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Abstract. We develop an approach to test suite generation for Con-
strained Combinatorial Testing (CCT), one of the most widely stud-
ied combinatorial testing techniques, based on Answer Set Programming
(ASP). The resulting catnap system accepts a CCT instance in fact for-
mat and combines it with a first-order encoding for generating test suites,
which can subsequently be solved by any off-the-shelf ASP systems. We
evaluate the effectiveness of our approach by empirically contrasting it
to the best known bounds obtained via dedicated implementations.

1 Introduction

Software testing can generally be defined as the task of analyzing software sys-
tems to detect failures. Recently, software testing has become an area of in-
creasing interest in several Software Engineering communities involving both
researchers and practitioners, such as the international series of ICST/IWCT
conferences. The typical topics of this area include model-based testing, combi-
natorial testing, security testing, domain specific testing, etc. In this paper, we
consider a problem of generating test suites (viz. sets of test cases) for Combi-
natorial Testing (CT; [7,15,19]) and its extensions.

CT is an effective black-box testing technique to detect elusive failures of
software. Modern software systems are highly configurable. It is often impracti-
cal to test all combinations of configuration options. CT techniques have been
developed especially for such systems to avoid falling into combinatorial explo-
sion. CT relies on the observation that most failures are caused by interactions
between a small number of configuration options. For example, strength-t CT
tests all ¢-tuples of configuration options in a systematic way. Such testing re-
quires much smaller test suites than exhaustive testing, and is more effective
than random testing.

* This work was partially funded by JSPS (KAKENHI 15K00099) and DFG
(SCHA 550/11).
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Constrained CT (CCT; [8]) is an extension of CT with constraint handling;
it is one of the most widely studied CT techniques in recent years. In many con-
figurable systems, there exist constraints between specific configuration options
that make certain combinations invalid. CCT provides a combinatorial approach
to testing, involving hard and soft constraints on configuration options. Hard
constraints must be strictly satisfied. Soft constraints must not necessarily be
satisfied but the overall number of violations should be minimal. Therefore, CCT
cannot only exclude invalid tuples that cannot be executed, but also minimize
the ones that might be undesirable.

The CCT problem of generating optimal (smallest) CCT test suites is known
to be difficult. Several methods have been proposed such as greedy algorithms [8,
10,21, 22], metaheuristics-based algorithms [12,14], and Satisfiability Testing
(SAT) [16,20]. However, each method has strengths and weaknesses. Greedy
algorithms can quickly generate test suites. Metaheuristics-based implementa-
tions can give smaller ones by spending more time. On the other hand, both of
them cannot guarantee their optimality. Although complete methods like SAT
can guarantee optimality, it is costly to implement a dedicated encoder from
CCT problems into SAT. For constraint solving in CCT, most methods utilize
off-the-shelf constraint solvers as back-ends 4. They are used to check whether
each test case satisfies a given set of constrains during test suite generation as
well as to calculate valid tuples at prepossessing. However, there are few imple-
mentations that provide CCT with soft constraints and limiting resources (the
number of test cases, time, and etc). It is therefore challenging to develop a
universal CCT solver which can efficiently generate optimal test suites as well
as suboptimal ones for CCT instances having a wide range of hard and soft
constraints, even if the resources are limited.

In this paper, we describe an approach to solving the CCT problems based on
Answer Set Programming (ASP; [4]). The resulting catnap system accepts a CCT
instance in fact format and combines it with a first-order ASP encoding for CCT
solving, which is subsequently solved by an off-the-shelf ASP system, in our case
clingo. Our approach draws upon distinct advantages of the high-level approach
of ASP, such as expressive language, extensible encodings, flexible multi-criteria
optimization, etc. However, the question is whether catnap’s high-level approach
matches the performance of state-of-the-art CCT solving techniques. We address
this question by empirically contrasting catnap with dedicated implementations.
From an ASP perspective, we gain insights into advanced modeling techniques
for CCT. catnap’s encoding for CCT solving has the following features: (a) a
series of compact ASP encodings, (b) easy extension for CCT under limiting
resources, and (c) easy extension of CCT with soft constraints.

In the sequel, we assume some familiarity with ASP, its semantics as well as
its basic language constructs. Our encodings are given in the language of gringo
series 4. Although we provide a brief introduction to CCT in the next section,
we refer the reader to the literature [17] for a broader perspective.

