Shift Design with Answer Set Programming

M. Abseher', M. Gebser??, N. Musliu', T. Schaub®**, and S. Woltran'

' TU Wien, Austria
2 Aalto University, HIIT, Finland
3 University of Potsdam, Germany
* INRIA Rennes, France

Abstract. Answer Set Programming (ASP) is a powerful declarative program-
ming paradigm that has been successfully applied to many different domains.
Recently, ASP has also proved successful for hard optimization problems like
course timetabling. In this paper, we approach another important task, namely,
the shift design problem, aiming at an alignment of a minimum number of shifts
in order to meet required numbers of employees (which typically vary for dif-
ferent time periods) in such a way that over- and understaffing is minimized. We
provide an ASP encoding of the shift design problem, which, to the best of our
knowledge, has not been addressed by ASP yet.

1 Introduction

Answer Set Programming (ASP) [4] is a declarative formalism for solving hard com-
putational problems. Thanks to the power of modern ASP technology [8], ASP was
successfully used in various application areas, including product configuration [13],
decision support for space shuttle flight controllers [11], team building and scheduling
[12], and bio-informatics [9]. Recently, ASP also proved successful for optimization
problems that had not been amenable to complete methods before, for instance in the
domain of timetabling [2].

In this paper, we investigate the application of ASP to another important domain,
namely, workforce scheduling [3]. Finding appropriate staff schedules is of great rele-
vance because work schedules influence health, social life, and motivation of employ-
ees at work. Furthermore, organizations in the commercial and public sector must meet
their workforce requirements and ensure the quality of their services and operations.
Such problems appear especially in situations where the required number of employ-
ees fluctuates throughout time periods, while operations dealing with critical tasks are
performed around the clock. Examples include air traffic control, personnel working in
emergency services, call centers, etc. In fact, the general employee scheduling prob-
lem includes several subtasks. Usually, in the first stage, the temporal requirements are
determined based on tasks that need to be performed. Further, the total number of em-
ployees is determined and the shifts are designed. In the last phase, the shifts and/or
days off are assigned to the employees. For shift design [10], employee requirements
for a period of time, constraints about the possible start and length of shifts, and lim-
its for the average number of duties per week are considered. The aim is to generate

* Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

111 1fF2
31| 1|1 |1 f2

o 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7

Fig. 1. Work demands over a day (left) and the unique optimal schedule (right) with shifts starting
at slot 2, 4, or 7, respectively, indicated by different boxes, while other kinds of shifts are unused

[\SRS SR SR ROS)

solutions consisting of shifts (and the number of employees per shift) that fulfill all
hard constraints, while minimizing the number of distinct shifts as well as over- and
understaffing. This problem has been addressed by local search techniques, including a
min-cost max-flow approach [10] and a hybrid method combining network flow with
local search [6]. These techniques have been used to successfully solve randomly gen-
erated examples and problems arising in real-world applications. A detailed overview
of previous work on shift design is given in [7].

Although the aforementioned state-of-the-art approaches for the shift design prob-
lem are able to provide optimal solutions in many cases, obtaining optimal solutions
for large problems is still a challenging task. Indeed, for several instances the best so-
lutions are still unknown. Therefore, the application of exact techniques like ASP is an
important research target. More generally, it is interesting to see how far an elaboration-
tolerant, general-purpose approach such as ASP can compete with dedicated methods
when tackling industrial problems. Our ASP solution is based on the first author’s mas-
ter thesis [1] and relies on sophisticated modeling and solving techniques, whose appli-
cation provides best practice examples for addressing similarly demanding use-cases.
In particular, we demonstrate how order encoding techniques [5] can be used in ASP
for modeling complex interval constraints. Experimental results and further details are
provided in the full version® of this paper.

2 The Shift Design Problem

To begin with, let us introduce the shift design problem. Our problem formulation fol-
lows the one in [10]. As input, we are given the following:

— consecutive time slots sharing the same length. Each time slot is associated with a
number of employees that should be present during the slot.

— shift types with associated parameters min-start and max-start, representing the
earliest and latest start, and min-length and max-length, representing the minimum
and maximum length of a shift.

