
Improving Coordinated SMT-Based System Synthesis
by Utilizing Domain-Specific Heuristics

B. Andres1, A. Biewer2, J. Romero1, C. Haubelt3, T. Schaub1,4 ?

1University of Potsdam 2Robert Bosch GmbH 3University of Rostock 4INRIA Rennes

Abstract. In hard real-time systems, where system complexity meets stringent
timing constraints, the task of system-level synthesis has become more and more
challenging. As a remedy, we introduce an SMT-based system synthesis approach
where the Boolean solver determines a static binding of computational tasks to
computing resources and a routing of messages over the interconnection network
while the theory solver computes a global time-triggered schedule based on the
Boolean solver’s solution. The binding and routing is stated as an optimization
problem in order to refine the solution found by the Boolean solver such that the
theory solver is more likely to find a feasible schedule within a reasonable amount
of time. In this paper, we enhance this approach by applying domain-specific
heuristics to the optimization problem. Our experiments show that by utilizing
domain knowledge we can increase the number of solved instances significantly.

1 Introduction

Embedded systems surround us in our daily life. Often, we interact or rely on them
without noticing. Embedded systems are typically small application-specific computing
systems that are part of a larger technical context. A computer program executed on a
processor of an embedded system usually controls connected mechanical or electric
components. For example, in a car, an embedded system manages the engine of the car
while another one corrects over- and under-steering, e.g., when a driver goes into a bend
too quickly.

Today, designing a new embedded system that serves a predefined purpose is be-
coming more and more challenging. With increasing system complexity due to regu-
latory requirements, customer demands, and migration to integrated architectures on
massively parallel hardware, the task of system-level synthesis has become increas-
ingly more challenging. During synthesis, the spatial binding of computational tasks
to processing elements (PEs), the multi-hop routing of messages, and the scheduling
of tasks and messages on shared resources has to be decided. Computational tasks can
be viewed as small computer programs that realize control functions where messages
between tasks are used to exchange information. In safety critical control application,
e.g., the Electronic Stability Control (ESP) from the automotive domain, the correct
functionality of an embedded system does not only depend on the correct result of a
computation but also on the time, i.e. the schedule, when the result is available. Such
systems are called (embedded) hard real-time systems.
? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.



2

With increasing complexity and interdependent decisions, system design demands
for compact design space representations and highly efficient automatic decision en-
gines, resulting in automatic system synthesis approaches. Previously presented ap-
proaches might fail due to the sheer system complexity in context of guaranteeing the
timeliness of hard real-time systems. System synthesis based on satisfiability modulo
theories (SMT) has been shown to solve this problem by splitting the work among a
Boolean solver and a theory solver [1].

In the work at hand, we employed an answer set programming (ASP) solver to de-
cide the static binding of computational tasks to the PEs of a given hardware architec-
ture. Furthermore, the ASP solver determines for each message a static routing on the
hardware architecture’s network. Based on these decisions, a linear arithmetic solver
(T -solver) then computes global time-triggered schedules for all computational tasks
as well as messages. Here, the T -solver’s solution guarantees the timing constraints
of the system by construction. However, most often the time-triggered scheduling be-
comes too complex and the T -solver cannot decide within a reasonable amount of time
whether a binding and routing (B&R) provided by the ASP solver is schedulable or not.
As a remedy, in [2] we introduced a coordinated SMT-based system synthesis approach
that shows a significant better scalability compared to previous SMT-based synthesis
approaches. We will present our proposed approach in detail in Section 3.

In [3] we presented a declarative framework for domain-specific heuristics in an-
swer set solving. The approach allows modifying the heuristic of the solver directly
from the ASP encoding. In this paper we show that the coordinated SMT-based system
synthesis approach is considerably improved by applying domain-specific heuristics to
the ASP solver clasp.

This paper is structured as follows. In Section 2 we provide a formal problem defi-
nition of the system synthesis problem for hard real-time systems. Furthermore, a for-
mal system model is introduced. Section 3 explains our approach to solve the system
synthesis problem in detail. In Section 4 we provide an introduction of the concepts en-
abling domain-specific heuristics in clasp along with the domain-specific heuristics
we specified. The experimental results reported in Section 5 show the effectiveness of
our heuristics. Section 6 concludes this paper.

2 Problem Formulation and System Model

In this section we introduce a formal system model that will be used in the remain-
der of this paper. Furthermore, on basis of our system model, we provide a problem
formulation of the synthesis problem for hard real-time systems.

