
The nomore++System

Christian Anger, Martin Gebser, Thomas Linke, André Neumann, Torsten Schaub?

Institut für Informatik, Universiẗat Potsdam, Postfach 90 03 27, D–14439 Potsdam

Abstract. We present a new answer set solvernomore++. Distinguishing fea-
tures include its treatment of heads and bodies equitably as computational objects
and a new hybrid lookahead.nomore++ is close to being competitive with state-
of-the-art answer set solvers, as demonstrated by selected experimental results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the easy
availability of efficient solvers. We present a new ASP solver, callednomore++ that
pursues a hybrid approach in combining features from literal-based approaches, like
smodels[1] and dlv [2], with the rule-based approach of its predecessornoMoRe[3].
To this end, it treats heads and bodies equitably as computational objects. We argue that
this approach allows for more effective (in terms of search space pruning) choices than
obtainable when dealing with either heads or bodies only. In particular, we demonstrate
that the resulting hybrid lookahead operation allows for propagating more than previous
approaches. Also, we detail a special strategy, keeping assignments unfounded-free and
empirically show that it outperformssmodelson relevant benchmarks. Another feature
of nomore++ is its configurable operator-based design. The system is available at [4].

2 Theoretical Background

The nomore++ system deals with normal logic programs under theanswer set se-
mantics [5]. A normal logic programis a finite set of rules of the formp0 ←
p1, . . . , pm,not pm+1, . . . ,not pn, wheren ≥ m ≥ 0, and eachpi (0 ≤ i ≤ n)
is anatom. A literal is an atomp or its (default) negationnot p. For such a ruler, let
head(r) = p0 be theheadof r andbody(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be thebodyof r. For a programΠ, we writehead(Π) = {head(r) | r ∈ Π} and
body(Π) = {body(r) | r ∈ Π}. Without loss of generality, we assume that each atom
of a program is the head of at least one rule in the program.1

Given a normal logic programΠ, nomore++computes the answer sets ofΠ. Un-
like other solvers, such assmodels[1] and dlv [2],2 the nomore++ approach is based

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.
1 Atoms not occurring as heads are necessarily false.nomore++ removes such atoms during

preprocessing.
2 Note thatdlv is designed to handle disjunctive logic programs, which are on a higher complex-

ity level than normal ones.

on an extended concept of assignments. That is,nomore++ maps headsand bodies
of a program into{⊕,	}, indicating whether a head or body is true or false, re-
spectively. Given programΠ, we define a (partial) assignment as a partial mapping
A : head(Π) ∪ body(Π) → {⊕,	}. For simplicity, we often represent such assign-
ments as pairs(A⊕, A), whereA⊕ = {x | A(x) = ⊕} andA	 = {x | A(x) = 	}.
Treating heads and bodies equitably as computational objects provides great flexibility.
Bodies can be viewed as conjunctions, and their explicit representation allows for rea-
soning about applicability of rules, in addition to atoms’ truth values. Structurally more
complex objects have recently been deployed in SAT [6] and neighboring fields [7, 8].
However, to the best of our knowledge this has not been done in ASP, so far.

nomore++ is a highly flexible, runtime-configurable system. Flexibility roots on
an operator-based design, featuring (among others) the following basic operators: i)
Forward propagation operatorP, ii) Backward propagation operatorB, iii) Unfounded
set[9] operatorU , and iv) Choice operatorC.3 Omitting details,P generalizesFitting’s
operator[11] to bodies, combined operators(PU) coincide with thewell-founded op-
erators[9], and(PB) andU correspond tosmodels’ functionsatleastandatmost[1].
Differences to atom- and rule-based approaches come up atnomore++’s more gen-
eral choice operatorC. For instance,C can assign⊕ to a body, enabling propagation
to decide all the body’s literals and heads. Such complex choices are not possible with
assignments restricted to atoms.

Following [12], we characterize the process of answer set formation by a sequence
of assignments. Based on the above operators, one possible strategy is to determine
deterministic consequences with propagation operatorsP,B, andU and to apply choice
operatorC whenever a fix-point of propagation is not total. We abbreviate this strategy
by (PBU)∗C, where(PBU)∗ denotes the closure under operatorsP, B, andU . The
⊕-assigned atoms in a total assignment, constructed by(PBU)∗C, form an answer set.4

However, other strategies for answer set formation can also be shown to be sound and
complete. For instance, we can safely skip either backward or forward propagation,
yielding strategies(PU)∗C and (BU)∗C. Due to its configurable design,nomore++
can handle those different strategies as well.