> www.dbai.tuwien.ac. at/proj/Rota/ShiftDesignASP.pdf

time(0, 0), time(1, 1), ..., time(7,7), next(0, 1), next(1,2), ..., next(7,0),
work(0, 1), work(1, 1), work(2, 4), work(3, 3), work(4, 5), work(5, 5),
work(6,2), work(7, 3), exceed(1), shorten(1), opt(shortage, 3, 1),
opt(excess,?2, 1), opt(select, 1, 1), range(2,2,1), ..., range(2,2,4),
range(2,3,1),...,range(2,3,5), range(2,4,1),...,range(2,4,5),
range(4,2,1),...,range(4,2,5), range(4,3,1),...,range(4,3,5),
range(4,4,1),...,range(4,4,5), range(5,2,1),...,range(5,2,5),
range(5,3,1),...,range(5,3,5), range(5,4,1), ... ,range(5,4,5),
range(6,2,1),...,range(6,2,3), range(6,3,1), ..., range(6, 3, 3),
range(6,4,1),...,range(6,4,3), range(7,2,1), ..., range(7,2,3),
range(7,3,1),...,range(7,3,3), range(7,4,1), ... ,range(7,4,4)

Fig. 2. ASP facts specifying an instance of the shift design problem

The aim is to generate a collection of k shifts sy,..., s;. Each shift s; is completely
determined by its start and length, which must belong to some shift type. Additionally,
each shift s; is associated with parameters indicating the number of employees assigned
to s; during each day of the planning period. Note that we consider cyclic planning peri-
ods where the successor of the last time slot is equal to the first time slot. An example of
employee requirements and a corresponding (optimal) schedule are shown in Figure 1.

In analogy to [6], we investigate the optimization of the following criteria: sum of
shortages of workers in each time slot during the planning period, sum of excesses of
workers in each time slot during the planning period, and the number of shifts.% Tra-
ditionally, the objective function is a weighted sum of the three components (although
this kind of aggregation is not mandatory with ASP).

3 Shift Design in ASP

An instance like the one shown in Figure 1 is specified by facts as in Figure 2. Facts
of the form time(S, T') associate each slot S with a day time 7. Our instance includes
one day, divided into eight slots denoted by the times 0, ..., 7. Instances of next(S’,S)
provide predecessor or successor slots, respectively, where S is usually S’+1, except
for the last slot whose successor is 0. (When another day is added, the slots 8§, ..., 15
would also be mapped to day times 0, ..., 7, next(7,0) would be replaced by next(7, 8),
and next(15,0) would connect the new last slot to O instead.) For each slot S, a
fact work(S, N) gives the number N of desired employees, and exceed(E) as well as
shorten(F) may limit the amount of employees at duty to at most E+N or at least N—F,
respectively. For instance, we obtain the upper bound 4 and the lower bound 2 for em-
ployees engaged in slot 7. Facts of the form range(S, L, 1),...,range(S, L, M) provide
potential amounts of shifts of length L that can start from slot S, where M is the max-
imum number of desired employees over all slots within the horizon of the shift. For
shifts starting from slot 7, those of length 2 or 3 stretch to slot 0 or 1, respectively, and
the corresponding maximum number of desired employees is 3 in slot 7 itself; unlike
that, shifts of length 4 also include slot 2 in which 4 employees shall be at duty.

® In [10], additionally, the average number of duties per week is considered.

{run(S,L,I)} <« range(S,L,I) (1
run(S,L,I) < run(S’,L+1,1),next(S’,S),0 < L)
run(S,L,I) < run(S,L+1,1),0 <L 3)

run(S, L, I+J) < run(S, L+1,1), shift(S,L,J) “)

< run(S,L,1+1),0 < I, ~run(S, L,I) ®))

< work(S,N), exceed(E), run(S,1, N+E+1) (6)

<~ work(S,N), shorten(F), F < N, ~run(S,1, N—F) @)

length(S,L,1,1) <« range(S,L,1I),run(S,L,I), ~run(S, L+1,1) ®)
length(S,L,1,J) < length(S,L,1+1,J—1),0 < I, ~run(S, L+1,1) ©)
shift(S,L,J) < length(S,L,1,J) (10)
shift(S, L, J) < shift(S’, L+1,J), next(S',S5),0 < L (1D
start(S,L,J) < range(S,L,J), next(S', S), shift(S, L, J), ~shift(S ' L+1, J) (12)
W@P,S, I, shortage <~ opt(shortage, P, W),work(S,N),I € [1,N], ~run(S,1,1) (13)
W@P,S, 1, excess «~ opt(excess, P, W), work(S,N), run(S,1,I),N <1 (14)
W@P,T,L,select «~ opt(select, P,W),start(S, L, J), time(S,T) (15)

Fig. 3. ASP encoding of the shift design problem

Moreover, facts opt(shortage, P, W), opt(excess, P, W), and opt(select, P, W) specify
optimization criteria in terms of a priority P and a penalty weight W incurred in case
of violations. The priorities in Figure 2 tell us that the desired number of employees
shall be present in the first place, then the amount of additional employees ought to be
minimal, and third the number of utilized shifts in terms of day time and length should
be as small as feasible. Given that the criteria are already distinguished by priority, the
penalty weight of a violation of either kind is 1, thus counting particular violations to
assess schedules.

