
Symbolic System Synthesis Using Answer Set
Programming

Benjamin Andres1, Martin Gebser1, Torsten Schaub1, Christian Haubelt2, Felix
Reimann3, and Michael Glaß3

1 Institute for Computer Science,
University of Potsdam, Germany

{bandres,gebser,torsten}@cs.uni-potsdam.de
2 Institute of Applied Microelectronics and Computer Engineering

University of Rostock, Germany
christian.haubelt@uni-rostock.de

3 Chair for Hardware/Software Co-Design
University of Erlangen-Nuremberg, Germany
{felix.reimann,glass}@cs.fau.de

Abstract. Recently, Boolean Satisfiability (SAT) solving has been proposed to
tackle the increasing complexity in high-level system design. Working well for
system specifications with a limited amount of routing options, they tend to fail
for densely connected computing platforms. This paper proposes an automated
system design approach employing Answer Set Programming (ASP). ASP pro-
vides a stringent semantics, allowing for an efficient representation of routing
options. An automotive case-study illustrates that the proposed ASP-based sys-
tem design approach is competitive for sparsely connected computing platforms,
while it outperforms SAT-based approaches for dense Networks-on-Chip by an
order of magnitude.

1 Introduction

Embedded computing systems surround us in our daily life. They are application-
specific computing systems embedded into a technical context. Examples of embedded
computing systems are automotive, train, and avionic control systems, smart phones,
medical devices, home and industrial automation systems, etc. In contrast to general
purpose computing systems, embedded computing systems are not only optimized for
performance; they additionally have to satisfy power, area, reliability, real-time con-
straints, to name just a few. As a consequence, the computing platform is adapted to the
given application. At the system-level, however, resulting embedded computing plat-
forms are still as complex as heterogeneous multi-processor systems, i.e., several dif-
ferent processing cores are interconnected and the memory subsystem is optimized for
the application as well. Finally, the application has to be mapped optimally onto the re-
sulting computing platform. In summary, embedded computing system design includes
many interdependent design decisions.

The increasing complexity of interdependent decisions in embedded computing sys-
tems design demands for compact design space representations and highly efficient

2 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

automatic decision engines, resulting in automatic system synthesis approaches. Espe-
cially, formal methods have shown to be useful in past. (Pseudo-)Boolean Satisfiability
(PB/SAT; [2]) solving has been successfully applied in the past to such problems. In
particular, explicit modeling of routing decisions in PB formulas has recently enhanced
the range of applicability of PB/SAT solvers in synthesizing networked embedded sys-
tems [10].

PB/SAT-based approaches to system synthesis work well in the presence of system
specifications offering a limited amount of routing options. Such system specifications
can be found, e.g., in the automotive or bus-based Multi-Processor System-on-Chip
(MPSoC) domain. However, there is a trend towards densely connected networks also
in the embedded systems domain. In fact, future MPSoCs are expected to be composed
of several hundred processors connected by Networks-on-Chip (NoC) [4]. Hence, sys-
tem synthesis approaches will face vast design spaces for densely connected networks,
resulting in prohibitively long solving times when using PB/SAT-based approaches.

In this paper, we investigate system synthesis scenarios relying on reachability for
message routing. We propose a formal approach employing Answer Set Programming
(ASP; [1]), a solving paradigm stemming from the area of Knowledge Representation.
In contrast to PB/SAT, ASP provides a rich modeling language as well as a more strin-
gent semantics, which allows for succinct design space representations. In particular,
ASP supports expressing reachability directly in the modeling language. As a result,
much smaller problem descriptions lead to significant reductions in solving time for
densely connected networks.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [1, 7].
Our encodings are written in the input language of gringo 3 [6].

After surveying related work, Section 3 introduces the system synthesis setting stud-
ied in the sequel. Section 4 provides dedicated ASP formulations of system synthesis.
The experiments in Section 5 illustrate the effectiveness of our ASP-based approach.
Section 6 concludes the paper.