An important concept, distinguishing answer set programming from propositional
logic, is well-foundedness. It is thus desirable that no⊕-assigned atom becomes un-
founded later on. In fact, no atom in the positive partA⊕ of an assignment can become
unfounded, if each atom inA⊕ is the head of a rule whose body is non-circularly jus-
tified in A⊕. We call such an assignmentunfounded-free,5 andnomore++supports the
computation of unfounded-free assignments by providing choice operatorD as an alter-
native toC. As opposed toC,D is restricted to bodies whose positive preconditions are
already present inA⊕ and where only negative literals are undecided. On the one hand,
D restricts possible choices. But on the other hand, assignments are kept unfounded-
free, which pays off on non-tight problems (cf. Section 4).

3 For a detailed operational characterization ofnomore++, please refer to [10].
4 Note that we derive a contradiction when different values are to be assigned to some head or

body. In this case, a total assignment cannot be constructed.
5 A related notion for disjunctive programs is described in [13].

In addition to propagation operatorsP, B, andU , lookahead strengthens propaga-
tion by conflict-driven assertions (nomore++ provides operatorL for this [10]). An-
swer set solvers likesmodelsand dlv apply lookahead to atoms only. In contrast to
them,nomore++ provides ahybrid lookahead considering both heads and bodies. In
order to limit efforts to approximately the same amount as with lookahead on atoms,
nomore++’s hybrid lookahead assigns⊕ to bodies and	 to atoms only. As shown
in [10], this restriction does not decrease strength of propagation. Rather we demon-
strate in Section 4 that hybrid lookahead can save exponentially many choices in com-
parison to lookahead applied to either atoms or bodies only.

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

t
i
m
e
[s]

Fig. 1-a)Body-Plus, all AS

♦
♦

♦
♦

♦
♦

♦
♦

♦

+
+

+
+

+
+

+
+

+
+

+
+

�
�

�
�

�
�

�
�

�
�

�
�

�
�

××
×
××

××
××

××
××

×

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

t
i
m
e
[s]

Fig. 1-b) Body-Plus, 1st AS

♦
♦

♦ ♦ ♦ ♦ ♦ ♦
♦

♦
♦

+
++

+
+

+
+

+
+

+
+

+
+

�
������

��������

×
××××××

×××××××××

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

t
i
m
e
[s]

Fig. 1-c)Head-Minus, all AS

♦
♦

♦

♦

♦

♦

+ +

+

+

+

+

+

�

�

�

�

�

×

×

×

×

×

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

t
i
m
e
[s]

Fig. 1-d) Head-Minus, 1st AS

♦
♦

♦

♦

♦

♦

♦

++ +
+

+++++++++++
�

�
�

�
�

�
�

�
�

�

�

××××
××××××

××××××

0.001

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16 18

t
i
m
e
[s]

Fig. 1-e)Hamilton Cycles, 1st AS

♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

+
+

+

++
+

+

+

+

+

�

��
�

������������

××
××

××
××

××
××

×××
×

0.01

0.1

1

10

100

1000

4 5 6 7 8 9 10 11 12

t
i
m
e
[s]

Fig. 1-f) EqTest, 1st AS

♦
♦

♦
♦

♦

♦

♦

♦

♦

+
+

+
+

+

+

+

+

×
×

×
×

×
×

×

dlv ♦ smodels+ nomore++(Body LaH) � nomore++(Hybrid LaH) ×

3 System

The input language ofnomore++ is generated by the grounder lparse [14] from normal
logic programs obeying the format “Logic Programs V1.0” as defined in [15].6 A major
feature ofnomore++ is that operators can be selected at runtime, enabling the use of a
multitude of strategies (combinations of operators). Via command line option-op , the
propagation and choice operators to be used can be determined. As lookahead allows for
different degrees of propagation within, one can also determine which set of operators
to use during lookahead via command line option-laop .

nomore++’s default strategy applies operatorsP, B, andU in usual propagation as
well as in lookahead. Furthermore,D is the default choice operator. Note that operators
P, U , andD keep a given assignment unfounded-free, which is not guaranteed forB
and lookahead. At the implementation level,nomore++uses the additional truth value
⊗ for distinguishing between the unfounded-free part of an assignment and the part that
must eventually be true but is not non-circularly justified, yet. The virtue of this is that
the scope of unfounded set operatorU can be restricted to⊗-assigned and unassigned
heads and bodies. In fact,U is implemented in a “lazy fashion” ignoring the⊕-part of
an assignment. Thedlv system uses a similar feature, the truth value “must be true” [16].

