
Aspartame: Solving Constraint Satisfaction Problems
with Answer Set Programming

M. Banbara1, M. Gebser2, K. Inoue3, T. Schaub?2, T. Soh1, N. Tamura1, and M. Weise2

1 University of Kobe
2 University of Potsdam

3 National Institute of Informatics Tokyo

Abstract. Encoding finite linear CSPs as Boolean formulas and solving them by
using modern SAT solvers has proven to be highly effective, as exemplified by
the award-winning sugar system. We here develop an alternative approach based
on ASP. This allows us to use first-order encodings providing us with a high de-
gree of flexibility for easy experimentation with different implementations. The
resulting system aspartame re-uses parts of sugar for parsing and normalizing
CSPs. The obtained set of facts is then combined with an ASP encoding that can
be grounded and solved by off-the-shelf ASP systems. We establish the competi-
tiveness of our approach by empirically contrasting aspartame and sugar.

1 Introduction

Encoding finite linear Constraint Satisfaction Problems (CSPs; [1, 2]) as propositional
formulas and solving them by using modern solvers for Satisfiability Testing (SAT; [3])
has proven to be a highly effective approach, as demonstrated by the award-winning
sugar4 system. The CSP solver sugar reads a CSP instance and transforms it into a
propositional formula in Conjunctive Normal Form (CNF). The translation relies on
the order encoding [4, 5], and the resulting CNF formula can be solved by an off-the-
shelf SAT solver.

In what follows, we elaborate upon an alternative approach based on Answer Set
Programming (ASP; [6]) and present the resulting CSP solver aspartame5. The major
difference between sugar and aspartame rests upon the implementation of the transla-
tion of CSPs into Boolean constraint problems. While sugar implements a translation
into CNF in the imperative programming language JAVA, aspartame starts with a trans-
lation into a set of facts.6 In turn, these facts are combined with a general-purpose ASP
encoding for CSP solving (also based on the order encoding), which is subsequently in-
stantiated by an off-the-shelf ASP grounder. The resulting propositional logic program
is then solved by an off-the-shelf ASP solver.

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.

4 http://bach.istc.kobe-u.ac.jp/sugar
5 http://www.cs.uni-potsdam.de/wv/aspartame
6 In practice, aspartame re-uses sugar’s front-end for parsing and normalizing CSPs.

The high-level approach of ASP has obvious advantages. First, instantiation is done
by general-purpose ASP grounders rather than dedicated implementations. Second, the
elaboration tolerance of ASP allows for easy maintenance and modifications of encod-
ings. And finally, it is easy to experiment with novel or heterogeneous encodings. How-
ever, the intruding question is whether the high-level approach of aspartame matches
the performance of the more dedicated sugar system. We empirically address this ques-
tion by contrasting the performance of both CSP solvers, while fixing the back-end
solver to clasp, used as both a SAT and an ASP solver.

From an ASP perspective, we gain insights into advanced modeling techniques for
solving CSPs. The ASP encoding implementing CSP solving with aspartame has the
following features:

– usage of function terms to abbreviate structural subsums
– avoidance of (artificial) intermediate Integer variables (to break sum expressions)
– order encoding applied to structural subsum variables (as well as input variables)
– encoding-wise filtering of relevant threshold values (no blind usage of domains)
– customizable “pigeon-hole constraint” encoding for alldifferent constraints
– “smart” encoding of table constraints, tracing admissible tuples along arguments

In the sequel, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [6], one
oriented towards ASP solving is given in [7]. Our encodings are given in the language
of gringo 3 [8]. Although we provide essential definitions of CSPs in the next section,
we refer the reader to the literature [1, 2] for a broader perspective.

2 Background

A Constraint Satisfaction Problem (CSP) is given by a pair (V, C) consisting of a set V
of variables and a set C of constraint clauses. Every variable x ∈ V has an associated
finite domain D(x) such that either D(x) = {>,⊥} or ∅ ⊂ D(x) ⊆ Z; x is a Boolean
variable if D(x) = {>,⊥}, and an Integer variable otherwise. We denote the set of
Boolean variables in V by B(V) and the set of Integer variables in V by I(V). A con-
straint clause C ∈ C is a set of literals over Boolean variables in B(V) as well as linear
inequalities or global constraints on Integer variables in I(V). Any literal in C is of
the form e or e, where e is either a Boolean variable in B(V), a linear inequality, or a
global constraint. A linear inequality is an expression

∑
1≤i≤n aixi ≤ m in which m

as well as all ai for 1 ≤ i ≤ n are Integer constants and x1, . . . , xn are Integer vari-
ables in I(V). A global constraint (cf. [9]) is an arbitrary relation over Integer variables
in I(V); we here restrict ourselves to table and alldifferent constraints over subsets
{x1, . . . , xn} of the Integer variables in I(V), where a table constraint specifies tuples
(d1, . . . , dn) ∈ D(x1) × · · · ×D(xn) of admitted value combinations and alldifferent
applies if x1, . . . , xn are assigned to distinct values in their respective domains.7

7 Linear inequalities relying on further comparison operators, such as <, >, ≥, =, and 6=, can
be converted into the considered format via appropriate replacements [5]. Moreover, note that
we here limit the consideration of global constraints to the ones that are directly, i.e., without
normalization by sugar, supported in our prototypical ASP encodings shipped with aspartame.

Given a CSP (V, C), a variable assignment v is a (total) mapping v : V →⋃
x∈V D(x) such that v(x) ∈ D(x) for every x ∈ V . A Boolean variable x ∈ B(V)

is satisfied w.r.t. v if v(x) = >. Likewise, a linear inequality
∑

1≤i≤n aixi ≤ m is
satisfied w.r.t. v if

∑
1≤i≤n aiv(xi) ≤ m. Table constraints e ⊆ D(x1)× · · · ×D(xn)

and alldifferent constraints over subsets {x1, . . . , xn} of I(V) are satisfied w.r.t. v if
(v(x1), . . . , v(xn)) ∈ e or v(xi) 6= v(xj) for all 1 ≤ i < j ≤ n, respectively. Any
Boolean variable, linear inequality, or global constraint that is not satisfied w.r.t. v is
unsatisfied w.r.t. v. A constraint clause C ∈ C is satisfied w.r.t. v if there is some literal
e ∈ C (or e ∈ C) such that e is satisfied (or unsatisfied) w.r.t. v. The assignment v is a
solution for (V, C) if every C ∈ C is satisfied w.r.t. v.