In the paper at hand the platform or hardware architecture is modeled as a directed
graph gP = (R,ER), the platform graph. Vertices R represent all possibly shared re-
sources of a platform whereas the directed edges ER ⊆ R×R model interconnections
between resources (cf. Figure 1). The shared resources R can further be partitioned into
tiles Rt and routers Rr, with Rt∪Rr = R and Rt∩Rr = ∅. A tile t ∈ Rt implements
exactly one processing element (PE) combined with local memory and is able to execute
computational tasks. A router r ∈ Rr is able to transfer messages from one hardware
resource to another. A mesh of interconnected routers form a so-called network-on-



3

t11

m1
1

t21

m2
1

t31

m3
1

t41

r1t

r3t

r1r r2r

r3r r4r

r2t

r4t

Fig. 1. An instance of our system synthesis model consisting of an application graph (left), a
platform graph (right), and bindings of computational tasks to tiles.

chip (NoC). NoCs are a preferred communication infrastructure as they scale well with
a growing number of tiles that have to be interconnected in massive-parallel hardware
architectures. For the sake of clarity, the remainder of this paper assumes a homoge-
neous hardware architecture, i.e., tiles possess the same processing power and routers
forward messages within the same delay.

The applications that have to be executed on a hardware architecture are modeled
by a set of applications A. Each application Ai ∈ A is specified by the tuple

Ai = (giA, P
i, Di).

An application in hard real-time systems often controls a mechanical system and there-
fore requests to be executed periodically with the period P i. In order to guarantee sta-
bility of a control algorithm, all computations and communication of an application
have to be completed within the constrained relative deadline Di ≤ P i.

Furthermore, each application Ai ∈ A is modeled as a directed acyclic graph giA =
(Ti,Ei

A), the application graph (cf. Figure 1). The set of nodes Ti = Ti
t ∪Ti

m is the
union of the set of computational tasks of an application Ti

t and the set of messages of
an application Ti

m. The directed edges Ei
A ⊆ (Ti

t ×Ti
m) ∪ (Ti

m ×Ti
t) of the graph

giA specify data dependencies between computational tasks and messages or vice versa.
With each computational task t ∈ Ti

t a worst-case execution time (WCET) Ct is
associated that holds for all PEs. The workload Wt generated by a task t ∈ Ti

t on a
PE of tile is computed by Wt = Ct/Pi. Concerning messages m ∈ Ti

m, the remainder
of the paper assumes that a message equals an atomic entity that is transferred on the
resources of the hardware architecture. With this definition, the worst-case transfer time
of a message m ∈ Ti

m on a resource r ∈ Rr is defined by C(m,r).

Problem Formulation In the design of time-triggered real-time systems, system
synthesis is the task of computing a valid implementation I = (B,Rm,S) consisting
of a binding B ⊆

(⋃
Ai∈A Ti

t

)
×Rt, a routing of each message on a tree of resources

Rm ⊆ Rr and a feasible global time-triggered schedule S. Here, the binding B con-
tains for each computational task t ∈ Ti

t of an application Ai ∈ A exactly one tile it is
executed on. A routing Rm defines a set of connected resources of the hardware archi-



4

tecture that are utilized during the transfer of a message. The time-triggered schedule

S = {s(λ,r)|λ ∈ (Ti
t ∪Ti

m),Ai ∈ A, r ∈ Rm ∨ (λ, r) ∈ B}

contains the start times s(λ,r), generally in clock cycles, for each computational task
that starts its execution on a tile and the start time of the transfer for each message on
the resources on which the message is routed.

Example Figure 1 presents an example of the system synthesis problem as de-
scribed above. The platform graph gP = (R,ER) defines a regular 2x2 mesh with four
tiles and four routers. All tiles are exclusively connected to exactly one router, while all
routers are additionally connected to a set of two other routers. The example consists
of only one application A1 with four computational tasks and three messages. For the
sake of clarity, we choose P1 = 10, D1 = 9, Ct11 = Ct31 = Ct41 = 1, Ct21 = 2 and
∀m ∈ T1

m, ∀r ∈ Rr : C(m,r) = 1. One possible implementation I = (B,Rm,S) is
then given by the following sets:

B = {(t11, r2t ), (t21, r1t ), (t31, r4t ), (t41, r3t )}
Rm1

1
= {r2r , r1r}

Rm2
1
= {r1r , r3r , r4r}

Rm3
1
= {r1r , r3r}

S = { s(t11,r2t ) = 0, s(m1
1,r

2
r)