Our ASP encoding of the shift design problem is shown in Figure 3. For a slot S,
the intuitive reading of the predicate run(S, L,) is that at least / shifts including S and
L—1 or more successor slots are scheduled. This is further refined by length(S, L, 1, J),
telling that 1, ..., J of the scheduled shifts of exact length L may start from S, where
I—1 shifts that include at least L—1 successor slots are scheduled in addition. The predi-
cate shift(S, L, J) expresses that at least J of the scheduled shifts stretch to § and exactly
L—1 successor slots, and start(S, L, J) indicates that the J-th instance of such a shift in-
deed starts from S. A schedule is thus characterized by the number of (true) atoms of
the form start(S, L, J), yielding the amount of shifts of length L starting from slot S.
For example, the schedule displayed in Figure 1 is described by a stable model contain-
ing start(2,4, 1), start(2,4,2), start(2,4, 3), start(4,4, 1), start(4,4, 2), and start(7, 4, 1).
When further scheduling a shift of length 2 to start from slot 6, it would be indicated by
start(6, 2, 3), as it adds to the two shifts from slot 4 stretching to slot 6 and 7 as well.
However, the displayed schedule is the unique optimal solution, given that it matches
the desired employees and uses a minimum number of shifts, viz. shifts of length 4
starting from slot 2, 4, or 7, respectively.

In more detail, the potential start of an instance I of a shift of length L from slot S is
reflected by the choice rule (1) in Figure 3. Rule (2) propagates the start of a shift to its
L—1 successor slots, where the residual length is decreased down to 1 in the last slot of
the shift. For shifts with longer residual length L, rule (3) closes the interval between 1
and L, thus overturning any choice rules for potential starts of shifts of shorter length.
Moreover, this allows for pushing the J-th instance of a shift stretching to slot S to the
position /+J when [instances of shifts longer than the residual length L are scheduled,
as expressed by rule (4). The integrity constraint (5) asserts that the positions associ-
ated with scheduled shifts must be ordered by residual length. This condition eliminates
guesses on instances / of starting shifts, and it also provides a shortcut making intercon-
nections between positions of scheduled shifts explicit, which turned out as effective to
improve search performance. The additional integrity constraints (6) and (7) are appli-
cable whenever the deviation from numbers of desired employees is bounded above or
below, respectively. Note that it is sufficient to inspect atoms of the form run(S, 1, I) for
appropriate positions /, given that residual lengths are propagated via rule (3).

In order to derive the amount of scheduled shifts of exact residual length L, rule (8)
marks positions /, where instances may start, with 1 when the length L matches. In-
stances associated with smaller positions then count on by means of rule (9) unless
their positions are occupied by shifts with longer residual length. By projecting the po-
sitions out, rule (10) yields that 1,...,J shifts of length L may start from slot S. In
addition, longer shifts whose residual length decreases to L in S are propagated via
rule (11). Finally, rule (12) compares instances that may start to propagated shifts and
indicates the ones that indeed start from S'. As a consequence, a stable model represents
a schedule in terms of sequences of the form start(S, L,m), ..., start(S, L,n), express-
ing that n+1—m instances of a shift of length L start from slot S. It remains to assess
the quality of a schedule, which is accomplished by means of the weak constraints (13),
(14), and (15) for the three optimization criteria at hand. The penalty for deviating from
a number of desired employees is characterized in terms of the priority P and weight W
given in facts, a position / pointing to under- or overstaffing in a slot S, and the corre-
sponding keyword shortage or excess, respectively, for avoiding clashes with penalties
due to the utilization of shifts. The latter include the keyword select and map the slot S
of a starting shift of length L to its day time 7', so that the penalty W@P is incurred
at most once for a shift with particular parameters, no matter how many instances are
actually utilized.

A prevalent feature of our ASP encoding in Figure 3 is the use of closed intervals
(starting from 1) to represent quantitative values such as residual lengths or instances
of shifts. The basic idea is similar to the so-called order encoding [5], which has been
successfully applied to solve constraint satisfaction problems by means of SAT [14]. In
our ASP encoding, rule (4), (8), and (9) take particular advantage of the order encoding
approach by referring to one value, viz. L+1, for testing whether any shift with longer
residual length than L is scheduled. Likewise, the integrity constraints (6) and (7) as well
as the weak constraints (13) and (14) focus on value 1, standing for any residual length,
to determine the amount of employees at duty. That is, the order encoding approach
enables a compact formulation of existence tests and general conditions, which then
propagate to all target values greater or smaller than a certain threshold.