Example 1. Consider a CSP (V, C) with Boolean and Integer variables B(V) = {b} and
I(V) = {x, y, z}, where D(x) = D(y) = D(z) = {1, 2, 3}, and constraint clauses
C = {C1, C2, C3} as follows:

C1 = {alldifferent(x, y, z)} (1)
C2 = {b, 4x− 3y + z ≤ 0} (2)

C3 =
{
b, (x, y) ∈ {(1, 3), (2, 2), (3, 1)}

}
(3)

The alldifferent constraint in C1 requires values assigned to x, y, and z to be mutually
distinct. Respective assignments v satisfying the linear inequality 4x − 3y + z ≤ 0 in
C2 include v(x) = 2, v(y) = 3, and v(z) = 1 or v(x) = 1, v(y) = 3, and v(z) = 2,
while the table constraint in C3 is satisfied w.r.t. assignments v containing v(x) = 1,
v(y) = 3, and v(z) = 2 or v(x) = 3, v(y) = 1, and v(z) = 2. In view of the Boolean
variable b, whose value allows for “switching” between the linear inequality in C2 and
the table constraint in C3, we obtain the following solutions v1, . . . , v4 for (V, C):

b x y z

v1 ⊥ 2 3 1
v2 ⊥ 1 3 2
v3 > 1 3 2
v4 > 3 1 2

3 Approach

The aspartame tool extends the SAT-based solver sugar by an output component to
represent a CSP in terms of ASP facts. The generated facts can then, as usual, be com-
bined with a first-order encoding processable with off-the-shelf ASP systems. In what
follows, we describe the format of facts generated by aspartame, and we present a ded-
icated ASP encoding utilizing function terms to capture substructures in CSP instances.

3.1 Fact Format

Facts express the variables and constraints of a CSP instance in the syntax of ASP
grounders like gringo [8]. Their format is easiest explained on the CSP from Example 1,
whose fact representation is shown in Listing 1. While facts of the predicate var/2

1 var(bool,b). var(int,x;y;z,range(1,3)).

3 constraint(1,global(alldifferent,arg(x,arg(y,arg(z,nil))))).
4 constraint(2,b).
5 constraint(2,op(le,op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),0)).
6 constraint(3,op(neg,b)).
7 constraint(3,rel(r,arg(x,arg(y,nil)))).

9 rel(r,2,3,supports).
10 tuple(r,1,1,1). tuple(r,1,2,3).
11 tuple(r,2,1,2). tuple(r,2,2,2).
12 tuple(r,3,1,3). tuple(r,3,2,1).

Listing 1. Facts representing the CSP from Example 1.

provide labels of Boolean variables like b, the predicate var/3 includes a third argument
for declaring the domains of Integer variables like x, y, and z. Domain declarations
rely on function terms range(l,u), standing for continuous Integer intervals [l, u].
While one term, range(1,3), suffices for the common domain {1, 2, 3} of x, y,
and z, in general, several intervals can be specified (via separate facts) to form non-
continuous domains. Note that the interval format for Integer domains offers a compact
fact representation of (continuous) domains; e.g., the single term range(1,10000)
captures a domain with 10000 elements. Furthermore, the usage of meaningful function
terms avoids any need for artificial labels to refer to domains or parts thereof.

The literals of constraint clauses are also represented by means of function terms.
In fact, the second argument of constraint/2 in Line 3 of Listing 1 stands for
alldifferent(x, y, z) from the constraint clause C1 in (1), which is identified via the
first argument of constraint/2. Since every fact of the predicate constraint/2
is supposed to describe a single literal only, constraint clause identifiers establish the
connection between individual literals of a clause. This can be observed on the facts in
Line 4–7, specifying literals belonging to the binary constraint clauses C2 and C3 in (2)
and (3). Here, the terms b and op(neg,b) refer to the literals b and b over Boolean
variable b, where op(neg,e) is the general notation of e for all (supported) constraint
expressions e. The more complex term of the form op(le,Σ,m) in Line 5 stands
for a linear inequality Σ ≤ m. In particular, the inequality 4x − 3y + z ≤ 0 from C2

is represented by nested op(add,Σ,ax) terms whose last argument ax and deep-
est Σ part are of the form op(mul,a,x); such nesting corresponds to the precedence
(((4∗x)+(−3∗y))+(1∗z)) ≤ 0. The representation by function terms captures linear
inequalities of arbitrary arity and, as with Integer intervals, associates (sub)sums with
canonical labels. Currently, the order of arguments ax is by variable labels x, while
more “clever” orders may be established in the future.

The function terms expressing table and alldifferent constraints both include
an argument list of the form arg(x1,arg(. . .,arg(xn,nil). . .)), in which
x1, . . . , xn refer to Integer variables. In Line 3 of Listing 1, an alldifferent con-
straint over arguments x is declared via global(alldifferent,x); at present,
alldifferent is a fixed keyword in facts generated by aspartame, but support for
other kinds of global constraints can be added in the future. Beyond an argument list x,
function terms of the form rel(r,x) also include an identifier r referring to a collec-
tion of table constraint tuples. For instance, the corresponding argument r in Line 7 ad-

dresses the tuples specified by the facts in Line 9–12. Here, rel(r,2,3,supports)
declares that r is of arity 2 and includes 3 tuples, provided as white list entries via facts
of the form tuple(r,t,i,d). The latter include tuple and argument identifiers t and i
along with a value d. Accordingly, the facts in Line 10, 11, and 12 specify the pairs
(1, 3), (2, 2), and (3, 1) of values, which are the combinations admitted by the table
constraint from C3 in (3). The application of the table constraint to variables x and y is
expressed by the argument list in Line 7, so that tuple declarations can be re-used for
other variables subject to a similar table constraint.

3.2 First-Order Encoding

In addition to an output component extending sugar for generating ASP facts, aspar-
tame comes along with alternative first-order ASP encodings of solutions for CSP in-
stances. In the following, we sketch a dedicated encoding that, for one, relies on func-
tion terms to capture recurrences of similar structures and, for another, lifts the order
encoding approach to structural subsum entities.

Static Extraction of Relevant Values To begin with, Listing 2 shows (relevant) in-
stances of domain predicates, evaluated upon grounding, for the CSP from Example 1.
While derived facts in Line 1 merely provide a projection of the predicate var/3 omit-
ting associated domains, the instances of look/2 in Line 2 express that all values in the
common domain {1, 2, 3} of x, y, and z shall be considered. In fact, domain predicates
extract variable values that can be relevant for the satisfiability of a CSP instance, while
discarding the rest. The respective static analysis consists of three stages: (i) isolation
of threshold values relevant to linear inequalities; (ii) addition of missing values for
variables occurring in alldifferent constraints; (iii) addition of white/black list values
for table constraints.