2 Related Work

Symbolic system synthesis approaches based on Integer Linear Programming (ILP) can
be found in the area of hardware/software partitioning (cf. [13]). Such approaches were
often limited to the classical bipartitioning problem, i.e., the target platform is composed
of a CPU and an FPGA. An extension towards multiple resources and a simple single-
hop communication mapping can be found in [3]. In the same work, SAT is reduced to
the problem of computing feasible allocations and bindings in platform-based system
synthesis approaches, thereby showing that system synthesis is NP-complete. In turn,
[8] shows how to reduce the system synthesis problem to SAT in polynomial time;
this allows for symbolic SAT-based system synthesis. An analogous approach based on
binary decision diagrams is presented in [12]. Since the space requirements of binary
decision diagrams may grow exponentially, it could only be applied to small systems.
In [11], a first approach to integrate linear constraint checking into SAT-based system
synthesis is reported, leading to a PB problem encoding. All aforementioned approaches

Symbolic System Synthesis Using Answer Set Programming 3

still use simple single-hop communication as underlying model. However, single-hop
communication models are no longer appropriate when designing complex multi-core
systems.

In [10], the authors show how to perform symbolic system synthesis including
multi-hop communication routing with PB solving techniques. This work is closely
related to ours, and we use it as a starting point for the work at hand. We show that
the PB-based approach published in [10] does not scale well for system specifications
permitting many routing options. By reformulating the PB representation in ASP and
exploiting semantic features in expressing reachability, symbolic system synthesis can
be applied to more complex system specifications based on densely connected commu-
nication networks.

The potential of ASP for system synthesis was already discovered in [9], where it
was shown to outperform an ILP-based approach by several orders of magnitude. In
contrast to our work, the system synthesis problem considered in [9] does not involve
multi-hop communication routing. Moreover, contrary to the genuine ASP encoding(s)
developed in Section 4, the one in [9] was derived from an ILP specification without
making use of any elaborate ASP features.

3 Symbolic System Synthesis

System synthesis comprises several design phases: the allocation of a computing plat-
form, the binding of tasks onto allocated resources, and the scheduling of tasks for re-
solving resource conflicts. Each phase, viz., allocation, binding, and scheduling, can be
performed either statically or dynamically. We here assume that allocation and binding
are accomplished statically, whereas scheduling is realized dynamically. Accordingly,
we concentrate on allocation and binding in the sequel.

In order to automate the synthesis of a system implementing an application, the
application is modeled by a task graph (T,ET). Its vertices T represent tasks and are
bipartitioned into process tasks P and communication tasks C, that is, T = P ∪ C
and P ∩ C = ∅. The directed edges ET ⊆ (P × C) ∪ (C × P) model data and
control dependencies between tasks, where every communication task has exactly one
predecessor and an arbitrary (positive) number of successors, thus assuming single-
source multicast communication.

An exemplary task graph is shown in the upper part of Figure 1. The leftmost task
ps reads data from a sensor and sends it to a master task pm via communication task
c1. The master task then schedules the workload and passes data via communication
task c2 on to the worker tasks p1 and p2. Both workers send their results back to the
master via communication tasks c3 and c4. Finally, the master uses the combined result
to control an actuator task pa via communication task c5.

An architecture template, representing all possible instances of a computing plat-
form, is modeled by a platform graph (R,ER). Its vertices R represent resources like
processors, buses, memories, etc., and the directed edges ER ⊆ R×R model commu-
nication connections between them. The lower part of Figure 1 shows a platform graph
containing six computational and two communication resources along with 18 connec-
tions. Any subgraph of a platform graph constitutes a computing platform instance.

4 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

ps c1 pm

c2c3 c4

p1 p2

c5 pa

rcpu1rcpu2 rcpu3

rbus1 rbus2

rsen2rsen1 ract1

Fig. 1: A system model consisting of a task graph, a platform graph and mapping op-
tions.

Given a task graph (T,ET) and a platform graph (R,ER), mapping options of
tasks t ∈ T are determined by Rt ⊆ R, providing resources on which t can be im-
plemented. Assuming that communication tasks can be routed via every resource, the
mapping options of process tasks are indicated by dashed arrows in Figure 1, while the
(unrestricted) options of communication tasks are not displayed explicitly.

Following [10], the system synthesis problem can be defined as follows. For (T,ET)
and (R,ER) as above, select an allocation A ⊆ R of resources and a binding b : T →
2R such that the following conditions are fulfilled:

– b(t) ⊆ Rt for each task t ∈ T ,
– |b(p)| = 1 for each process task p ∈ P , and
– for each (p, c) ∈ (P × C) ∩ ET , there is an arborescence (b(c), E) with root
r ∈ b(p) such that E ⊆ ER and {r̂ | (c, p̂) ∈ ET , r̂ ∈ b(p̂)} ⊆ b(c).