4 SAT solvers in [8,12, 14, 16, 20], PB (Pseudo Boolean) solver in [22], and CSP (Con-
straint Satisfaction Problem) solver in [21].
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Product Line Options
Display Email Viewer| Camera |Video Camera|Video Ringtones
(Email) (Video) (Ringtones)
16 Million Colors| Graphical |2 Megapixels Yes Yes
(16MC) (GV) (2MP)
Possible| 8 Million Colors Text 1 Megapixel No No
Values (8MC) (TV) (1MP)
Black and White None None
(BW)

Constraints on valid configurations:

(1) Graphical email viewer requires color display.

(2) 2 Megapixel camera requires a color display.

(3) Graphical email viewer not supported with the 2 Megapixel camera.

(4) 8 Million color display does not support a 2 Megapixel camera.

(5) Video camera requires a camera and a color display.

(6) Video ringtones cannot occur with No video camera.

(7) The combination of 16 Million colors, Text and 2 Megapixel camera is not sup-
ported.

Fig. 1. Mobile phone product line in [§]

2 Background

Generating a CCT test suite is to find a Constrained Mized-level Covering Array
(CMCA; [8]), which is an extension of a Covering Array [9] with constraints. A
CMCA of size N is a N xk array A = (a;;), written as CMCA(t, k, (v1, ... ,vg),C).
The integer constant t is the strength of the coverage of interactions, k is the
number of parameters, and v; is the number of values for each parameter j
(1 < j < k). The constraint C is given as a Boolean formula in Conjunctive
Normal Form (CNF):

C= Algzgh (v1§m§mg pos(jr,, db,) vV sz+1§n§n,3 neg(jy, dﬁ)) .

Each constraint clause identified by ¢ (1 < £ < h) is a disjunction of predicates
pos/2 and neg/2. The atom pos(j,d) expresses that the parameter j has a value
d, and the atom neg(j, d) expresses its negation. The constants n, and my (n; >
my > 1) are the number of both type of atoms and pos atoms, respectively, for
each clause /. Then CMCA has the following properties:

— Q5 € {0,1,2,...,1}j - 1},
— every row 1 (1 < r < N) satisfies constraint C (called domain constraints).
Ni<ran<esn (Vléméma(“w‘fn =d,) Vv Viner1<nsn, (@r e = dfﬁ)

— in every N x t sub-array, all possible ¢-tuples (pairs when ¢t = 2) that satisfy
the constraint C occur at least once (also called coverage constraints).
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Display Email Camera Video Ringtones
1 8MC TV None No No
2 BW None None No No
3 16MC None 2MP Yes Yes
4 | 16MC None 2MP No No
5| 16MC GV None No No
6 16MC TV 1MP Yes Yes
7 BW TV 1MP No No
8 8MC None 1MP Yes No
9 8MC GV 1MP Yes Yes

Constraints on valid configurations:

Video = Yes) V (Camera = 2MP) V (Camera = 1MP)

V (Display = 16MC) V (Display = 8MC)
—(Video = No)
—(Email = TV) V —(Camera = 2MP)

Cs: —(Video = Yes)
C7: =(Ringtones = Yes
Cs: =(Display = 16MC

C1: =7(Email = GV) Vv (Display = 16MC) V (Display = 8MC)
C5: —~(Camera = 2MP) V (Display = 16MC) V (Display = 8MC)
C3: ~(Email = GV) vV =(Camera = 2MP)
C4: =(Display = 8MC) V —(Camera = 2MP)
Cs: = (

(

(

(

)V
)V
Fig. 2. An optimal test suite of strength-2 CCT

A CMCA of size N is optimal if N is equal to the smallest n such that a CMCA of
size n exists. We refer to a t-tuple as a valid t-tuple if it satisfies the constraint
C, otherwise we call it invalid. Note that the constraint C is defined as hard
constraint, and we have no soft constraints in this definition.