In the first stage, we consider the domains of Integer variables x in terms of cor-
responding (non-overlapping) intervals I(x) = {[l1, u1], . . . , [lk, uk]}. These are ex-
tended to multiplications by Integer constants a according to the following scheme:

I(ax) =

{
{[a ∗ l1, a ∗ u1], . . . , [a ∗ lk, a ∗ uk]} if 0 ≤ a
{[a ∗ uk, a ∗ lk], . . . , [a ∗ u1, a ∗ l1]} if a < 0

For 4x− 3y+ z ≤ 0 from C2 in (2), we get I(4x) = {[4, 12]}, I(−3y) = {[−9,−3]},
and I(1z) = {[1, 3]}. Such intervals are used to retrieve bounds for (sub)sums:

−→
l (ax) = min {l | [l, u] ∈ I(ax)}
−→u (ax) = max {u | [l, u] ∈ I(ax)}

−→
l (a1x1 + a2x2) =

−→
l (a1x1) +

−→
l (a2x2)

−→u (a1x1 + a2x2) =
−→u (a1x1) +−→u (a2x2)

Given
−→
l (4x) = 4, −→u (4x) = 12,

−→
l (−3y) = −9, −→u (−3y) = −3,

−→
l (1z) = 1, and

−→u (1z) = 3, we derive
−→
l (4x− 3y) = −5, −→u (4x− 3y) = 9,

−→
l (4x− 3y + z) = −4,

and −→u (4x− 3y + z) = 12.

In view of the comparison with 0 in 4x−3y+z ≤ 0, we can now “push in” relevant
thresholds via:

←−
l (
∑

1≤i≤naixi) = max{m,
−→
l (
∑

1≤i≤naixi)} for
∑

1≤i≤naixi ≤ m
←−u (
∑

1≤i≤naixi) = min{m,−→u (
∑

1≤i≤naixi)} for
∑

1≤i≤naixi ≤ m
←−
l (
∑

1≤i≤n−1aixi) = max{
←−
l (
∑

1≤i≤naixi)−
−→u (anxn),

−→
l (
∑

1≤i≤n−1aixi)}
←−u (
∑

1≤i≤n−1aixi) = min{←−u (
∑

1≤i≤naixi)−
−→
l (anxn),

−→u (
∑

1≤i≤n−1aixi)}

Such threshold analysis leads to
←−
l (4x−3y+z) =←−u (4x−3y+z) = 0,

←−
l (4x−3y) =

−3,←−u (4x− 3y) = −1,
←−
l (4x) = 4, and←−u (4x) = 8, telling us that subsums relevant

for checking whether 4x−3y+z ≤ 0 satisfy−3 ≤ 4x−3y ≤ −1 and 4 ≤ 4x ≤ 8. Note
that maxima (or minima) used to construct

←−
l (
∑

1≤i≤n aixi) (or ←−u (
∑

1≤i≤n aixi))
serve two purposes. For one, they correct infeasible arithmetical thresholds to domain
values; e.g.,

←−
l (4x−3y)−−→u (−3y) = −3+3 = 0 tells us that 0 would be the greatest

lower bound to consider for 4x (since 4x − 3y + z ≤ 0 were necessarily satisfied
when 4x ≤ 0), while the smallest possible value

−→
l (4x) = 4 exceeds 0. For another,

dominating values like 4x = 12 are discarded, given that 4x− 3y + z ≤ 0 cannot hold
when 4x >←−u (4x− 3y)−

−→
l (−3y) = −1 + 9 = 8.

Letting ub(0) = {0}, the upper bounds for
∑

1≤i≤n aixi that deserve further con-
sideration are then obtained as follows:

ub(
∑

1≤i≤naixi) = {max{j + an∗k,
←−
l (
∑

1≤i≤naixi)} | j ∈ ub(
∑

1≤i≤n−1aixi),

k ∈ Z, [l, u] ∈ I(anxn), l ≤ an∗k ≤ min{u,←−u (
∑

1≤i≤naixi)− j}}

Starting from the above thresholds, ub(4x) = {4, 8}, ub(4x − 3y) = {−3,−2,−1},
and ub(4x − 3y + z) = {0} indicate upper bounds for subsums that are of interest in
evaluating 4x− 3y + z ≤ 0. Upper bounds in ub(

∑
1≤i≤naixi) can in turn be related

to “maximal” pairs of addends:

S(
∑

1≤i≤naixi) = {(j,max{an∗k | [l, u] ∈ I(anxn), l ≤ an∗k ≤ min{u, ub − j},

k ∈ Z}) | j ∈ ub(
∑

1≤i≤n−1aixi), ub ∈ ub(
∑

1≤i≤naixi),
−→
l (anxn) ≤ ub − j}

In our example, we get S(4x) = {(0, 4), (0, 8)}, S(4x − 3y) =
{(4,−9), (4,−6), (8,−9)}, and S(4x− 3y + z) = {(−3, 3), (−2, 2), (−1, 1)}.

Finally, we associate each pair (j, an∗k) ∈ S(
∑

1≤i≤naixi) of addends with the
upper bound s(j, an∗k) = min{ub ∈ ub(

∑
1≤i≤naixi) | j + an∗k ≤ ub}, thus

obtaining s(0, 4) = 4, s(0, 8) = 8, s(4,−9) = −3, s(4,−6) = −2, s(8,−9) = −1,
and s(−3, 3) = s(−2, 2) = s(−1, 1) = 0.

The described analysis of thresholds for subsums is implemented via deterministic
domain predicates in our ASP encoding. Variables’ domain values underlying relevant
addends are provided by the derived facts in Line 10–12 of Listing 2. Note that value 3
for x as well as 1 for y are ignored here, given that 4x = 12 and −3y = −3 do not
admit 4x − 3y + z ≤ 0 to hold. The mapping of relevant addends to their associated

1 var(int,x;y;z).
2 look(x;y;z,1;2;3).

4 order(x;y;z,3,2).
5 order(x;y;z,2,1).

7 order(op(add,op(mul,4,x),op(mul,-3,y)),-1,-2).
8 order(op(add,op(mul,4,x),op(mul,-3,y)),-2,-3).

10 look(op(mul,4,x),1;2,1).
11 look(op(mul,-3,y),2;3,-1).
12 look(op(mul,1,z),1;2;3,1).

14 look(op(add,op(mul,4,x),op(mul,-3,y)),4,-6,-2).
15 look(op(add,op(mul,4,x),op(mul,-3,y)),4,-9,-3).
16 look(op(add,op(mul,4,x),op(mul,-3,y)),8,-9,-1).

18 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-1,1,0).
19 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-2,2,0).
20 look(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),-3,3,0).

22 bound(op(add,op(add,op(mul,4,x),op(mul,-3,y)),op(mul,1,z)),12).