= 1, s(m1
1,r

1
r)

= 2, s(t21,r1t ) = 3,

s(m2
1,r

1
r)

= 5, s(m2
1,r

3
r)

= 6, s(m2
1,r

4
r)

= 7, s(t31,r4t ) = 8,

s(m3
1,r

1
r)

= 6, s(m3
1,r

3
r)

= 7, s(t41,r3t ) = 8 }

3 SMT-based System Synthesis

In the following section we present our SMT-based approach to solve the system syn-
thesis problem introduced in the previous section. SMT-based system synthesis ap-
proaches, e.g., [1, 4, 5], gained a lot of attention in domains with complex system spec-
ifications and stringent timing constraints such as the automotive domain.

In SMT-based system synthesis, the work is split between a Boolean solver and a
theory solver (T -solver) [1] (cf. Figure 2). Here, the Boolean solver computes the static
bindings of computational tasks to the PEs of a platform graph and the multi-hop routes
of messages on a tree of resource of the platform. In contrast to related work [1, 4, 5],
our approach implements the answer set solver clasp instead of a SAT solver, since
answer set programming (ASP) has been shown to scale better in the determination of
multi-hop routes for messages in the densely connected hardware architectures investi-
gated in this paper [6].

3.1 Binding and Routing Using Answer Set Programming (ASP)

The ASP facts based on the formal model of the platform graph gP = (Rt ∪Rr,ER)
and the applications Ai = (giA = (Ti

t ∪Ti
m,E

i
A), P i, Di) ∈ A (cf. Section 2) for a

system instance are defined as follows:



5

Time-Triggered Scheduling (T -solver)
Hierarchical Time-Triggered Scheduling

Feasible Binding and
Routing w.r.t.

Timing Constraints?

Conflict
Analysis

no

Synthesis Problem Instance

Answer Set Solver clasp
Binding of Computational Tasks
and Routing of Messages

Scheduling-aware
Binding and

Routing Refinement

Domain-Specific
Heuristics

Feasible Solution

yes

Restrict Search Space
of Answer Set Solver

Fig. 2. Overview of the coordinated SMT-based synthesis approach introduced in this paper. We
propose to utilize domain-specific heuristics in order to improve previous work [2].

{task(t,Wt). | t ∈ Ti
t, A

i ∈ A,Wt = b1000 · Ct/Pic} ∪
{send(t,m). | (t,m) ∈ Ei

A, t ∈ Ti
t,m ∈ Ti

m, A
i ∈ A} ∪

{receive(t,m). | (m, t) ∈ Ei
A, t ∈ Ti

t,m ∈ Ti
m, A

i ∈ A} ∪
{tile(t). | t ∈ Rt} ∪

{router(r). | r ∈ Rr} ∪
{edge(r, r̃). | (r, r̃) ∈ ER}.

(1)

The ASP encoding of the binding and routing problem is depicted in Figure 3. The
rule in Line 1 specifies that every computational task provided in an instance must be
mapped to exactly one tile (PE). Observe that the mapping of computational tasks t to
a tile r ∈ Rt is represented by atoms bind(t,r) in an answer set. This provides the
basis for specifying the routing of messages. The integrity constraint in Line 2 ensures
that the workload of every tile does not exceed its maximal utilization. The routing is
carried out by (recursively) constructing non-branching acyclic routes from resources
of communication targets back to the resource of a sending task, where the routing
stops. Line 4 (resp. 5) identifies the tile the sending (resp. receiving) task is bound to.
The choice rule in Line 6 connects each encountered target resource to exactly one
predecessor, with the only exception that the target resource is not the resource the
sender is bound to. Each connected resource is then identified as new target resource
in Line 7. Finally, the integrity constraint in Line 8 requires that each resource with a
sending task must be a target of the message.

3.2 Time-Triggered Scheduling

Based on the binding and routing decisions by the answer set solver, a time-triggered
scheduling problem in linear arithmetic is formulated and solved by the T -solver. The
workload is splitted since large numbers are involved in time-triggered scheduling that
do not scale well in Boolean solvers. The T -solver computes the start times for each
computational task on a PE and each message on the resources of the NoC such that
all timing constraints are fulfilled. All constraints in the scheduling formulation are
compositions of terms that are formulated in quantifier-free integer difference logic



6

1 1 {bind(T,R):tile(R)} 1 :- task(T,_).
2 :- tile(R), 1001 #sum{U,T:bind(T,R),task(T,U)}.

