
Accurate Computation of Sensitizable Paths using
Answer Set Programming?

Benjamin Andres1, Matthias Sauer2, Martin Gebser1, Tobias Schubert2, Bernd
Becker2, and Torsten Schaub1

1 University of Potsdam
August-Bebel-Strasse 89
14482 Potsdam, Germany

{ bandres | gebser | torsten }@cs.uni-potsdam.de
2 Albert-Ludwigs-University Freiburg

Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ sauerm | schubert | becker }@informatik.uni-freiburg.de

Abstract. Precise knowledge of the longest sensitizable paths in a circuit is cru-
cial for various tasks in computer-aided design, including timing analysis, per-
formance optimization, delay testing, and speed binning. As delays in today’s
nanoscale technologies are increasingly affected by statistical parameter vari-
ations, there is significant interest in obtaining sets of paths that are within a
length range. For instance, such path sets can be used in the emerging areas of
Post-silicon validation and characterization and Adaptive Test. We present an
ASP-based method for computing well-defined sets of sensitizable paths within
a length range. Unlike previous approaches, the method is accurate and does not
rely on a priori relaxations. Experimental results demonstrate the applicability
and scalability of our method.

1 Introduction

Precise knowledge of the longest sensitizable paths in a circuit is crucial for various
tasks in computer-aided design, including timing analysis, performance optimization,
delay testing, and speed binning. However, the delays of individual gates in today’s
nanoscale technologies are increasingly affected by statistical parameter variations [1].
As a consequence, the longest paths in a circuit depend on the random distribution
of circuit features [12] and are thus subject to change in different circuit instances.
For this reason, there is significant interest in obtaining sets of paths that are within
a length range, in contrast to only the longest nominal path as in classical small delay
testing [13]. Among other applications, such path sets can be used in the emerging areas
of Post-silicon validation and characterization [8] and Adaptive Test [14].

Comprehensive test suites are generated and used in the circuit characterization or
yield-ramp-up phase. The inputs to be employed in actual volume manufacturing test
are chosen based on their observed effectiveness in detecting defects, In general the

? This work was published as a poster paper in [3].

2 B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker and T. Schaub

quality of a delay test tends to increase with the delay of the actually tested path. How-
ever, a pair t1 of test inputs may be more effective than a pair t2, even though t1 sensi-
tizes a shorter path than t2. Modeling inaccuracy is one of the reasons leading to such
mismatches. For instance, while the sum of gate delays along the path sensitized by t1
may be smaller than the sum for t2, the pair t1 could induce crosstalk or IR-drop, in-
creasing the signal propagation delay along the path. These effects are generally difficult
to model during timing analysis, and also affected by process variations. High-quality
Automatic Test Pattern Generation (ATPG) methods should be able to control the path
length and generate a large number of alternative test pairs that sensitize different paths
of predefined length, to be applicable for adaptive test.

While structural paths can be easily extracted from a circuit architecture, many
structural paths are not sensitizable and therefore present false paths [7]. The usage
of such false paths leads to overly pessimistic and inaccurate results. Therefore, deter-
mination of path sensitization is required for high-quality results, although it constitutes
a challenging task that requires complex path propagation and sensitization rules.

In order to reduce the algorithmic overhead, various methods for the computation of
sensitizable paths make use of relaxations [11], making trade-offs between complexity
and accuracy. Methods based on the sensitization of structural paths [15, 6] restrict the
number of paths they consider for accelerating the computation and to limit memory us-
age. Due to these restrictions, however, they may miss long paths. Recent methods [17,
16] based on Boolean Satisfiability (SAT; [5]) have shown good performance results
but are limited in the precision of the encoded delay values. As their scaling critically
depends on delay resolution, such methods are hardly applicable when high accuracy is
required.

We present an exact method for obtaining longest sensitizable paths, using Answer
Set Programming (ASP; [4]) to encode the problem. ASP has become a popular ap-
proach to declarative problem solving in the field of Knowledge Representation and
Reasoning (KRR). Unlike SAT, ASP provides a rich modeling language as well as a
stringent semantics, which allows for succinct representations of encodings.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [4, 10].
Our encodings are written in the input language of gringo 3 [9].

The remainder of the paper is structured as follows. Section 2 provides our ASP
encoding of sensitizable paths. Experimental results are presented in Section 3. Section
4 concludes the paper.