24 difind(arg(x,arg(y,arg(z,nil))),x,1).
25 difind(arg(x,arg(y,arg(z,nil))),y,2).
26 difind(arg(x,arg(y,arg(z,nil))),z,3).
27 difmax(arg(x,arg(y,arg(z,nil))),3,1;2;3).
28 difall(arg(x,arg(y,arg(z,nil)))).

30 relind(r,arg(x,arg(y,nil)),x,1).
31 relind(r,arg(x,arg(y,nil)),y,2).

Listing 2. Domain predicates derived via stratified rules (not shown) from facts in Listing 1.

upper bound can be observed in Line 14–20 for the (sub)sums 4x − 3y and (4x −
3y) + z. The respective facts describe patterns for mapping assigned domain values to
their multiplication results and then to upper bounds for subsums, which are eventually
subject to a (non-trivial) comparison in some linear inequality. (Trivial comparisons
are performed via the total upper bound for an addition result, as given in Line 22.)
Notably, the static threshold analysis is implemented on terms representing the domains
of variables, and outcomes are then mapped back to original variables. Thus, linear
inequalities over different variables with the same domains are analyzed only once. The
final function terms, however, mention the variables whose values are evaluated, where
recurring substructures may share a common term with which all relevant threshold
values are associated.

Although the analysis of the linear inequality 4x − 3y + z ≤ 0 identifies the
values 3 for x and 1 for y as redundant, the presence of alldifferent(x, y, z) leads
to their “release” as relevant candidates for x and y. Accordingly, all values in the
common domain {1, 2, 3} of x, y, and z are put into (decreasing) order, given by
the derived facts in Line 4–5. Beyond that, the order among relevant upper bounds
in ub(4x − 3y) = {−3,−2,−1} is reflected in Line 7–8; this is used to apply the
order encoding to structural subsum variables (in addition to the input variables x,
y, and z). The residual derived facts in Line 24–31 serve convenience by associat-
ing indexes to the arguments of alldifferent(x, y, z) as well as to x and y considered
in (x, y) ∈ {(1, 3), (2, 2), (3, 1)}. Furthermore, the fact in Line 27 indicates the in-
dex 3 of variable z in alldifferent(x, y, z) as the final position at which either of the

1 % generate variable assignment

3 { less(V,E) : order(V,E,_) } :- var(int,V).
4 :- order(V,E1,E2), less(V,E2), not less(V,E1).
5 value(V,E) :- look(V,E), not less(V,E), less(V,EE) : order(V,EE,E).

7 { value(V,true) } :- var(bool,V).
8 value(V,false) :- var(bool,V), not value(V,true).

10 % evaluate linear inequalities

12 leq(op(mul,F,V),F*E) :- look(op(mul,F,V),E,1), less(V,EE) : order(V,EE,E).
13 leq(op(mul,F,V),F*E) :- look(op(mul,F,V),E,-1), not less(V,E).
14 leq(op(add,S1,S2),E) :- look(op(add,S1,S2),E1,E2,E), leq(S1,E1;;S2,E2).
15 leq(op(add,S1,S2),E) :- order(op(add,S1,S2),E,EE), leq(op(add,S1,S2),EE).

17 % evaluate alldifferent expressions

19 seen(A,I,E) :- difind(A,V,I), value(V,E).
20 seen(A,I,E) :- difind(A,_,I), seen(A,I-1,E), not difmax(A,I-1,E).

22 redo(A) :- difind(A,V,I), seen(A,I-1,E), value(V,E).
23 redo(A) :- difall(A), difmax(A,I,E), not seen(A,I,E).

25 % evaluate table expressions

27 rela(R,A,T,2) :- relind(R,A,V,1), tuple(R,T,1,E), value(V,E).
28 rela(R,A,T,I+1) :- relind(R,A,V,I), tuple(R,T,I,E), value(V,E), rela(R,A,T,I).

30 rela(R,A,U) :- rela(R,A,_,I+1), rel(R,I,_,U).

32 % check constraint clauses

34 hold(C) :- constraint(C,V), value(V,true).
35 hold(C) :- constraint(C,op(neg,V)), value(V,false).

37 hold(C) :- constraint(C,op(le,S,E)), bound(S,U), leq(S,E) : E < U.
38 hold(C) :- constraint(C,op(neg,op(le,S,E))), bound(S,U), E < U, not leq(S,E).

40 hold(C) :- constraint(C,global(alldifferent,A)), not redo(A).
41 hold(C) :- constraint(C,op(neg,global(alldifferent,A))), redo(A).

43 hold(C) :- constraint(C,rel(R,A)), not rela(R,A,conflicts),
44 rela(R,A,supports) : rel(R,_,_,supports).
45 hold(C) :- constraint(C,op(neg,rel(R,A))), not rela(R,A,supports),
46 rela(R,A,conflicts) : rel(R,_,_,conflicts).

48 constraint(C) :- constraint(C,_).
49 :- constraint(C), not hold(C).

51 % display variable assignment

53 #hide.
54 #show value/2.

Listing 3. First-order encoding of solutions for finite linear CSPs.

values 1, 2, or 3 can possibly be assigned, and the fact in Line 28 expresses that all
three values in D(x) ∪ D(y) ∪ D(z) = {1, 2, 3} must be assigned in order to satisfy
alldifferent(x, y, z).

Non-deterministic Encoding Part With the described domain predicates at hand, the
encoding part in Listing 3 implements the non-deterministic guessing of a variable as-

signment along with the evaluation of constraint clauses. Following the idea of order
encodings in SAT [4, 5], the choice rule in Line 3 permits guessing less(V,E) for all
but the smallest (relevant) value E in the domain of an Integer variable V, thus indicating
that V is assigned to some smaller value than E. The consistency among guessed atoms
is established by the integrity constraint in Line 4, requiring less(V,E1) to hold if
less(V,E2) is true for the (immediate) predecessor value E2 of E1. The actual value
assigned to V, given by the greatest E for which less(V,E) is false, is extracted in
Line 5. For Boolean variables, the value true can be guessed unconditionally via the
choice rule in Line 7, and false is derived otherwise via the rule in Line 8.