These conditions require that each process task is mapped to exactly one resource and
that each communication task can be routed (acyclicly) from the sender to resources of
its targets.

Figure 2 shows a feasible implementation for the example in Figure 1, consisting of
the resource allocation A = {rsen1, rbus1, rbus2, rcpu1, rcpu2, rcpu3, ract1} along with
the following mapping b:

b(ps) = {rsen1} b(c1) = {rsen1, rbus1, rcpu1}
b(pm) = {rcpu1} b(c2) = {rcpu1, rbus1, rcpu2, rbus2, rcpu3}
b(p1) = {rcpu2} b(c3) = {rcpu2, rbus2, rcpu1}
b(p2) = {rcpu3} b(c4) = {rcpu3, rbus2, rcpu1}
b(pa) = {ract1} b(c5) = {rcpu1, rbus1, ract1}

For clarity communication task mappings are omitted in Figure 2. Instead, the routing
of c2 is shown. Leading from the resource rcpu1 of the master task pm over rbus1, rcpu2,
and rbus2 to rcpu3, thus visiting the resources rcpu2 and rcpu3 of the workers p1 and p2.

Symbolic System Synthesis Using Answer Set Programming 5

ps c1 pm

c2c3 c4

p1 p2

c5 pa

rcpu1rcpu2 rcpu3

rbus1 rbus2

rsen1 ract1

c2

Fig. 2: A feasible implementation of the example system model. Only the routing of c2
is shown.

PB/SAT-based approaches express system synthesis in terms of (Pseudo-)Boolean
formulas. In particular, the PB encoding in [10] relies on the following kinds of Boolean
variables:

– a variable r for each resource r ∈ R, indicating whether r is allocated (r = 1) or
not (r = 0),

– a variable tr for each task t ∈ T and each of its mapping options r ∈ Rt, indicating
whether t is bound onto r, and

– variables cr,i for each communication task c ∈ C, its routing options r ∈ Rc, and
i ∈ {0, . . . , n} for some integer n, indicating whether c is routed over r at step i.

The following constraints on such variables were used in [10]:∑
r∈Rp

pr = 1, ∀p ∈ P (A)∑
r∈Rc

cr,0 = 1, ∀c ∈ C (B)

pr − cr,0 = 0, ∀c ∈ C, p ∈ {p̂ | (p̂, c) ∈ ET }, r ∈ Rp ∩Rc (C)

cr − pr ≥ 0, ∀p ∈ P, c ∈ {ĉ | (ĉ, p) ∈ ET }, r ∈ Rp ∩Rc (D)∑n
i=0 cr,i ≤ 1, ∀c ∈ C, r ∈ Rc (E)∑n
i=0 cr,i − cr ≥ 0, ∀c ∈ C, r ∈ Rc (F)

cr − cr,i ≥ 0, ∀c ∈ C, r ∈ Rc, i ∈ {0, . . . , n} (G)

−cr,i +
∑

r̂∈Rc,(r̂,r)∈ER
cr̂,i−1 ≥ 0, (H)

∀c ∈ C, r ∈ Rc, i ∈ {1, . . . , n}
r− pr ≥ 0, ∀p ∈ P, r ∈ Rp (I)

r− cr ≥ 0, ∀c ∈ C, r ∈ Rc (J)

−r+
∑

p∈P,r∈Rp
pr +

∑
c∈C,r∈Rc

cr ≥ 0, ∀r ∈ R (K)

In words, (A) requires each process task to be mapped to exactly one resource. Jointly,
(B) and (C) imply that each communication task has exactly one root matching the
resource of its sending task. In addition, (D) makes sure that the resources of all targets

6 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

cpu

router

p1 p2c

Fig. 3: A possible mapping of two communicating processes to resources connected via
a 4x4 mesh network.

are among those of a communication task. For excluding cyclic routing, (E) asserts
that the step at which a resource is visited upon performing a communication task is
unique. By means of (F) and (G), the resources visited at particular steps (i.e., cr,i = 1
for some i ∈ {0, . . . , n}) are synchronized with the ones assigned (i.e., cr = 1) to a
communication task. The requirement that resources visited at successive steps must be
connected in the underlying platform graph is expressed by (H). Finally, (I), (J), and (K)
extract allocated resources r, indicated by r = 1, from process and communication
tasks such that pr = 1 or cr = 1, respectively.