2 ASP Encoding

The general setting of longest sensitizable path calculation for a Boolean circuit and a
test gate g is displayed in Figure 1. Observe that gates in the input cone A1 influence g,
while those in the output cone A2 depend on g. Furthermore, the additional gates in A3

have an impact on gates in A2. Then, a (longest) sensitizable path including the test
gate g is determined by two truth assignments (modelling two time frames) to the pri-
mary input gates in A1 ∪ A3 such that the truth values of g and one output gate in A2

get flipped over the two time frames.

Accurate Computation of Sensitizable Paths using Answer Set Programming 3

A1 A2

p
ri

m
a
ry

 i
n

p
u

ts

p
ri

m
a
ry

 o
u
t p

u
ts

gate g

A3

A3

Fig. 1. Input/Output cones for longest sensitizable path calculation.

As common in ASP, we represent the problem of calculating a longest sensitizable
path by facts describing a problem instance along with a generic encoding. First, a
Boolean circuit and gate delays are described by facts of the following form:

in(g). for each primary input gate g.
nand(g). for each non-input gate g.
out(g). for each output gate g.
test(g). for the test gate g.
wire(g1,g2,r,f). for a connection from g1 to g2.

Facts of the first three forms provide constants g standing for input, non-input, and out-
put gates, respectively, of a circuit, where we assume either in(g) or nand(g) to
hold for each gate g. A fact of the fourth form specifies the test gate g in the circuit.
Finally, the inputs g1 of a gate g2 are given by facts of the fifth form, where the inte-
gers r and f provide the delays of a rising or falling edge at g2, respectively. W.l.o.g.,
we here limit the attention to NAND non-input gates; further Boolean functions could
be handled by extending the encoding in Figure 2. We also assume that output gates do
not serve as inputs to other gates.

Our generic encoding of longest sensitizable paths is shown in Figure 2. Given that
gate delays are only required for path length maximization, but not for the actual path
calculation, the rule in Line 1 projects instances of wire(G1,G2,R,F) (given by
facts) to connected gates G1 and G2. Then, starting from the test gate in the circuit,
the rules in Line 3 to 6 inductively determine all gates of the input and output cone,
respectively (cf. A1 and A2 in Figure 1). The union of the input and output cone is
represented by the instances of inocone(G) derived by the rules in Line 8 and 9. In
Line 10 and 11, such instances are taken as starting points to inductively determine the
set of all relevant gates (A1 ∪ A2 ∪ A3 in Figure 1), given by the derived instances of
allcone(G). Note that the rules in Line 1–11 are deterministic, yielding a unique
least model relative to facts.

The calculation of a path through the test gate g is implemented by the rules in
Line 13 and 14. It starts in Line 13 by choosing exactly one output gate from the out-
put cone, represented by an instance of path(G). In Line 14, the path is continued
backwards including exactly one predecessor gate for every non-input gate already on

4 B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker and T. Schaub

1 wire(G1,G2) :- wire(G1,G2,R,F).

3 inpcone(G2) :- test(G2).

4 inpcone(G1) :- inpcone(G2), wire(G1,G2).

5 outcone(G1) :- test(G1).

6 outcone(G2) :- outcone(G1), wire(G1,G2).

8 inocone(G2) :- inpcone(G2).

9 inocone(G2) :- outcone(G2).

10 allcone(G2) :- inocone(G2).

11 allcone(G1) :- allcone(G2), wire(G1,G2).

13 1 { path(G2) : outcone(G2) : out(G2) } 1.

14 1 { path(G1) : inocone(G1) : wire(G1,G2) } 1 :- path(G2), not in(G2).

16 { one(G1) } :- allcone(G1), in(G1).

17 one(G2) :- allcone(G2), nand(G2), wire(G1,G2), not one(G1).

18 { two(G1) } :- allcone(G1), in(G1).

19 two(G2) :- allcone(G2), nand(G2), wire(G1,G2), not two(G1).

21 flipped(G) :- inocone(G), one(G), not two(G).

22 flipped(G) :- inocone(G), two(G), not one(G).

23 :- path(G), not flipped(G).

25 delay(G2,M) :- path(G1), path(G2), wire(G1,G2),

M = #min[wire(G1,G2,R,F) = R, wire(G1,G2,R,F) = F].

26 add(G2,R-F) :- path(G1), path(G2), wire(G1,G2,R,F), R > F, two(G2).

27 add(G2,F-R) :- path(G1), path(G2), wire(G1,G2,R,F), R < F, one(G2).