The dedicated extension of the order encoding idea to subsums of linear inequal-
ities is implemented by means of the rules in Line 12–15 of Listing 3. To this end,
upper bounds for singular multiplication results indicated as relevant by instances of
look(op(mul,F,V),E,G) are directly derived from less/2. Thereby, the flag
G = F/|F| provides the polarity of the actual coefficient F.8 If F is positive, i.e.,
G = 1, the upper bound F*E is established as soon as less(V,EE) holds for the
immediate successor value EE of E (or if E is the greatest relevant value in the do-
main of V). On the other hand, if G = -1 indicates that F is negative, the upper
bound F*E is derived from not less(V,E), which means that the value assigned
to V is greater than or equal to E. Relevant upper bounds E for subsums rely on
maximal pairs (E1,E2) of addends, identified via static threshold analysis and read-
ily provided by instances of look(op(add,S1,S2),E1,E2,E). In fact, the rule
in Line 14 derives leq(op(add,S1,S2),E), indicating that S1 + S2 ≤ E, from
leq(S1,E1) and leq(S2,E2). Although an established upper bound inherently
implies any greater (relevant) upper bound to hold as well w.r.t. a total variable assign-
ment, ASP (and SAT) solvers are not committed to guessing “input variables” first.
Rather, structural variables like the instances of leq(op(add,S1,S2),E) may be
fixed upon solving, possibly in view of recorded conflict clauses, before a total as-
signment has been determined. In view of this, the additional rule in Line 15 makes
sure that an established upper bound EE propagates to its immediate successor E (if
there is any). For instance, (simplified) ground instances of the rule stemming from
ub(4x− 3y) = {−3,−2,−1} include the following:

leq(op(add,op(mul,4,x),op(mul,-3,y)),-1) :-
leq(op(add,op(mul,4,x),op(mul,-3,y)),-2).

leq(op(add,op(mul,4,x),op(mul,-3,y)),-2) :-
leq(op(add,op(mul,4,x),op(mul,-3,y)),-3).

Unlike with the domains of Integer variables, we rely on a rule, rather than an integrity
constraint, to establish consistency among the bounds for structural subsums. The rea-
son for this is that upper bounds for addends S1 and S2, contributing left and right
justifications, may include divergent gaps, so that consistent value orderings for them
are, in general, not guaranteed to immediately produce all relevant upper bounds for
S1+ S2. Encoding variants resolving this issue and using integrity constraints like the
one in Line 4 are a subject to future investigation.

While linear inequalities can be evaluated by means of boundaries derived more
or less directly from instances of less(V,E), the evaluation of alldifferent and table

8 Coefficients given in facts generated by aspartame are distinct from 0.

constraints in Line 19–23 and Line 27–30 of Listing 3 relies on particular instances of
value(V,E). The basic idea of checking whether an alldifferent constraint holds is
to propagate assigned values along the indexes of participating variables. Then, a recur-
rence is detected when the value assigned to a variable with index I has been marked as
already assigned, as determined from seen(A,I-1,E) in Line 22. Moreover, when-
ever difall(A) indicates that all domain values for the variables in argument list A
must be assigned, the rule in Line 23 additionally derives a recurrence from some gap
(a value that has not been assigned to the variable at the last possible index). Our full
encoding further features so-called “pigeon-hole constraints” (cf. [10, 11]) to check that
the smallest or greatest 1, . . . , n− 1 domain values for an alldifferent constraint with n
variables are not populated by more than i variables for 1 ≤ i ≤ n−1. Such conditions
can again be checked based on instances of less(V,E), and both counter-based (cf.
[12]) as well as aggregate-based (cf. [13]) implementations are applicable in view of the
native support of aggregates by ASP solvers like clasp (cf. [14]). In fact, the usage of
rules to express redundant constraints, like the one in Line 23 or those for pigeon-hole
constraints, as well as their ASP formulation provide various degrees of freedom, where
comprehensive evaluation and configuration methods are subjects to future work.

The strategy for evaluating table constraints is closely related to the one for detect-
ing value recurrences in alldifferent constraints. Based on the indexes of variables in a
table constraint, tuples that are (still) admissible are forwarded via the rules in Line 27–
28. The inclusion of a full tuple in an assignment is detected by the rule in Line 30,
checking whether the arity I of a table constraint has been reached for some tuple,
where a value supports or conflicts for U additionally indicates whether the in-
cluded tuple belongs to a white or black list, respectively. Note that this strategy avoids
explicit references to variables whose values are responsible for the exclusion of tuples,
given that lack of inclusion is detected from incomplete tuple traversals.

Finally, the rules in Line 34–49 explore the values assigned to Boolean variables
and the outcomes of evaluating particular kinds of constraints to derive hold(C) if and
only if some positive or negative literal in C is satisfied or unsatisfied, respectively, w.r.t.
the variable assignment represented by instances of value(V,E). Without going into
details, let us still note that our full encoding also features linear inequalities relying on
the comparison operators≥, =, and 6=, for which additional rules are included to derive
hold(C), yet sticking to the principle of upper bound evaluation via leq/2. In fact, the
general possibility of complemented constraint expressions as well as of disjunctions
potentially admits unsatisfied constraint expressions w.r.t. solutions, and our encoding
reflects this by separating the evaluation of particular constraint expressions in Line 12–
30 from further literal and clause evaluation in Line 34–49.

4 The aspartame System

The architecture of the aspartame system is given in Figure 1. As mentioned, aspartame
re-uses sugar’s front-end for parsing and normalizing CSPs. Hence, it accepts the same
input formats, viz. XCSP9 and sugar’s native CSP format10. We then implemented an

9 http://www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf
10 http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html

CSP
Instance sugar

A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

Fig. 1. Architecture of aspartame.

output hook for sugar that provides us with the resulting CSP instance in the fact format
described in Section 3.1. These facts are then used for grounding the (full version of
the) dedicated ASP encoding in Listing 3 or an alternative one (discussed below). This
is done by the ASP grounder gringo. In turn, the resulting propositional logic program
is passed to the ASP solver clasp that returns an assignment, representing a solution to
the original CSP instance.

We empirically access the performance of aspartame relative to two ASP encodings,
the dedicated one described in Section 3.2 as well as a more direct encoding inspired
by the original CNF construction of sugar [5], and additionally consider the SAT-based
reference solver sugar (2.0.0). In either case, we use the combined ASP and SAT solver
clasp (2.1.0), and ASP-based approaches further rely on gringo (3.0.5) for grounding
ASP encodings on facts generated by aspartame. We selected 60 representative CSP in-
stances (that are neither too easy nor too hard), consisting of intensional and global con-
straints, from the benchmarks of the 2009 CSP Competition11 for running systematic
experiments on a cluster of Linux machines equipped with dual Xeon E5520 quad-core
2.26 GHz processors and 48 GB RAM. To get some first insights into suitable search
options, we ran clasp with its default (berkmin-like) and the popular “vsids” decision
heuristic; while SAT-based preprocessing (cf. [15]) is performed by default on CNF in-
puts, we optionally enabled it for (ground) ASP instances, leading to four combinations
of clasp settings for ASP-based approaches and two for SAT-based sugar.