Internally,nomore++’s primary data structure consists of a body-head dependency
graph [17]. This is a very efficient structure, as it only stores each head-atom and each
distinct body of a program, instead of each rule as most other ASP-solvers do. E.g.,
measuring over 241 randomly chosen ground programs in [15], the ratio of the number
of distinct bodies over the number of rules is0.41.

4 Selected experimental results

Due to space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features ofnomore++. A complete evaluation, including further
ASP solvers, likeassatandcmodels, can be found at the ASP benchmarking site [15].
All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. A memory limit
of 256MB as well as a time limit of 900s were enforced. All results given in Figure 1
reflect the average of 10 runs.

Benchmarks 1-a to 1-d are taken from [4] and demonstrate the advantage of the
hybrid lookahead strategy. For comparisons, we have innomore++ implemented body-
based lookahead (“Body LaH”) in addition to hybrid lookahead (“Hybrid LaH”). Values
on the x-axis are a measurement for the size of the problem, please check [4] for de-
tails. Examples denoted with “Body-Plus” (Figures 1-a and 1-b) are better suited for
a body-based lookahead. Thenomore++ version with body-based lookahead outper-
formssmodelson these. Examples “Head-Minus” (Figures 1-c and 1-d) can be solved
optimally with a head-based lookahead. Consequently, we havesmodelsoutperform-
ing nomore++ with body-based lookahead. Please note, thatnomore++ with hybrid
lookahead always performs similar to the better suited approach.

Benchmark 1-e demonstrates the advantage ofnomore++’s strategy of keeping as-
signments unfounded-free. The figure reflects results obtained on classical Hamiltonian

6 nomore++currently does not supportsmodels-style cardinality and weight constraints.

cycle problems on complete graphs, where values on the x-axis reflect the number of
nodes in the graph.

Let us note that, due to the fairly early development state ofnomore++, its base
speed is still inferior to more mature ASP solvers, likesmodelsor dlv. To reflect on this,
we have in Figure 1-f included results from the “Equality Testing” benchmark taken
from [15]. Please observe that, whilenomore++ performs worse than eithersmodels
or dlv, it scales like the other two systems, indicating that only improvements with the
implementation are needed.

AcknowledgmentsThis work was supported by DFG under grant SCHA 550/6-4 as
well as the EC through IST-2001-37004 WASP project.

References

1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(2002) 181–234

2. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scar-
cello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (2005) To appear.

3. Anger, C., Konczak, K., Linke, T.:noMoRe: A system for non-monotonic reasoning under
answer set semantics. In Eiter, T., Faber, W., Truszczyński, M., eds.: Proceedings of the Int’l
Conference on Logic Programming and Nonmonotonic Reasoning, Springer (2001) 406–410

4. (http://www.cs.uni-potsdam.de/nomore)
5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-

ings of the International Conference on Logic Programming, MIT Press (1988) 1070–1080
6. J̈arvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for

Boolean circuits. Annals of Mathematics and Artificial Intelligence (to appear)
7. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. [8] chapter 5 273–333
8. Robinson, J., Voronkov, A., eds.: Handbook of Automated Reasoning. MIT Press (2001)
9. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.

Journal of the ACM38 (1991) 620–650
10. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to

answer set solving. Submitted for publication (2005)
11. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer

Science278(2002) 25–51
12. Konczak, K., Linke, T., Schaub, T.: Graphs and colorings for answer set programming.

Theory and Practice of Logic Programming (2005) To appear.
13. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-

mantics, and computation. Information and Computation135(1997) 69–112
14. (http://www.tcs.hut.fi/Software/smodels/)
15. (http://asparagus.cs.uni-potsdam.de)
16. Faber, W., Leone, N., Pfeifer, G.: Pushing goal derivation in dlp computations. In: Proceed-

ings of the International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’99). (1999) 177–191

17. Linke, T., Sarsakov, V.: Suitable graphs for answer set programming. In Baader, F.,
Voronkov, A., eds.: Proceedings of the International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’05). Springer (2005) 154–168