29 #maximize[delay(G2,M) = M, add(G2,N) = N].

Fig. 2. ASP encoding for calculating longest sensitizable paths in a circuit.

Accurate Computation of Sensitizable Paths using Answer Set Programming 5

the path. Since any path from gates in the input cone to those in the output cone must
include g, the restriction of path elements to their union (instances of inocone(G))
makes sure that path(g) holds. Also note that, although path calculation is logically
encoded backwards, ASP solving engines are not obliged to proceed in any such order
upon searching for answer sets.

The truth assignments needed for checking whether a path at hand is sensitizable
are generated by the rules in Line 16 to 19. To this end, for each relevant input gate g1
of the circuit (allcone(g1) and in(g1) hold), choice rules allow for guessing
two truth values. In fact, the atoms one(g1) and two(g1) express whether g1 is
true in the first and the second time frame, respectively. Given the values guessed for
input gates, NAND gates g2 are evaluated accordingly, and the outcomes are likewise
represented by one(g2) and two(g2). For gates g in the input or output cone, which
can possibly belong to a calculated path, the rules in Line 21 and 22 check whether their
truth values are sensitizable; if so, it is indicated by deriving flipped(g). Finally, the
integrity constraint in Line 23 stipulates that each gate on the calculated path must be
flipped, thus denying truth assignments whose transition does not propagate along the
whole path.

In order to calculate the longest sensitizable paths, the rule in Line 25 derives a
delay incurred whenever two gates g1 and g2 are connected along a path. This delay,
given by the minimum of r and f in wire(g1,g2,r,f) (specified by a fact), can
be obtained conveniently via gringo’s #min aggregate [9]. Furthermore, if r and f
diverge, an additional delay r−f is incurred in case that r>f and g2 is flipped to
true (Line 26), or f−r when g2 is flipped to false and r<f (Line 27). Note that
considering only one(g2) or two(g2), respectively, is sufficient here because the
integrity constraint in Line 23 checks that the truth value of g2 is indeed flipped. While
(additional) delays derived via the rules in Line 26 and 27 depend on a path and truth
assignments, the basic delay in Line 25 is obtained as soon as connected gates g1
and g2 are on a path. Since it does not consider truth assignments, the rule in Line 25
relies on fewer vagrant prerequisites and is thus “easier to apply” upon searching for
answer sets. The main objective of calculating longest sensitizable paths is expressed by
the #maximize statement in Line 29, which instructs ASP solving engines to compute
answer sets such that the sum of associated gate delays is as large as possible.

3 Experimental Results

We evaluate our method on ISCAS85 and the combinatorial cores of ISCAS89 bench-
mark circuits, given as gate-level net lists. Path lengths are based on a pin-to-pin delay
model with support for different rising-falling delays. The individual delay values have
been derived from the Nangate 45nm Open Cell Library [2]. Below, we report sequen-
tial runtimes of the ASP solver clasp (version 2.0.4) on a Linux machine equipped with
3.07GHz Intel i7 CPUs and 16GB RAM.

Figure 3 shows the workflow for testing a circuit. At the start, the ASP instance
describing the circuit and our generic encoding (cf. Figure 2) are grounded by gringo.
Different from the modeling in Section 2, here, we do not specify a test gate within the
ASP instance for g, but rather add a corresponding fact after grounding. To obtain a

6 B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker and T. Schaub

Fig. 3. Workflow of the experiments.

grounding amenable to arbitrary test gates, instead of facts, we used choice rules for a
priori leaving a gate to test open. Given that sensitizable paths are computed in a loop
over all gates to be analyzed, the reuse of the same grounding saves some overhead by
not rerunning gringo for each test gate. However, note that such preprocessing “opti-
mization” has no influence on the runtimes of clasp and thus does not affect solving
time measurements. The grounding augmented with a test gate g serves as input for
clasp, which in its first run performs optimization to identify a longest sensitizable path
with maximum delay dg . With dg at hand, we further proceed to computing all paths
with a delay equal or greater than r = 0.95 ∗ dg . This is accomplished by reinvoking
clasp with the command-line parameters --opt-all=r and --project to enumer-
ate all sensitizable paths within the range [r, dg]. While the first parameter informs clasp
about the quality threshold r for sensitizable paths to enumerate, the second is used to
omit repetitions of the same path with different truth assignments. As a consequence,
clasp enumerates distinct sensitizable paths, whose delay is at least r, without repeti-
tions. An overlaying python program reuses the information of dg and paths found in
previous iterations to decide whether subsequent gates need to be analysed and ensures
that clasp does not need to calculate the same paths for different gates.