Table 1 reports runtime results in seconds, separated into conversion time of as-
partame from CSP instances to ASP facts (first “convert” column) and of sugar from
CSP instances to CNF, gringo times for grounding ASP encodings relative to facts,
and finally columns for the search times of clasp with the aforementioned options.
Each computational phase was restricted to 600 seconds, and timeouts counted in the
last row of Table 1 are taken as 600 seconds in the second last row providing average
runtimes. Looking at these summary rows, we observe that our two ASP encodings
are solved most effectively when vsids decision heuristic and SAT preprocessing are
both enabled; unlike this, neither decision heuristic dominates the other on CNF in-
put. Apparently, clasp on CNFs generated by sugar still has a significant edge on facts
by aspartame combined with either ASP encoding. In particular, we observe drastic
performance discrepancies on some instance families (especially “fischer” and “queen-
sKnights”), where clasp performs stable on CNFs from sugar but runs into trouble on
corresponding ASP instances. Given that aspartame and its ASP encodings are proto-
types, such behavior does not disprove the basic approach, but rather motivates future

11 http://www.cril.univ-artois.fr/CPAI09

Table 1. Experiments comparing ASP encoding variants and the SAT-based solver sugar.

ASP Encoding 1 (dedicated) ASP Encoding 2 (SAT-inspired) sugar
Benchmark convert ground default vsids sat-pre vsids/ ground default vsids sat-pre vsids/ convert default vsids

sat-pre sat-pre
1-fullins-5-5 2.02 1.41 13.96 11.28 5.15 3.66 0.91 10.72 12.15 6.72 7.18 1.73 2.40 2.19
3-fullins-5-6 3.55 32.39 17.07 14.90 21.75 6.52 11.26 13.08 16.52 11.53 14.02 5.36 1.91 1.50
4-fullins-4-7 2.20 4.45 28.35 45.59 22.02 28.38 2.29 20.03 39.92 28.60 42.91 2.80 2.19 4.81
abb313GPIA-7 5.02 46.97 0.67 1.85 0.71 2.01 20.33 31.75 2.27 41.61 1.63 7.18 6.05 0.05
abb313GPIA-8 5.14 51.23 411.17 460.56 521.11 TO 21.97 173.06 451.02 433.31 180.33 7.23 131.41 70.57
abb313GPIA-9 5.96 52.79 TO TO TO TO 24.68 243.72 TO 289.54 TO 8.49 0.59 5.73
bibd-8-98-49-4-21 glb 3.68 28.30 TO 20.70 4.47 1.42 28.59 10.52 18.11 5.36 8.41 11.28 1.65 1.49
bibd-10-120-36-3-8 glb 5.20 69.94 46.68 11.62 8.21 1.13 76.65 15.84 4.55 2.47 7.93 13.63 7.28 0.85
bibd-25-25-9-9-3 glb 7.34 84.68 TO 434.23 3.50 1.13 17.53 235.11 177.27 TO 59.41 8.90 28.86 41.12
bibd-31-31-6-6-1 glb 9.74 254.13 159.32 3.34 156.71 14.64 39.84 12.24 0.18 0.17 0.11 17.39 77.95 0.20
C2-3-15 0.88 3.30 0.21 0.13 0.15 0.08 9.74 6.03 4.88 6.63 8.24 1.64 7.37 1.05
C4-1-61 1.44 24.44 4.66 2.86 4.90 2.80 148.33 TO TO TO TO 3.40 3.06 9.87
C4-2-61 2.96 26.04 6.26 1.98 6.16 2.04 152.33 222.52 69.47 227.54 165.80 3.22 7.05 3.21
C5-3-91 2.73 71.55 31.42 10.32 31.87 11.91 TO TO TO TO TO 7.89 261.39 TO
chnl-10-11 0.37 0.18 0.64 1.20 4.36 11.44 0.14 1.35 2.65 12.40 13.75 0.92 19.58 55.26
chnl-10-15 0.70 0.17 9.15 3.08 6.95 10.61 0.19 4.04 20.14 10.82 18.01 0.51 32.07 24.68
chnl-10-20 0.56 0.24 19.14 6.91 6.51 5.22 0.33 41.96 38.34 6.81 11.98 1.11 7.77 6.30
chnl10-15-pb-cnf-cr 0.42 0.42 9.28 3.05 6.93 10.74 0.20 4.00 20.05 10.90 16.43 1.12 31.85 24.87
costasArray-14 0.46 0.82 3.54 2.93 3.65 4.87 0.62 18.63 18.19 24.79 6.52 2.03 0.25 0.07
costasArray-15 0.52 0.94 17.96 60.17 75.50 17.95 0.78 62.10 136.40 4.96 8.83 1.59 18.41 8.16
costasArray-16 0.52 1.20 15.13 30.18 69.69 0.99 1.03 130.75 203.94 245.02 36.31 1.71 32.65 33.25
costasArray-17 0.56 1.50 TO TO TO 232.64 1.28 TO TO TO TO 2.08 148.55 553.54
fischer-1-2-fair 1.44 304.21 11.21 92.81 11.42 18.79 28.50 23.81 7.81 TO TO 3.42 0.97 0.02
fischer-2-3-fair 4.18 348.84 0.85 21.11 0.79 6.50 68.42 23.19 3.69 23.71 3.54 7.19 0.13 0.04
fischer-3-8-fair 30.18 515.69 TO 458.58 TO 60.32 376.33 TO TO TO TO 35.16 22.05 37.27
fischer-4-6-fair 35.12 535.93 282.84 242.05 386.37 274.27 384.19 TO TO TO TO 39.15 17.16 8.79
fischer-6-1-fair 4.40 457.55 0.91 12.16 0.90 14.68 150.78 TO 10.29 TO 5.46 13.20 1.79 2.69
magicSquare-6 glb 0.29 2.72 46.20 1.23 4.27 1.49 4.20 9.50 2.42 18.39 1.77 2.26 0.79 0.46
magicSquare-7 glb 0.28 8.04 7.54 78.17 1.15 30.18 15.63 51.08 9.59 51.00 7.41 3.00 4.10 2.20
magicSquare-8 glb 0.42 21.75 TO 318.69 477.11 47.22 53.61 331.09 19.14 124.79 36.60 6.29 5.50 3.72
mps-mzzv42z 4.84 166.01 2.74 1.54 2.61 1.02 395.20 8.56 5.44 8.75 5.20 24.84 5.44 3.28
mps-p2756 1.74 278.02 4.98 11.89 5.04 5.29 TO TO TO TO TO 161.39 1.32 1.20
mps-red-air06 11.59 272.57 139.86 381.61 34.78 25.27 TO TO TO TO TO 27.73 0.63 TO
mps-red-fiber 1.28 92.78 5.07 3.78 5.34 5.39 388.43 33.55 TO 33.43 TO 38.74 2.05 6.76
queensKnights-50-5-add 1.81 16.86 18.62 24.71 44.44 18.79 28.12 558.69 85.48 537.34 44.58 3.25 12.15 0.66
queensKnights-50-5-mul 3.50 17.31 40.78 48.54 38.57 20.64 30.33 221.08 67.39 TO 50.76 3.29 2.10 0.63
queensKnights-80-5-mul 2.47 77.52 181.70 354.74 172.33 383.73 126.32 TO 426.53 TO 414.97 5.81 7.61 2.51
queensKnights-100-5-add 3.49 163.50 TO TO TO TO 243.06 TO TO TO TO 6.92 18.45 4.39
ramsey-16-3 1.07 0.51 1.17 1.16 0.18 0.10 0.39 6.74 0.53 0.78 1.04 2.19 1.99 112.63
ramsey-30-4 2.13 5.91 150.64 180.79 28.56 26.47 2.75 198.83 98.97 82.69 32.39 2.35 8.09 8.67
ramsey-33-4 2.53 7.58 405.05 279.25 93.36 66.78 4.05 TO 193.49 173.67 109.45 3.13 32.02 39.82
ramsey-34-4 2.34 8.46 TO TO 366.41 109.45 4.14 TO TO TO 317.08 2.78 67.41 38.71
ruler-34-9-a4 1.15 13.01 21.70 29.62 19.05 19.16 3.08 35.29 39.71 38.59 39.19 4.30 41.98 41.16
ruler-44-10-a4 1.56 37.60 367.84 233.65 302.54 280.79 8.39 567.20 542.78 TO 483.85 9.91 405.96 446.66
ruler-44-9-a4 1.04 23.41 182.48 124.14 172.79 118.37 6.18 351.14 13.41 102.36 34.25 6.61 TO 352.28
ruler-55-10-a3 1.08 5.89 TO 500.84 TO TO 3.19 TO TO TO TO 1.73 43.23 70.22
super-jobShop-e0ddr1-8 1.21 6.42 555.34 19.21 14.32 3.67 3.66 6.10 0.11 6.92 1.05 1.16 1.21 0.49
super-jobShop-e0ddr2-1 1.08 7.59 TO 32.94 8.38 12.14 3.81 16.08 0.84 2.56 3.87 1.51 5.41 0.76
super-jobShop-enddr2-3 1.00 8.60 TO 116.06 76.55 12.93 3.95 13.21 2.59 5.30 6.33 2.15 1.19 0.72
super-os-taillard-7-4 1.02 35.84 TO 493.02 TO 454.02 15.35 36.02 36.35 35.06 32.14 2.08 1.14 0.89
super-os-taillard-7-6 1.01 35.51 115.70 TO 112.53 TO 14.49 169.99 30.25 144.26 25.89 2.14 4.20 0.76
super-os-taillard-7-7 0.84 32.73 155.31 270.49 132.71 311.67 13.53 23.55 17.77 25.74 15.78 1.95 0.80 0.78
super-os-taillard-7-8 0.95 33.23 431.15 279.09 475.51 328.50 14.46 46.95 25.64 40.83 24.06 2.01 1.19 0.96
zeroin-i-1-10 1.97 2.41 20.92 27.16 14.97 16.18 1.74 22.09 28.81 26.62 18.56 2.17 3.48 2.57
zeroin-i-3-10 1.76 1.92 7.24 33.14 11.43 16.93 1.52 13.45 29.43 19.72 31.67 2.22 4.57 4.11
ii-32c4 3.73 21.92 0.24 0.02 0.03 0.03 56.69 0.02 0.01 0.03 0.04 21.67 8.77 0.76
ii-32d3 2.80 11.87 4.58 13.70 0.39 0.26 25.12 3.54 0.31 0.54 1.35 12.33 71.17 0.20
p2756 2.06 269.82 3.87 12.55 3.99 6.13 TO TO TO TO TO 162.72 4.26 2.41
ooo-burch-dill-3-accl-ucl 2.46 14.06 13.80 18.60 6.13 5.95 5.82 30.05 24.18 12.73 4.61 2.77 1.28 1.00
ooo-tag14 6.93 191.71 145.03 144.09 158.56 158.99 44.99 109.54 310.78 20.82 25.11 10.67 6.54 6.07
Average Time 3.51 80.21 188.67 149.80 129.06 103.87 91.49 209.46 184.50 218.43 169.76 12.56 37.47 54.27
Timeouts 0 0 12 5 6 5 4 14 13 17 13 0 1 2