4 root(C,R) :- send(T,C), bind(T,R).
5 sink(C,R) :- receive(T,C), bind(T,R).
6 1 {reached(C,R,S):edge(R,S)} 1 :- sink(C,S), not root(C,S).
7 sink(C,R) :- sink(C,S), reached(C,R,S).
8 :- root(C,R), not sink(C,R).

Fig. 3. ASP encoding of the binding and routing problem.

(QF IDL), i.e., s− s̃ ≤ k, with s, s̃ ∈ N being a start time variable of a computational
task or message and a constant k ∈ N. Constraints in the scheduling problem ensure
for example that one resource is utilized at most by one computational task or message
at the same time. Furthermore, constraints ensure the integrity of data flows between
computational tasks and/or messages. Due to the limited space of the paper a detailed
description of the scheduling problem and its formulation is omitted, but can be found
in [7]. Our formulation of the scheduling problem is an adapted version of the one
presented in [5].

3.3 Coupling of the Answer Set Solver and T -solver

If the T -solver is able to derive a time-triggered schedule based on the ASP solvers
decision, the synthesis finishes with a valid solution. In contrast, if the T -solver proves
that a feasible schedule based on the binding and routing does not exist, a conflict analy-
sis is started. Related work has shown that deriving a minimal reason (unsatisfiable core
or irreducible inconsistent subset) why a schedule cannot be found can significantly in-
crease scalability of SMT-based system synthesis [4].

In order to decrease the time for the T -solver to prove that a binding and routing
is not schedulable and to speed up a subsequent conflict analysis, we implemented a
hierarchical scheduling scheme that has been established in previous work [5]. The T -
solver decides feasibility on subproblems before a schedule is derived for the complete
system. Here, deciding feasibility, as well as the subsequent conflict analysis, of smaller
subproblems tends to be much faster. Similar to [2], we apply the following hierarchical
scheduling scheme:

1. Schedule the computational tasks on each tile independently (TS).
2. Schedule the computational tasks on each tile including incoming and outgoing

messages from the tile independently (CS).
3. Schedule clusters of independent applications independently (AS).

If all scheduling problems in a hierarchical stage can be solved, the T -solver starts
to solve problems of the subsequent stage. In (AS), clusters of independent applica-
tions are specified such that no hardware resource is shared between two clusters. How-
ever, depending on the binding and routing, (AS) may be equivalent to the problem of
scheduling the complete system.



7

Our approach implements a modified deletion filter [5] and forward filter [8] to
compute a minimal reason why a schedule cannot be found. The deletion filter is applied
on infeasible problems of (TS) whereas the forward filter is applied in conflict analysis
in stages (CS) and (AS). Based on the first minimal reason from the conflict analysis
in a hierarchical stage, the search space of the answer set solver is pruned via integrity
constraints. As a result, further binding and routing solutions computed by the answer
set solver do not lead to the same infeasibility that has already been observed. Note that
the answer set solver is just halted while the T -solver analyses a binding and routing.
We do not restart the answer set solver repeatedly.

If a conflict has been found in scheduling hierarchy (TS), the deduced minimal
reason only contains computational tasks. The constraint added to the context of the
answer set solver ensures that the same set of conflicting computational tasks will not
be bound to any PE again. In contrast, the result of a conflict analysis in stage (CS) and
(AS) is a set of computational tasks and messages. Without breaking symmetries, the
search space of the answer set solver is pruned by the concrete binding and routing of
the conflicting computational tasks and messages. Once the search space of the answer
set solver has been pruned, a new binding and routing is computed and subsequently
analysed in the T -solver. This iterative process stops once a feasible time-triggered
schedule has been found or if the answer set solver returns that no further binding
and routing can be derived. In the latter case the SMT-based system synthesis approach
proved that no feasible solution to the synthesis problem exists for the provided problem
specification.

3.4 Coordinated SMT-Based System Synthesis

Up to this point, we introduced our SMT-based system synthesis approach that is in
general applicable to solve the synthesis problem presented in Section 2. However, a
major drawback of the synthesis approach described so far lies in the often very time
consuming scheduling in the T -solver. In extreme cases, deciding schedulability even
of small subproblems can take up hours. This is especially the case if the workload
of a PE is close to the maximum utilization of 100%. As a remedy, in [2] we showed
that the scalability of SMT-based synthesis can be improved considerably if the answer
set solver and the T -solver are coordinated. The basic idea of the coordinated SMT-
based synthesis is to let the answer set solver compute bindings and routings where
schedulability can be decided within a reasonable time by the T -solver. This is real-
ized by assigning a constant time budget to the answer set solver exclusively to refine
(optimize) an initial binding and routing solution. With this scheduling-aware binding
and routing refinement (cf. Figure 2) the T -solver is expected to decide schedulability
within a reasonable amount of time. Despite the additional time budget for the refine-
ment, the coordinated SMT-based synthesis has been shown to scale significantly better
than SMT-based approaches without coordination [2].

