating scheduling in difference
constraints and, hence, avoid grounding integer variables. Second, while difference
constraints are less expressive than linear constraints in MILP, they are sufficient for ex-
pressing the timing constraint needed for train scheduling and are solvable in polynomial
time. Finally, routing and conflict resolution require Boolean variables and disjunctions
for which ASP has effective means.

Since we produce timetables from scratch, our train scheduling problem can be char-
acterized as tactical scheduling [17]. In the future, we aim at addressing re-scheduling [13,
14], where existing timetables have to be adapted to sudden deviations. While our hybrid
ASP encoding can be easily modified to accommodate such advanced reasoning tasks,



Train Scheduling with Hybrid ASP 13

we currently could not address them in real-time. The main challenge lies in reducing
the size of the problem. We have shown that, if grounding is possible, we can effectively
solve real-world train scheduling with clingo[DL]. The problem size can be reduced by
first, compressing the graph and removing nodes that are redundant in terms of timing
constraints that they pose to the schedule, and second, identifying groups of conflicts of
trains that only require a single decision to be resolved in a preprocessing step.

References
1. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based scheduling: applying constraint pro-

gramming to scheduling problems, vol. 39. Springer Science & Business Media (2012)
2. Bofill, M., Palahı́, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with sat

modulo theories. Constraints 17(3), 273–303 (2012)
3. Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the train timetabling problem.

Operations Research 50, 851–861 (2002)
4. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo. Theory

and Practice of Logic Programming 15(4-5), 449–463 (2015).
5. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub,

T., Thiele, S.: Potassco User Guide. second edition edn. (2015), http://potassco.org
6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solv-

ing made easy with clingo 5. In: Technical Communications of the International Conference
on Logic Programming (ICLP’16). vol. 52, pp. 2:1–2:15. OASIcs (2016)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory and Practice of Logic Programming 19(1), 27–82 (2019)

8. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo
goes linear constraints over reals and integers. Theory and Practice of Logic Programming
17(5-6), 872–888 (2017)

9. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set program-
ming and satisfiability modulo theories. In: Proceedings of the Workshop on Grounding and
Transformation for Theories with Variables (GTTV’11). pp. 1–13 (2011)

10. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic
Programming (ICLP’99). pp. 23–37. MIT Press (1999)

11. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.
In: Proceedings of the International Conference on Principles of Knowledge Representation
and Reasoning (KR’12). pp. 32–42. AAAI Press (2012)

12. Oliveira, E., Smith, B.: A job-shop scheduling model for the single-track railway scheduling
problem. University of Leeds, LU SCS RR (21) (2000)

13. Pellegrini, P., Douchet, G., Marlière, G., Rodriguez, J.: Real-time train routing and schedul-
ing through mixed integer linear programming: Heuristic approach. In: Proceedings of the
international conference on industrial engineering and system management. pp. 1–5 (2013)

14. Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J.: Recife-milp: An effective MILP-
based heuristic for the real-time railway traffic management problem. IEEE Transactions on
Intelligent Transportation Systems 16(5), 2609–2619 (2015)

15. Rodriguez, J.: A constraint programming model for real-time train scheduling at junctions.
Transportation Research: Methodological 41(2), 231–245 (2007).

16. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational
Research 64(2), 278–285 (1993)

17. Törnquist, J.: Computer-based decision support for railway traffic scheduling and dispatching:
A review of models and algorithms. In: Proceedings of the Workshop on Algorithmic Methods
and Models for Optimization of Railways. OASIcs. vol. 2. (2006)