As detailed in [10], a Boolean variable assignment satisfying (A)–(K) provides a
feasible implementation via resources r such that r = 1, where each process task p is
bound onto the resource r given by pr = 1 and communication tasks c are routed via
resources r according to steps i such that cr,i = 1.

The described approach to system synthesis works well for sparsely connected net-
works, inducing a limited amount of routing options. However, the representation of
routing options, governed by (H), scales proportionally to |ER| ∗ |R|, given that re-
sources may be pairwisely connected and each resource may be visited in the worst
case. As a consequence, for densely connected networks, the size required for a step-
based representation of routing options can be prohibitively large. For example, let us
consider possible routes from (the resource of) a sender p1 to p2 available in the 4x4
mesh network shown in Figure 3. The longest of these routes passes all 16 routers
and potentially visit any of them at each of the 15 intermediate steps. This yields
16∗15 = 240 instances of (H) per communication task to represent the message ex-
change between routers. On the other hand, for inductively verifying whether a message
reaches its target(s), it is sufficient to consider individual routing hops without relying
on an explicit order given by steps. The latter strategy scales linearly to |ER|, thus
avoiding a significant blow-up in space. As the semantics of ASP inherently supports
efficient representations of inductive concepts like reachability, the potential space sav-
ings motivate our desire to switch from the PB-based approach in [10] to using ASP
instead.

Symbolic System Synthesis Using Answer Set Programming 7

4 ASP-based System Synthesis

As common in ASP, we represent the system synthesis problem by facts describing a
problem instance along with a generic encoding. To this end, we define the ASP instance
for a task graph (P ∪ C,ET) and a platform graph (R,ER) along with the underlying
mapping and routing options, (Rp)p∈P and (Rc)c∈C , as follows:

{pt(p). | p ∈ P} ∪
{send(p, c). | (p, c) ∈ ET , p ∈ P, c ∈ C} ∪
{read(p, c). | (c, p) ∈ ET , p ∈ P, c ∈ C} ∪
{pr(p, r). | p ∈ P, r ∈ Rp} ∪
{cr(c, r). | c ∈ C, r ∈ Rc} ∪

{edge(r, s). | (r, s) ∈ ER} ∪
{s(i). | i ∈ {1, . . . , n}}

(1)

While the first six sets capture primary constituents of a problem instance, the in-
troduction of atoms s(i) for 1 ≤ i ≤ n is needed to account for the PB formulation
in [10] in a faithful way.

Two alternative ASP encodings of system synthesis are shown in Figure 4(a) and 4(b).
Essentially, they reformulate the constraints (A)–(K) from Section 3 in the input lan-
guage of ASP to make sure that every answer set corresponds to a feasible system
implementation. To this end, the rule in Line 2 of each encoding specifies that every
processing task provided in an instance must be mapped to exactly one of its associated
options. Observe that the mapping of processing tasks p to resources r is represented
by atoms map(p, r) in an answer set. This provides the basis for further specifying com-
munication routings.

Despite of syntactic differences, the step-oriented encoding ASP(S) in Figure 4(a)
stays close to the original PB formulation of constraints, given in (A)–(K). In partic-
ular, it uses atoms reached(c, r, i) to express that some message of communication
task c is routed over resource r at step i. Note that the omission of lower and upper
bounds for the cardinality constraint in the rule form Line 8 means that there is no
restriction on the number of atoms constructed by applying the rule. The (trivially sat-
isfied) cardinality constraint is still important because, it allow us to successively con-
struct reached(c, r, i). Given such atoms, instantiations of the rule in Line 12 (where
“ ” stands for an unreused anonymous variable) further provide us with projections
reached(c, r). These are used in the integrity constraints in Line 14 and 16, excluding
cases where a communication task is routed over the same resource at more than one
step or does not reach some of its targets, respectively. Finally, projections via the rules
in Line 19 and 20 provide the collection of resources allocated in an admissible system
layout, similar to the (redundant) variables r in (I)–(K).