In the coordinated SMT-based synthesis approach of this paper, the scheduling-
aware binding and routing refinement is realized by using a lexicographical optimiza-
tion in clasp. With the highest priority, the load balancing of the PEs of the platform
is optimized. Figure 4 depicts the encoding that realizes a simplified load balancing
strategy. The basic idea of the strategy is to allow the solver to successively reduce the



8

1 maxu(1000).
2 {maxu(MU-slice)} :- maxu(MU), omu(Mean), MU-slice>Mean.
3 :- tile(R), maxu(MU), MU+1 #sum {U,T:bind(T,R),task(T,U)}.
4 #maximize{1@2,MU:maxu(MU)}.

6 #minimize{1@1,C:reached(C,R,S)}.

Fig. 4. Encoding of the scheduling-aware binding and routing refinement realized as lexicograph-
ical optimization of the maximal utilization of all tiles and the number of routed messages.

maximal utilization of PEs and then maximize the number of reductions. Beginning
with a maximal utilization (maxu) of 1000 (Line 1) the choice rule in Line 2 allows to
generate an additional maxu by reducing an existing one by a predefined amount slice,
as long as the new maxu is greater then the optimal mean utilization omu(Mean). The
integrity rule in Line 3 enforces all maximal utilizations and Line 4 maximizes the
number of generated maxu. Note that we used this simplified strategy instead of a true
minmax optimization due to performance reasons. With the second highest priority in
the lexicographical optimization, we minimize the total number of routed messages in
a system as shown in Line 6. While the coordinated SMT-based synthesis approach is
part of the current state-of-the-art in symbolic system synthesis, the paper at hand aims
on improving the coordinated approach by utilizing domain-specific heuristics in the
answer set solver (cf. green box in Figure 2). The following section describes in de-
tail our formulated heuristics and the implementation details that enable the usage of
domain-specific heuristics in clasp.

4 Heuristics

ASP provides a rich modelling language together with highly performant yet general-
purpose solving techniques. Often these general-purpose solving capacities can be
boosted by domain-specific heuristics. For this reason, we introduced a general declara-
tive framework for incorporating domain-specific heuristics into ASP solving [3]. The
rich modelling language is used to specify heuristic information, which is exploited by a
dedicated Domain heuristic in clasp when it comes to non-deterministically assign-
ing a truth value to an atom. Although this bears the risk of search degradation [9], it has
already indicated great prospects by boosting optimization and planning in ASP [3]. In
this framework, heuristic information is represented within a logic program by means
of the dedicated predicate heuristic. For expressing different types of heuristic
information, the following basic modifiers are available: sign, level, init and
factor. Here we explain the first two, that will be applied in our experiments, and
refer the reader to [3] for further details. Modifier sign allows for controlling the truth
value assigned to variables subject to a choice within the solver. With 1 representing
true and -1 false, repectively. For example, given the program
{a}. _heuristic(a,sign,1).

atom a is chosen with positive sign and the answer set { heuristic(a,sign,1),a}
is produced, while replacing 1 by -1we obtain { heuristic(a,sign,-1)}. Mod-



9

1 % H1 - bindings first, then routing
2 _heuristic(bind(T,R), level,2) :- task(T,_), tile(R).
3 _heuristic(reached(C,R,S),level,1) :- edge(R,S), send(_,C).
4 % H2 - discourage routing
5 _heuristic(reached(C,R,S),sign,-1) :- edge(R,S), send(_,C).
6 % H3 - bind sender and receiver together
7 _heuristic(bind(T’,R),sign,1) :-
8 bind(T,R), send(T,C), receive(T’,C).
9 % H4 - Clustering computational tasks

10 _heuristic(bind(T,R),true,A+2) :-
11 bind(T’,R), send(T’,M), receive(T,M), belongs(A,T).
12 _heuristic(bind(T,R),true,A+1) :-
13 bind(T’,R’), send(T’,M), receive(T,M),
14 neighbor(R’,R), belongs(A,T).
15 _heuristic(bind(T,R),level,A) :-
16 belongs(A,T), task(T,_), tile(R).