Table 1 displays the runtimes of our method using a length-preserving mapping
(avoiding rounding errors) of real-valued gate delays to integers. “Circuit” and “Gates”
indicate a particular benchmark circuit along with its number of gates to be tested. The
next three columns give statistics for the search for longest sensitizable paths, display-
ing the average runtime per solver call, the sum of runtimes for all gates in seconds
and the number of solver calls needed to calculate dg for all gates. The three columns
below “Path set” provide statistics for the enumeration of distinct sensitizable paths
with length at least r. Here, we show the average runtime for enumerating 1000 paths,
the sum of runtimes for all gates, and finally the total number of different paths found.
The columns below “Total” summarize both computation phases of clasp, optimization
and enumeration. The first column present the total number clasp was called. Finally,
the last two columns provide the total solving time of clasp for both computation passes
and the total runtime needed for the benchmark. Please note, that the smallest resolution
for measuring the solving time of clasp is 0.01s. Thus, solving time results for circuits
with less than 0.01s per gate may be inacurate up to the number of solver calls times
0.01s.

As can be seen in Table 1, the scaling of our method is primarily dominated by the
number of gates in circuits. Over all circuits, the average runtime for processing one

Accurate Computation of Sensitizable Paths using Answer Set Programming 7

Circuit Gates Longest path (dg) Path set (95%) Total

Time in s Time in s Calls Time in s Time in s Paths Solver Solving Time Total time
per call per 1000 paths calls in s in s

c0017 6 < 0.01 < 0.01 3 < 0.01 < 0.01 8 7 < 0.01 0.05
c0095 27 < 0.01 < 0.01 7 < 0.01 < 0.01 90 22 < 0.01 0.23
c0432 160 0.05 2.46 53 0.24 4.67 19356 112 7.13 11.67
c0499 202 0.01 0.64 64 0.49 0.94 1928 160 1.58 5.54
c0880 383 < 0.01 0.33 82 0.21 0.77 3617 212 1.10 7.78
c1355 546 0.29 18.87 64 1.36 32.54 23936 160 51.41 63.60
c1908 880 0.25 34.37 137 2.00 64.33 32174 378 98.70 131.22
c2670 1269 0.01 5.30 440 1.41 8.05 5700 1023 13.35 101.79
c3540 1669 2.26 544.32 241 10.42 1125.60 107994 697 1669.92 1799.69
c5315 2307 0.05 25.43 485 2.02 39.65 19603 1206 65.08 266.83
c7552 3513 0.04 24.59 576 1.97 40.77 20745 1622 65.36 444.07
cs00027 10 < 0.01 < 0.01 3 < 0.01 < 0.01 11 7 < 0.01 0.03
cs00208 104 < 0.01 < 0.01 33 < 0.01 < 0.01 97 98 < 0.01 0.62
cs00298 119 < 0.01 < 0.01 48 < 0.01 < 0.01 137 126 < 0.01 1.09
cs00344 160 < 0.01 < 0.01 45 < 0.01 < 0.01 169 125 < 0.01 1.14
cs00349 161 < 0.01 < 0.01 47 < 0.01 < 0.01 170 127 < 0.01 1.93
cs00382 158 < 0.01 < 0.01 48 < 0.01 < 0.01 169 144 < 0.01 2.03
cs00386 159 < 0.01 < 0.01 30 < 0.01 < 0.01 124 142 < 0.01 2.08
cs00400 162 < 0.01 < 0.01 49 < 0.01 < 0.01 184 149 < 0.01 2.15
cs00420 218 < 0.01 0.01 66 < 0.01 < 0.01 305 205 0.01 3.19
cs00444 181 < 0.01 < 0.01 49 < 0.01 < 0.01 210 162 < 0.01 2.45
cs00510 211 < 0.01 < 0.01 58 < 0.01 < 0.01 230 161 < 0.01 2.06
cs00526 194 < 0.01 < 0.01 74 < 0.01 < 0.01 247 190 < 0.01 2.17
cs00641 379 < 0.01 0.01 68 0.06 0.02 326 236 0.03 5.74
cs00713 393 < 0.01 0.01 84 0.06 0.02 309 276 0.03 5.20
cs00820 289 < 0.01 0.02 71 < 0.01 < 0.01 361 273 0.02 5.36
cs00832 287 < 0.01 0.02 73 < 0.01 < 0.01 372 269 0.02 5.02
cs00838 446 < 0.01 0.05 140 0.18 0.15 853 444 0.20 12.31
cs00953 418 < 0.01 0.01 111 0.03 0.01 342 354 0.02 7.48
cs01196 530 < 0.01 0.39 145 0.62 0.34 550 417 0.73 14.90
cs01238 509 < 0.01 0.54 144 0.72 0.42 586 400 0.96 13.39
cs01423 657 < 0.01 1.51 184 0.87 1.94 2236 529 3.45 25.05
cs01488 653 < 0.01 0.02 155 0.02 0.01 517 676 0.03 22.10
cs01494 647 < 0.01 0.02 157 0.02 0.01 521 654 0.03 21.69
cs05378 2779 < 0.01 0.65 506 0.32 1.71 5334 1759 2.36 320.37
cs09234 5597 < 0.01 6.82 795 0.69 13.54 19703 3483 20.36 1091.54
cs13207 8027 0.02 27.15 1332 2.97 53.41 18011 5864 80.56 2833.38
cs15850 9786 0.66 973.07 1480 9.56 3172.45 331964 6322 4145.52 9825.64
cs35932 16353 < 0.01 0.06 5321 0.41 5.9 14321 13463 5.96 16437.94
cs38584 19407 < 0.01 33.23 7266 2.35 65.18 27722 20227 98.41 42700.61