4 Discussion

In this work, we presented a novel approach to tackle the shift design problem by us-
ing ASP. Finding good solutions for shift design problems is of great importance in
different organizations. However, such problems are very challenging due to the huge
search space and conflicting constraints. Our work contributes to better understanding
the strengths of ASP technology in this domain and extends the state of the art for
the shift design problem by providing new optimal solutions for benchmark instances
first presented in [6]. Below we summarize the main observations of our experiments,
detailed in the full paper’, regarding the application of ASP to the shift design problem:

— ASP shows very good results for shift design problems that have solutions with-
out over- and understaffing. Our proposed ASP approach could provide optimal
solutions for almost all such benchmark instances (DataSet1 and DataSet2 in [6]).

— The first results for problems that do not have solutions without over- or under-
staffing are promising. Although our current approach could not reproduce best
known solutions for several problems, we were able to provide global optima for
four hard instances (from DataSet3 in [6]), not previously solved to the optimum.

— Our experimental evaluation indicates that our approach could also be used in com-
bination with other search techniques. For example, solutions computed by meta-
heuristic methods or min-cost max-flow techniques could be further improved by
ASP.

— In general, the computational results show that ASP has the potential to provide
good solutions in this domain. Therefore, our results open up the area of workforce
scheduling, which is indeed challenging for state-of-the-art ASP solvers. This is
most probably caused by the nature of the shift design problem, as there are few
hard constraints involved that could help to restrict the search space.

Concerning related work, we mention an ASP implementation of a problem from
the domain of workforce management [12], where the focus is on the allocation of
employees of different qualifications to tasks requiring different skills. The resulting
system 1is tailored to the specific needs of the seaport of Gioia Tauro. From the con-
ceptual point of view, the main difference to our work is that the encoded problem of
[12] is a classical allocation problem with optimization towards work balance, while
the problem we tackle here aims at an optimal alignment of shifts.

As future work, we plan to tackle the problem of optimization in shift design by
combining ASP with domain-specific heuristics in order to better guide the search, but
also exploiting off-the-shelf heuristics is a promising target for further investigation.
We are confident that ASP combined with heuristics is a powerful tool for tackling
problems in the area of workforce scheduling. This fact is already underlined by sig-
nificantly improved results obtained for branch-and-bound based optimization when
activating particular off-the-shelf heuristics. By using customized heuristics, tailored to
the specific problem at hand, the chance for further improvements is thus high.

Acknowledgments. This work was funded by AoF (251170), DFG (550/9), and FWF
(P25607-N23, P24814-N23, Y698-N23).

References

10.

11.

12.

13.

14.

. Abseher, M.: Solving shift design problems with answer set programming. Master’s thesis,

Technische Universitdt Wien (2013)

. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming as a

modeling language for course timetabling. Theory and Practice of Logic Programming 13(4-
5), 783-798 (2013)

. den Bergh, J., Belién, J., Bruecker, P., Demeulemeester, E., Boeck, L.: Personnel scheduling:

A literature review. European Journal of Operational Research 226(3), 367-385 (2013)

. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-

tions of the ACM 54(12), 92-103 (2011)

. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms

to scheduling problems. In: Proceedings of AAAI’94, pp. 1092-1097. AAAI Press (1994)

. Di Gaspero, L., Girtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The minimum

shift design problem. Annals of Operations Research 155(1), 79-105 (2007)

. Di Gaspero, L., Gértner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: Automated

shift design and break scheduling. In: Automated Scheduling and Planning, pp. 109-127.
Springer (2013)

. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-

gan & Claypool Publishers (2012)

. Guziolowski, C., Videla, S., Eduati, F,, Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez,

J.: Exhaustively characterizing feasible logic models of a signaling network using answer set
programming. Bioinformatics 29(18), 2320-2326 (2014)

Musliu, N., Schaerf, A., Slany, W.: Local search for shift design. European Journal of Oper-
ational Research 153(1), 51-64 (2004)

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision
support system for the space shuttle. In: Proceedings of PADL’01, pp. 169-183. Springer
(2001)

Ricca, F,, Grasso, G., Alviano, M., Manna, M., Lio, V., liritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Pro-
gramming 12(3), 361-381 (2012)

Soininen, T., Niemelé, I.: Developing a declarative rule language for applications in product
configuration. In: Proceedings of PADL’99, pp. 305-319. Springer (1998)

Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2), 254-272 (2009)