Fig. 5. Domain-specific heuristics used in our system synthesis approach.

ifier level establishes a ranking among atoms such that unassigned atoms of
highest rank are chosen first, with the default rank of 0. Extending the previous pro-
gram with
{b}. _heuristic(b,sign, 1).
:- a, b. _heuristic(a,level,1).

the solver chooses first a (because its level is 1) with a positive sign, and returns the an-
swer set where a is true and b is false. Adding the fact heuristic(b,level,2)
atom b is chosen first with positive sign, and we obtain the answer set with b true
and a false. Further extending the program with the fact heuristic(a,level,3)
yields once more the solution with a true and b false. This illustrates the fact that
when an atom gets two values for the same modifier (in the example, 1 and 3 for
the level of a), the one with higher absolute value takes precedence. The modifier
true (false) is defined as the combination of a positive (negative) sign and a
level. For instance, in the last example we could use heuristic(a,true,3)
instead of heuristic(a,sign,1) and heuristic(a,level,3). Note that
domain heuristics are dynamic, in the sense that they depend on the changing partial
assignment of the solver. As an example, consider the following program:

1 _heuristic(a,true, 1). {a;b}.
2 _heuristic(b,sign, 1) :- a.
3 _heuristic(b,sign,-1) :- not a.

The solver starts setting a to true, then the rule in Line 2 is fired, b is selected with a
positive sign and the answer set with a and b is produced. On the other hand, replacing
modifier true by falsewe obtain instead a false and b false. This ability to represent
dynamic heuristics is crucial to boost the performance of our system.

In order to refine the binding and routing provided by clasp to the T -solver, we
defined a number of different domain-specific heuristics. Figure 5 presents the heuris-
tics that where most successful in increasing the number of solved instances and re-



10

ducing the overall synthesis time. Except when one heuristic is overriden by another
(e.g., H1 and H2 by H4) it makes sense to combine the different heuristics. In fact, our
experiments in Section 5 show that this is highly advantageous.

The first heuristic H1 (Line 2-3) places a higher level on binding before routing,
since the routing of messages is highly dependent on the binding of their corresponding
tasks. Analysis of the answer sets provided by clasp shows that many messages are
routed over the whole platform even though shorter paths exist. This is one of the major
causes for failure during scheduling, since the T -solver has to consider all resources a
message is routed over. To reduce unnecessary detours, the heuristic H2 in Line 5 gives
a negative sign to all reached/3 atoms.

Another technique to reduce the number of routed messages is to bind tasks ex-
changing a message with each other onto the same tile. This is stated by the heuristic
H3 (Line 7), provided the sender is already bound to a tile.

The idea of H3 is extended in H4 (Line 10-16) where a task should be bound prefer-
ably onto the same tile as its corresponding communication partner or, to a lesser de-
gree, to a neighboring tile. Note that only the rules for binding a receiving task to its
sender are shown. The heuristics for encoding that a sending task should be bound
to its receiver are analogous to the ones presented. Additionally, H4 tries to bind all
task of one application before binding any other task. This allows to cluster tasks of
one application onto the same tile before its full utilization is reached. The newly used
fact neighbor/2 identifies two neighboring tiles, while belongs(A,T) identifies
tasks of the same application A and provides an ordering of applications. The identifier
A is chosen in such a way that there are no conflicts with the offset of the heuristics in
Lines 10 and 12. Note that both heuristics H3 and H4 are dynamic.

5 Experiments

In the following section we present the experimental results which quantify the im-
provement of our domain-specific heuristics from the previous section in coordinated
SMT-based system synthesis introduced in Section 3.

All experiments were performed on a dual-processor Linux workstation containing
two quad-core 2.4GHz Intel Xeon E5620 and 24GB RAM. All benchmark runs utilized
only one CPU core and were carried out sequentially. We report average values over
three independent runs per instance, to reduce the non-deterministic factors during the
synthesis, e.g., through interrupting the process.

As answer set solver we implemented the python module gringo, containing
clasp (version 3.1.0) with command-line switch --configuration=auto.
In our initial tests unsatisfiable core based strategies (command-line switch
--opt-strategy= usc,4) revealed to be highly efficient for this problem class
and is taken as reference. Due to the algorithmic approach of unsatisfiable core based
optimization, domain-specific heuristics are not working with unsatisfiable core based
optimization strategies. We report results for the domain-specific heuristics with branch
and bound based optimization (command-line switch --opt-strategy=bb,2).
Both optimization strategies were selected as the best strategies by comparison of the
results on test instances.