investigations of the reasons for performance discrepancies. For one, we conjecture that
normalizations of global constraints that are not yet supported by aspartame are primar-
ily responsible for large instance sizes and long search times on some instance families.
For another, we suppose that both of our ASP encodings are still quite naive compared
to years of expertise manifested in sugar’s CNF construction. However, the observation
that our dedicated ASP encoding has on edge the SAT-inspired one and yields signifi-
cant performance improvements on some instance families (“C2-3-15”–“C5-3-91” and
“mps”) clearly encourages further investigations into ASP encodings of CSP instances.

5 Related Work

Unlike approaches to constraint answer set solving, e.g., [10, 16–18], which aim at in-
tegrating CSP and ASP solving (engines), the focus of aspartame lies on pure CSP
solving. In fact, aspartame’s approach can be regarded as a first-order alternative to
SAT-based systems like sugar [5], where the performance of the underlying SAT solver
is crucial. However, it is now becoming recognized that the SAT encoding to be used
also plays an important role [19]. There have been several proposals of encoding con-
straints to SAT: direct encoding [20, 21], support encoding [22, 23], log encoding [24,
25], log support encoding [26], regular encoding [27], order encoding [4, 5], and com-
pact order encoding [28].

The order encoding, where Boolean variables represent whether x ≤ i holds for
variables x and values i, showed good performance for a wide range of CSPs [4, 11, 27,
29–34]. Especially, the SAT-based constraint solver sugar became a winner in global
constraint categories at the 2008 and 2009 CSP solver competitions [35]. Moreover, the
SAT-based CSP solver BEE [36] and the CLP system B-Prolog [37] utilize the order
encoding. In fact, the order encoding provides a compact translation of arithmetic con-
straints, while also maintaining bounds consistency by unit propagation. Interestingly,
it has been shown that the order encoding is the only existing SAT encoding that can
reduce tractable CSP to tractable SAT [38].