Table 1. Application using exact delay values

8 B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker and T. Schaub

k=1 k=2 k=5 k=10 k=15

0%

50%

100%

150%

200%

250%

300%

350%

400%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Error PHAETON Runtime PHAETON Runtime Clasp

Performance Error

Fig. 4. Comparison with PHAETON [17] using ISCAS85 circuits

test gate is rather low and often within fractions of a second. In addition, our method
allows for enumerating the complete set of sensitizable paths within a given range in a
single solver call, thus avoiding any expenses due to rerunning our solver. This allows
us to enumerate thousands of sensitizable paths and test pattern pairs sensitizing them
very efficiently. In fact, the overhead of path set computation compared to optimiza-
tion in the first phase is relatively small, even for complex circuits. E.g., for the c3540
circuit, 2.26 seconds are on average required for optimization, and 10.42 seconds on
average per 1000 enumerated paths. The rather large discrepancy between solving and
total runtime for large, computational easy circuits, e.g. cs13207, is explained by the
fact that clasp currently needs to read the grounded file from the disc for every call.
To overcome this bottleneck we hope to utilize iclingo, an incremental ASP system
implemented on top of gringo and clasp, in future work as soon as iclingo supports
#maximize statements. This would allow us to analyze all gates of a circuit within a
single solver call, thus drastically reducing the disc access. In addition, the iclingo could
reuse information gained from previously processed gates for solving successive gates,
efficiently.

In order to demonstrate the scaling of our approach wrt delay accuracy, we also used
different mappings of real-valued delays to integers, and corresponding runtime results
for the ISCAS85 benchmark set as shown in Table 2. In addition to the exact mode
used in the previous experiment, we employed a rounding method to five delay values,
shown in the columns labeled with “5”. Likewise, we applied rounding to 1000 delay
values. As before, we report average runtimes per call in seconds for the two phases of
optimizing sensitizable path length and of performing enumeration. Considering the re-
sults, we observe that runtimes of clasp are almost uninfluenced by the precision of gate
delays. This is explained by the fact that weights used in #minimize or #maximize

statements do influence the space of answer sets wrt to which optimization and enumer-
ation are applied. In the ISCAS89 benchmark set the solving time per call was almost
universally less than 0.01s.

Accurate Computation of Sensitizable Paths using Answer Set Programming 9

We compared our method with an SAT-based approach called “PHAETON“ pro-
posed in [17]. The results are shown in Figure 4. The Figure shows the runtime needed
by PHAETON to compute 1000 paths for ISCAS85 benchmark circuits with differ-
ent levels of accuracy indicated by the number of delay steps k. In order to compare
the results of the proposed method with PHAETON, the runtime is given as percent
on the primary x-axis, with 100% being our method. The secondary x-axis gives the
discretization error of PHAETON. As can be seen, for low accuracy levels which re-
sult in an average discretization error of around 5%, PHAETON scales better than our
optimal approach. However, for increased accuracy levels, the proposed method out-
performs PHAETON and is therefore better suited for precise computation of longest
sensitizable paths.