11

strategy / solved instances [of 60] successful couplings solving time
heuristic completely partially unsolved synthesis B&R Scheduling Total
usc optimization 4 32 24 35% 118 157.46 83.74 241.20
b&b optimization 0 20 40 13% 199 280.03 154.76 434.79
structural heuristic 34 8 18 62% 16 241.91 7.05 248.96
H1 12 30 18 44% 115 169.37 89.77 259.14
H1 + H2 17 28 15 53% 102 150.86 51.14 202.00
H1 + H2 + H3 14 38 8 59% 99 145.67 116.73 262.39
H4 34 25 1 79% 40 54.75 56.16 110.90
H2 + H4 35 19 6 75% 47 70.68 27.78 98.46
H4 + structural heuristics 38 17 5 79% 36 48.00 43.48 91.48

Table 1. Experimental results of our benchmarks. First two lines are optimization only, while the
lower ones include domain-specific heuristics and optimization (with –opt-strategy=bb,2).

As T -solver we implemented yices (version 2.3.0, [10]) with command-line argu-
ments --logic=QF IDL and --arith-solver=floyd-warshall. Addition-
ally, the Z3 theorem prover (version 4.3.2, [11]) in logic QF IDL was used in the for-
ward filter in conflict analysis.

In our experiments, the overall time limit for a complete system synthesis run was
set to 900s. After this time, a still running benchmark was interrupted and documented
as unsolved. The time for clingo to refine an initial binding and routing solution (op-
timization time) was set to 1s. Note that in our tests more optimization time decreased
the number of successful synthesised systems. We conjecture that the additional time
spend on optimization reduces the time in the SMT-based synthesis approach to learn
“just enough” infeasible binding and routing solutions within the overall time limit.
However, the chosen optimization time is still sufficient to refine solutions such that the
T -solver can decide feasibility within a reasonable amount of time.

Concerning the instances of our experiments, the platform graphs gR = (R,ER)
of all the system synthesis models were set to a regular 5x5-mesh composed of 25
tiles and 25 routers. The characteristics of an application Ai = (giA, Pi, Di) in the
system’s application set were generated similar to the ones reported in [2], representing
relevant problem instances in the field of system synthesis. As a difference, the total
system utilization in our instances is 70% whereas the reported instances in [2] utilized
only up to 40%. In different tests we found that a system’s utilization of nearly 70%
results in significant harder instances for the coordinated synthesis approach compared
to utilization around approximately 60%. Overall, we generated 60 different system
instances with the average number of applications per instance being 88 ± 2, a total
number of computational tasks of 391± 5 and a total number of messages of 303± 5.

Table 1 presents the selected results of our experiments. The first column presents
the strategy and / or heuristic used in the experiment run. “Structural heuristics” refer-
ences the commandline switch --dom-mod=5,8, automatically applying an heuristic
with the false modifier to all atoms involved in a minimization statement. Note that all
maximization statements are reduced to minimization before solving. The combination
of multiple heuristics is depicted by “+”. The next three columns depict the number of
instances that where solved completely, partially or not at all, meaning that all three,
some, or none of the three independent runs per instance were successful. “Success-



12

ful synthesis” shows the amount of test runs that finished successfully in percent of
overall 180 runs, “couplings” present the average number of couplings needed to solve
one instance run with the respective approach. Note that both the resulting numbers
are rounded up to integer values. The table concludes with the average time needed to
solve the binding and routing (“B&R”), the scheduling and the complete system syn-
thesis problem (“total”) in seconds without instances that exceeded the time limit of
900 seconds. Note that “B&R” includes the time for the scheduling-aware binding and
routing refinement (optimization time of 1s per answer set solver call).

Although only a few (most interesting) heuristic combinations are shown, we con-
ducted tests with over 70 different strategy / heuristic combinations in total. Many of
these combinations yielded average or worse results. Test runs without optimization,
i.e., without coordination of the answer set solver and the T -solver, are omitted from
the table. None of these synthesis runs were successful (even with the application of
heuristics). Extensive data of our tests accompanied by the full encoding can be found
in the Labs section of [13].

Comparing the result of the different heuristics reveals that dynamic heuristics are
useful in practice and that the combination of different heuristics is most efficient. Note
that the heuristic H4 is a stronger reformulation of H1 and H3.