6 Conclusion

We presented an alternative approach to solving finite linear CSPs based on ASP. The
resulting system aspartame relies on high-level ASP encodings and delegates both the
grounding and solving tasks to general-purpose ASP systems. We have contrasted as-
partame with its SAT-based ancestor sugar, which delegates only the solving task to
off-the-shelf SAT solvers, while using dedicated algorithms for constraint preprocess-
ing. Although aspartame does not fully match the performance of sugar from a global
perspective, the picture is fragmented and leaves room for further improvements. This is
to say that different performances are observed on distinct classes of CSPs, comprising
different types of constraints. Thus, it is an interesting topic of future research to devise
more appropriate ASP encodings for such settings. Despite all this, aspartame demon-
strates that ASP’s general-purpose technology allows to compete with state-of-the-art
constraint solving techniques, not to mention that aspartame’s intelligence is driven by
an ASP encoding of less than 100 code lines (for non-deterministic predicates subject

to search). In fact, the high-level approach of ASP facilitates extensions and variations
of first-order encodings for dealing with particular types of constraints. In the future,
we thus aim at more exhaustive investigations of encoding variants, e.g., regarding alld-
ifferent constraints, as well as support for additional kinds of global constraints.

Acknowledgments This work was partially funded by the Japan Society for the Promo-
tion of Science (JSPS) under grant KAKENHI 24300007 as well as the German Science
Foundation (DFG) under grant SCHA 550/8-3 and SCHA 550/9-1. We are grateful to
the anonymous reviewers for many helpful comments.

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Elsevier

Science (2006)
3. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS Press

(2009)
4. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms

to scheduling problems. In Hayes-Roth, B., and Korf, R., eds.: Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI’94), AAAI Press (1994) 1092–1097

5. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2) (2009) 254–272

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo.12

9. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints
from examples. In Lee, J., ed.: Proceedings of the Seventeenth International Conference on
Principles and Practice of Constraint Programming (CP’11), Springer-Verlag (2011) 12–26

10. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10(4-6) (2010) 465–480

11. Metodi, A., Codish, M., Stuckey, P.: Boolean equi-propagation for concise and efficient SAT
encodings of combinatorial problems. Journal of Artificial Intelligence Research 46 (2013)
303–341

12. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In van Beek,
P., ed.: Proceedings of the Eleventh International Conference on Principles and Practice of
Constraint Programming (CP’05), Springer-Verlag (2005) 827–831

13. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight
constraint rules in conflict-driven ASP solvers. [39] 250–264

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In Bacchus, F., Walsh, T., eds.: Proceedings of the Eighth International Conference on Theory
and Applications of Satisfiability Testing (SAT’05), Springer-Verlag (2005) 61–75

12 http://potassco.sourceforge.net

16. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. [39] 235–249
17. Balduccini, M.: Representing constraint satisfaction problems in answer set programming.

In Faber, W., Lee, J., eds.: Proceedings of the Second Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP’09), (2009) 16–30

18. Ostrowski, M., Schaub, T.: ASP modulo CSP: The clingcon system. Theory and Practice of
Logic Programming 12(4-5) (2012) 485–503

19. Prestwich, S.: CNF encodings. [3] 75–97
20. de Kleer, J.: A comparison of ATMS and CSP techniques. In Sridharan, N., ed.: Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI’89), Morgan
Kaufmann Publishers (1989) 290–296

21. Walsh, T.: SAT v CSP. In Dechter, R., ed.: Proceedings of the Sixth International Conference
on Principles and Practice of Constraint Programming (CP’00), Springer-Verlag (2000) 441–
456

22. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction net-
works. Artificial Intelligence 45(3) (1990) 275–286

23. Gent, I.: Arc consistency in SAT. In van Harmelen, F., ed.: Proceedings of the Fifteenth
European Conference on Artificial Intelligence (ECAI’02), IOS Press (2002) 121–125

24. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems. In
Pehrson, B., Simon, I., eds.: Proceedings of the Thirteenth IFIP World Computer Congress
(WCC’94), North-Holland (1994) 253–258

25. Van Gelder, A.: Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics 156(2) (2008) 230–243

26. Gavanelli, M.: The log-support encoding of CSP into SAT. In Bessiere, C., ed.: Proceedings
of the Thirteenth International Conference on Principles and Practice of Constraint Program-
ming (CP’07), Springer-Verlag (2007) 815–822

27. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems
with Boolean variables. In Hoos, H., Mitchell, D., eds.: Proceedings of the Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT’04), Springer-
Verlag (2004) 1–15

28. Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-based CSP solver using compact order
encoding (tool presentation). In Cimatti, A., Sebastiani, R., eds.: Proceedings of the Fifteenth
International Conference on Theory and Applications of Satisfiability Testing (SAT’12),
Springer-Verlag (2012) 456–462

29. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In
Rossi, F., ed.: Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP’03), Springer-Verlag (2003) 108–122

30. Gent, I., Nightingale, P.: A new encoding of AllDifferent into SAT. In Frisch, A., Miguel,
I., eds.: Proceedings of the Third International Workshop on Modelling and Reformulating
Constraint Satisfaction Problems (ModRef’04), (2004) 95–110

31. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competitive and
cooperative approach to propositional satisfiability. Discrete Applied Mathematics 154(16)
(2006) 2291–2306

32. Soh, T., Inoue, K., Tamura, N., Banbara, M., Nabeshima, H.: A SAT-based method for solv-
ing the two-dimensional strip packing problem. Fundamenta Informaticae 102(3-4) (2010)
467–487

33. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints
14(3) (2009) 357–391

34. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating combinatorial test cases by
efficient SAT encodings suitable for CDCL SAT solvers. In Fermüller, C., Voronkov, A.,
eds.: Proceedings of the Seventeenth International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’10), Springer-Verlag (2010) 112–126

35. Lecoutre, C., Roussel, O., van Dongen, M.: Promoting robust black-box solvers through
competitions. Constraints 15(3) (2010) 317–326

36. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE. Theory and
Practice of Logic Programming 12(4-5) (2012) 465–483

37. Zhou, N.: The SAT compiler in B-prolog. The Association for Logic Programming Newslet-
ter, March 2013 (2013)13

38. Petke, J., Jeavons, P.: The order encoding: From tractable CSP to tractable SAT. In Sakallah,
K., Simon, L., eds.: Proceedings of the Fourteenth International Conference on Theory and
Applications of Satisfiability Testing (SAT’11), Springer-Verlag (2011) 371–372

39. Hill, P., Warren, D., eds.: Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), Springer-Verlag (2009)

13 http://www.cs.nmsu.edu/ALP/2013/03/the-sat-compiler-in-b-prolog