While the step-oriented encoding ASP(S) aims at being close to the constraints in
(A)–(K), the encoding in Figure 4(b), denoted by ASP(R), utilizes ASP’s “built-in”
support of recursion to implement routing without step counting. To still guarantee an
acyclic routing of communication tasks, the idea of ASP(R) is to (recursively) construct
non-branching routes from resources of communication targets back to the resource of
a sending task, where the construction stops. This recursive approach connects each en-
countered target resource to exactly one predecessor, where the only exception is due to

8 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

1 % map each process task to a resource (A)
2 1 { map(P,R) : pr(P,R) } 1 :- pt(P).

4 % step zero of communication task (B,C)
5 reached(C,R,0) :- send(P,C), map(P,R), cr(C,R).
6 % forward steps of communication task (H)
7 { reached(C,S,I+1) : cr(C,S) : edge(R,S) }
8 :- reached(C,R,I), s(I+1).

10 % resources of communication task (F,G)
11 reached(C,R) :- reached(C,R,_).
12 % reach each resource at most once (E)
13 :- reached(C,R), 2 { reached(C,R,_) }.
14 % reach communication target resources (D)
15 :- read(P,C), map(P,R), not reached(C,R).

17 % allocated resources (I,J,K)
18 allocated(R) :- map(_,R).
19 allocated(R) :- reached(_,R).

(a) Step-oriented encoding ASP(S).

1 % map each process task to a resource (A)
2 1 { map(P,R) : pr(P,R) } 1 :- pt(P).

4 % root resource of communication task (B,C)
5 root(C,R) :- send(P,C), map(P,R).
6 % resources of communication task per target
7 sink(C,R,P) :- read(P,C), map(P,R), cr(C,R).
8 sink(C,R,P) :- sink(C,S,P), reached(C,R,S).
9 % reach communication root resource (D)

10 :- read(P,C), root(C,R), not sink(C,R,P).

12 % resources of communication task (F,G)
13 reached(C,R) :- sink(C,R,_).
14 % backward hops of communication task (E,H)
15 1 { reached(C,R,S) : cr(C,R) : edge(R,S) } 1
16 :- reached(C,S), not root(C,S).

18 % allocated resources (I,J,K)
19 allocated(R) :- map(_,R).
20 allocated(R) :- reached(_,R).

(b) Recursive encoding ASP(R).

Fig. 4: Two alternative ASP encodings of system synthesis.

Symbolic System Synthesis Using Answer Set Programming 9

the sender of a communication task, whose resource, specified by an atom root(c, r),
is not connected back. Finally, the integrity constraint in Line 10 requires that each tar-
get of a communication task is located on a route starting at the sender’s resource. Note
that the target-driven routing approach implemented in ASP(R) intrinsically omits re-
dundant message hops (not leading to communication targets). The same strategy could
also be applied in step counting by modifying the constraints in (A)–(K) as well as our
previous encoding ASP(S) accordingly. In view of this, the varied encoding idea is not
the real achievement of ASP(R), while abolishing one problem dimension by disusing
explicit step counters is.

5 Experiments

Fig. 5: Workflows of symbolic system synthesis approaches.

For evaluating our approach, we conducted systematic experiments contrasting our
two ASP encodings, ASP(S) and ASP(R), in terms of design space representation size
and solving time. In addition, we compare our methods to the original (sophisticated)
PB-based synthesis tool from [10], which like ASP(S) uses steps to express routing.
To this end, we consider both a real-world example consisting of a sparsely connected
industrial system model as well as series of crafted mesh network system models of
varying sizes.

The real-world example models an automotive subsystem including four applica-
tions of different criticality and characteristic, amongst others a multimedia/infotain-
ment control and brake-by-wire. Overall, the applications involve 45 process tasks,
communicating via 41 messages. The target platform offers 15 Electronic Control Units
(ECUs), 9 sensors, and 5 actuators to execute the process tasks. For communication,
up to three field buses (CAN or FlexRay), connected by a central gateway, are avail-
able. In addition, sensors and actuators are connected to ECUs via LIN buses. The case
study, in particular when applying further design constraints, e.g., regarding bus load,
can be viewed as a complex specification that tends to max out common synthesis ap-
proaches solely based on (greedy) heuristics. However, the PB-based approach solves

10 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

this problem efficiently, particularly due to the communication topology including a
central gateway, resulting in a modest amount of routing options.