While the structural-based heuristic solves as many instances as the best domain-
specific heuristic H4 completely, a large number of instances were not solved at all. The
structural-based heuristic also has a huge unbalance of workload between clasp and
yices, with the pure B&R solving time without optimization over one order of magni-
tude larger than in the other approaches. The reason for this is that the structural-based
heuristic is very aggressive in finding an optimal solution, with the first solution being
very close to it. While this is very effective in terms of couplings needed, the overall run-
time is worse than in the domain-specific heuristics. We suspect that structural-based
heuristic does not scale well when the number of necessary routings increases. The
combination of H4 and the structural heuristic is controversial. While it solves 4 more
instances completely, the same number of instances were unsolved.

Our experiments show that the application of domain-specific heuristics yields a
significant increase of successful synthesis runs with almost twice as many compared
to the best strategy relying only on the scheduling-aware binding and routing refine-
ment (using a clasp’s unsatisfiable core based optimization strategy). At the same
time, both the average number of couplings and the total synthesis time is reduced.
Furthermore, and more importantly, the number of completely solved instances were
increased by a factor of 8.

6 Conclusion

In this paper we presented an SMT-based synthesis approach for hard real-time sys-
tem synthesis. The approach at hand utilizes the answer set solver clasp for gen-
erating a binding and routing and the linear arithmetic solver yices (T -solver) for
time-triggered scheduling based on clasp’s decisions. We discussed that a scheduling-
aware refinement of the solution provided by clasp is needed such that the T -solver
is able to solve the scheduling problem within a reasonable amount of time. Based



13

on the optimization-based refinement of [2] we apply domain-specific heuristics, uti-
lizing a novel technique [3] for specifying heuristics for clasp. A number of effi-
cient domain-specific heuristics were proposed and benchmarked against optimization-
only approaches, as well as structural heuristics provided by clasp. The results of the
benchmark show that our domain-specific heuristics had a significant positive impact
on both instances solved as well as on the runtime for solved instances. It is expected
that the approach of utilizing domain-specific heuristics for the refinement of the solu-
tions provided by the Boolean solver can be applied to other applications that combine
Boolean with theory solving as well.

Future work includes the search for additional heuristics / approaches toward abol-
ishing the need for optimization, currently consuming approximately half of the total
synthesis time. We would also like to explore the possible advantages of a tighter inte-
gration of the Boolean and the theory solver as described in [8, 12]. To the best of our
knowledge none support domain-specific heuristics as utilized in clasp (3.1.0) yet.
Acknowledgments. This work was partly funded by DFG (550/9).

References

1. Reimann, F., Glaß, M., Haubelt, C., Eberl, M., Teich, J.: Improving platform-based system
synthesis by satisfiability modulo theories solving. In Proceedings of CODES+ISSS. (2010)
135–144

2. Biewer, A., Andres, B., Gladigau, J., Schaub, T., Haubelt, C.: A symbolic system synthesis
approach for hard real-time systems based on coordinated SMT-solving. In Proceedings of
DATE. (2015) 357–362

3. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific
heuristics in answer set programming. In Proceedings of AAAI. Press (2013) 350–356

4. Reimann, F., Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Symbolic system synthesis
in the presence of stringent real-time constraints. In Proceedings of DAC. (2011) 393–398

5. Lukasiewycz, M., Chakraborty, S.: Concurrent architecture and schedule optimization of
time-triggered automotive systems. In Proceedings of CODES+ISSS. (2012) 383–392

6. Andres, B., Gebser, M., Glaß, M., Haubelt, C., Reimann, F., Schaub, T.: Symbolic system
synthesis using answer set programming. In Proceedings of LPNMR. Springer (2013) 79–91

7. Biewer, A., Munk, P., Gladigau, J., Haubelt, C.: On the influence of hardware design options
on schedule synthesis in time-triggered real-time systems. In Proceedings of MBMV. (2015)
105–114

8. Ostrowski, M., Schaub, T.: ASP modulo CSP: The clingcon system. Theory and Practice of
Logic Programming 12(4-5). (2012) 485–503

9. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs Restricted Cut in a Tableau Method for
Boolean Circuits. Annals of Mathematics and Artificial Intelligence 44(4). (2005) 373–399

10. Dutertre, B.: Yices 2.2. In Proceedings of CAV. Springer (2014) 737–744
11. Moura, L., Bjørner, N.: Z3: An efficient smt solver. In Proceedings of TACAS. Springer

(2008) 337–340
12. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set programming

and satisfiability modulo theories. In Proceedings of GTTV. (2011) 1–13
13. Potassco website. http://potassco.sourceforge.net