Circuit Time (dg) per call Time (95%) per call

5 1000 exact 5 1000 exact

c0017 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0095 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0432 0.04 0.05 0.05 0.07 0.08 0.08
c0499 0.01 0.01 0.01 0.01 0.01 0.01
c0880 < 0.01 0.01 < 0.01 0.01 0.01 0.01
c1355 0.13 0.22 0.29 0.15 0.21 0.34
c1908 0.20 0.31 0.25 0.20 0.47 0.27
c2670 0.01 0.01 0.01 0.01 0.02 0.01
c3540 2.24 2.55 2.26 2.50 2.63 2.47
c5315 0.04 0.06 0.05 0.04 0.08 0.05
c7552 0.04 0.05 0.04 0.04 0.07 0.04

Table 2. Delay accuracy comparison

4 Conclusions

We presented a method for the accurate computation of sensitizable paths based on a
flexible and compact encoding in ASP. Unlike previous methods, our approach does not
rely on a priori relaxations and is therefore exact. We demonstrated the applicability
and scalability of our method by extensive experiments on ISCAS85 and ISCAS89
benchmark circuits.

Future work includes further efforts to optimize the ASP encoding by incorporating
additional rules, with the goal of reducing the search space and helping clasp to discard
unsatisfactory sensitizable paths faster. Another way to improve runtime is to specialize
clasp’s search strategy to the problem of calculating (longest) sensitizable paths.

Acknowledgments. Parts of this work are supported by the German Research Founda-
tion under grant GRK 1103, SCHA 550/8-3 and SCHA 550/9-1.

10 B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker and T. Schaub

References

1. International Technology Roadmap For Semiconductors. Available at
http://www.itrs.net.

2. Nangate 45nm open cell library. Available at http://www.nangate.com.
3. B. Andres, M. Sauer, M. Gebser, T. Schubert, B. Becker, and T. Schaub. Accurate computa-

tion of longest sensitizable paths using answer set programming. In R. Drechsler and G. Fey,
editors, Sechste GMM/GI/ITG-Fachtagung für Zuverlässigkeit und Entwurf (ZuE’12), 2012.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

5. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

6. Jaeyong Chung, Jinjun Xiong, V. Zolotov, and J. Abraham. Testability driven statistical path
selection. In Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages
417 –422, june 2011.

7. Olivier Coudert. An efficient algorithm to verify generalized false paths. In Design Automa-
tion Conference (DAC), 2010 47th ACM/IEEE, pages 188 –193, june 2010.

8. Prasanjeet Das and Sandeep K. Gupta. On generating vectors for accurate post-silicon delay
characterization. In Test Symposium (ATS), 2011 20th Asian, pages 251 –260, nov. 2011.

9. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net.

10. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers, 2012.

11. Jie Jiang, Matthias Sauer, Alexander Czutro, Bernd Becker, and Ilia Polian. On the optimality
of k longest path generation algorithm under memory constraints. In Design, Automation and
Test in Europe (DATE), 2012.

12. K. Killpack, C. Kashyap, and E. Chiprout. Silicon speedpath measurement and feedback
into eda flows. In Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages
390 –395, june 2007.

13. M.M.V. Kumar and S. Tragoudas. High-quality transition fault ATPG for small delay de-
fects. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
26(5):983 –989, may 2007.

14. P. Maxwell. Adaptive test directions. In Test Symposium (ETS), 2010 15th IEEE European,
pages 12 –16, may 2010.

15. Wangqi Qiu and D.M.H. Walker. An efficient algorithm for finding the k longest testable
paths through each gate in a combinational circuit. In Test Conference, 2003. Proceedings.
ITC 2003. International, volume 1, pages 592 – 601, 30-oct. 2, 2003.

16. M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian, and B. Becker. SAT-based analy-
sis of sensitisable paths. In Design and Diagnostics of Electronic Circuits Systems (DDECS),
2011 IEEE 14th International Symposium on, pages 93 –98, april 2011.

17. Matthias Sauer, Jie Jiang, Alexander Czutro, Ilia Polian, and Bernd Becker. Efficient SAT-
based search for longest sensitisable paths. In Test Symposium (ATS), 2011 20th Asian, pages
108 –113, nov. 2011.