We ran the real-world example with the three approaches illustrated in Figure 5, all
of which start from a common Java class specifying a system model (like the one shown
in Figure 1). With the PB-based approach, the Java specification is directly converted
into a PB instance (in OPB format) by the PB generator used also in [10]. Unlike this,
with our two ASP-based approaches, the generation of facts describing a problem in-
stance merely requires a syntactic conversion from the Java specification to the format
in (1), from where the ASP grounder gringo (version 3.0.3) instantiates either of our
encodings, ASP(S) or ASP(R), wrt the generated facts. With all three approaches, the
generation phase results in standardized text formats, processable by the combined PB
and ASP solver clasp (version 2.0.3; [5]). Let us note that ASP instance generation,
including the conversion to facts and instantiation, runs quickly (only a few seconds on
the largest of our benchmarks); on the other hand, PB instance generation can take sig-
nificant time (up to five hours on the largest benchmarks we tried), which is because the
PB generator performs nontrivial simplifications and, in contrast to ASP grounders, is
not optimized towards low-level performance. After instance generation, accomplished
offline, we measured (sequential) runtimes of clasp on a Linux machine equipped with
3.4GHz Intel Xeon CPUs and 32GB RAM. The search strategies of clasp were config-
ured via command-line switches --heuristic=vsids and --save-progress,
which in preliminary experiments turned out to be helpful for solving both PB and ASP
instances. Then, the real-world example could be solved by clasp in less than a second
for all three instance kinds, PB, ASP(S), and ASP(R). As mentioned above, this can be
explained by the centralized communication topology in the example, so that routing
options are rather limited.

In order to compare the three approaches also on densely connected networks, we
generated series of synthesis problems wrt mesh network structures, scaling mesh size
and number of process tasks. In these problems, each task can be bound onto a number
of processors proportional to mesh size and communicates to one other process task;
task mapping options and communication targets were selected randomly. In order to
compensate for randomness in problem generation, we report averages over 16 distinct
instances per mesh size and task number. Also note that all generated instances are
satisfiable. In view of longer runtimes than before, we restricted single runs of clasp on
a PB, ASP(S), or ASP(R) instance to 300 seconds time. Noise effects are excluded by
taking the mean runtime over three (reproducible) runs of clasp per instance.

Figure 6 displays average numbers of constraints, as reported by clasp, and av-
erage runtimes of clasp, with timeouts taken as 300 seconds, over mesh networks of
quadratic sizes (2x2, 3x3, . . .) and increasing task numbers (10, 20, . . .), both given
along the x-axes; standard deviations are shown as vertical bars through measurements.
The average numbers of constraints reported in the left chart provide an indication of
problem representation size incurred by PB, ASP(S), and ASP(R). We observe regu-
lar scalings here, and ASP(S) is clearly the most space-consuming approach. In fact,
the direct PB representation saves about half of the constraints of ASP(S) by virtue of
the PB generator’s simplifications. However, for larger mesh sizes, the recursive for-
mulation of reachability in ASP(R) yields much more succinct problem representations

Symbolic System Synthesis Using Answer Set Programming 11

 1000

 10000

 100000

 1e+06

 1e+07

2x2
10 40 70 100

3x3
10 40 70 100

4x4
10 40 70 100

5x5
10 40 70 100

C
o
n
st

ra
in

ts

Instance

Size Comparison

ASP(S)
ASP(R)

PB

 0.01

 0.1

 1

 10

 100

2x2
10 40 70 100

3x3
10 40 70 100

4x4
10 40 70 100

5x5
10 40 70 100

R
u
n
ti

m
e
 i
n
 s

e
co

n
d

s

Instance

Runtime Comparison

ASP(S)
ASP(R)

PB

Fig. 6: Average numbers of constraints and runtimes in seconds for mesh networks of
varying sizes and task numbers.

than ASP(S) and PB, inducing almost one order of magnitude fewer constraints than the
latter. Compared to this, the observation that the PB-based approach requires fewer con-
straints for the smallest instances (with average runtimes in split seconds) is negligible.
The corresponding average runtimes in the right chart tightly correlate to representation
sizes. While ASP(S) can still cope with small instances, it is drastically worse than PB
and ASP(R) from mesh size 4x4 on, and it times out on all instances of size 5x5 with 50
or more tasks. However, as the average runtimes of PB and ASP(R) (the latter again by
about one order of magnitude smaller than the former) show, even the larger instances
are manageable by means of preprocessing (PB) or avoiding step counting (ASP(R)).

For investigating the further scaling behavior, we applied ASP(R) to larger meshes,
using fixed ratios between the number of tasks and available CPUs as shown in Figure 7.
(We here omit ASP(S) and PB in view of poor solving performance or long instance
generation time, respectively.) While 6x6 mesh networks could easily be solved within
seconds, we encountered first timeouts (6 out of 16) on instances of size 7x7 along with
245 process tasks (five per CPU). However, some instances (14 or 3, respectively, out of

12 B. Andres, M. Gebser, T. Schaub, C. Haubelt, F. Reimann and M. Glaß

 0.01

 0.1

 1

 10

 100

2x2 3x3 4x4 5x5 6x6 7x7 8x8

R
u
n
ti

m
e
 i
n
 s

e
co

n
d

s

Instance

ASP(R) Runtime Scaling

1 task per CPU
3 tasks per CPU
5 tasks per CPU

Fig. 7: Average runtimes in seconds for mesh networks of scaled up sizes.

16) of size 8x8 could still be solved within the time limit of 300 seconds when given one
or three tasks per CPU, i.e., 64 or 192 tasks in total. Since the problem representation
size (cf. numbers of constraints) is linear in the input for ASP(R), the timeouts on
large instances are explained by increasing variance of solving performance in view of
randomness in problem generation. Regarding the robustness of solving, we conjecture
that it can be improved by including domain knowledge in ASP encodings, somewhat
similar to simplifications performed by the PB generator, yet specified declaratively by
rules rather than implemented by special-purpose procedural components.

6 Conclusion

We proposed a novel approach to system synthesis using ASP. While our naive step-
oriented ASP encoding cannot compete with the sophisticated PB/SAT-based approach
in [10], the succinct ASP formulation of reachability, as required in multi-hop rout-
ing, outperforms previous approaches when applied to densely connected (mesh) net-
works, providing vast routing options. Such performance gains are made possible by
considerably smaller design space representations and accordingly reduced search ef-
forts. Given that ASP solvers like clasp also support optimization, the presented ASP
approach could be extended to linear and, with some adaptions, even be utilized for
non-linear optimization, as previously performed in design space exploration via evo-
lutionary algorithms [11]. At user level, the declarative first-order modeling language
of ASP facilitates prototyping as well as adjustment of ASP solutions for new or var-
ied application scenarios, making it a worthwhile alternative to purely propositional
formalisms.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/8-3 and
SCHA 550/9-1.

Symbolic System Synthesis Using Answer Set Programming 13

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

2. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

3. T. Blickle, J. Teich, and L. Thiele. System-level synthesis using Evolutionary Algorithms. J.
Design Automation for Embedded Systems, 3(1):23–58, 1998.

4. S. Borkar. Thousand core chips: a technology perspective. In Proc. of DAC ’07, pages
746–749, 2007.

5. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):107–124,
2011.

6. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo.

7. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers, 2012.

8. Christian Haubelt, Jürgen Teich, Rainer Feldmann, and Burkard Monien. SAT-Based Tech-
niques in System Design. In Proc. of DATE ’03, pages 1168–1169, 2003.

9. H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Answer set vs integer linear
programming for automatic synthesis of multiprocessor systems from real-time parallel pro-
grams. Journal of Reconfigurable Computing, 2009. Article ID 863630.

10. Martin Lukasiewycz at al. Combined System Synthesis and Communication Architecture
Exploration for MPSoCs. In Proc. of DATE ’09, pages 472–477. IEEE Computer Society,
2009.

11. Martin Lukasiewycz et al. Efficient symbolic multi-objective design space exploration. In
Proc. of ASP-DAC ’08, pages 691–696, 2008.

12. Sandeep Neema. System Level Synthesis of Adaptive Computing Systems. PhD thesis, Van-
derbilt University, Nashville, Tennessee, May 2001.

13. Ralf Niemann and Peter Marwedel. An Algorithm for Hardware/Software Partitioning Using
Mixed Integer Linear Programming. Design Automation for Embedded Systems, 2(2):165–
193, 1997.