As an illustration, we use a simplified software product line of mobile phones
proposed in [8]. The product line of Fig. 1 has five configuration options, three of
which can have three values, while others have two choices of values (Yes and No).
“Display” has exactly one value among 16MC, 8MC, and BW. The product line
has seven constraints on valid configurations. The constraint (3) forbids a pair
(GV,2MP) in the interaction of (Email, Camera). Exhaustive testing requires
22 x 3% = 108 test cases (or configurations) for all different phones produced by
instantiating this product line. The constraints reduce the number of test cases to
31. However, in general, such testing fails to scale to large product lines. Instead,
strength-t CCT is able to provide effective testing while avoiding the combina-
torial explosion. The question is what is the smallest number of test cases for
the product phone line. An optimal test suite of strength-2 CCT is shown in
Fig. 2. It consists of 9 test cases, and gives an answer to the question. Each row
represents an individual test case, which satisfies the domain constraints in (1-
7). Each column represents a configuration option. In the interaction of (Email,
Camera), we highlight the different pairs to show that all valid pairs (7 combina-
tions) occur at least once. Note that invalid pairs (GV,2MP) and (TV,2MP) do
not occur. This property holds for all interactions of two configuration options
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(Display, Email) (Display, Camera) (Display, Video) (Display, Ringtones) (Email, Camera)

(16MC, GV) (16MC, 2MP) (16MC, Yes) (16MC, Yes) (GV, 2MP) &
(16MC, TV) (16MC, 1MP) (16MC, No) (16MC, No) (GV, 1MP)
(16MC, None) (16MC, None) (8MC, Yes) (8MC, Yes) (GV, None)
(8MC, GV) (8MC, 2MP) & (8MC, No) (8MC, No) (TV, 2MP) &
(8MC, TV) (8MC, 1MP) (BW, Yes) & (BW, Yes) & (TV, 1MP)
(8MC, None) (8MC, None) (BW, No) (BW, No) (TV, None)
(BW,GV) &  (BW, 2MP) & (None, 2MP)
(BW, TV) (BW, 1MP) (None, 1MP)
(BW, None) (BW, None) (None, None)
(Email, Video)  (Email, Ringtones) (Camera, Video) (Camera, Ringtones) (Video, Ringtones)
(GV, Yes) (GV, Yes) (2MP, Yes) (2MP, Yes) (Yes, Yes)
(GV, No) (GV, No) (2MP, No) (2MP, No) (Yes, No)
(TV, Yes) (TV, Yes) (1MP, Yes) (IMP, Yes) (No, Yes) &
(TV, No) (TV, No) (1IMP, No) (IMP, No) (No, No)
(None, Yes) (None, Yes) (None, Yes) & (None, Yes) &

(None, No) (None, No) (None, No) (None, No)

Fig. 3. All pairs of configuration options

and thus satisfies the coverage constraints. This test suite is an instance of an
optimal CMCA(2,5,3%22,C) of size 9, where the notation 3322 is an abbreviation
of (3,3,3,2,2). The CNF formula C consists of eight constraint clauses shown at
the bottom of Fig. 2. The notation (j = d) and —(j = d) is used for convenience,
instead of pos(j, d) and neg(j,d). The clause C; represents the constraint (¢) for
1 < ¢ <4in Fig. 1. The conjunction of C5 and Cg represents constraint (5). The
clauses C7 and Cy represent the constraints (6) and (7) respectively. As can be
seen in Fig. 3, this array has 67 pairs in total for all interactions of parameter
values, 57 of which are valid, while other 10 (followed by #) are invalid. For ex-
ample, (GV,2MP) in the interaction of (Email, Camera) is an invalid pair which
is directly derived from C35. (BW, Yes) in the interaction of (Display, Ringtones)
is an implicit invalid pair which is derived from Cg, C7, and the constraint that
each parameter must have exactly one value. Such implicit invalid pairs make
it difficult to find all valid (or invalid) pairs manually. Thus, current existing
implementations calculate them at preprocessing.

3 The catnap Approach

We begin with describing catnap’s fact format for CMCA instances and then
present ASP encodings for CMCA finding. Due to lack of space, catnap encodings
presented here are restricted to strength ¢ = 2 and stripped off capacities for
handling ¢ > 3. We also omit the explanation of calculating valid tuples at
prepossessing.

Fact Format. Facts express the parameter values and constraints of a
CMCA instance in the syntax of ASP grounders, in our case gringo. Their for-
mat can be easily explained via the phone product line in Section 2. Its fact
representation is shown in Listing 1. The facts of the predicate p/2 provide pa-
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= O OO0~ O N =

—

p("Display", ("16MC"; "8MC"; "BW")). p("Email", ("GV"; "TV"; "None")).
p("Camera", ("2MP"; "1MP"; "None")). p("Video",("Yes"; "No")). p("Ringtones", ("Yes"; "No")).

c(1, (neg("Email","GV"); pos("Display","16MC"); pos("Display","8MC"))).
c(2, (neg("Camera","2MP"); pos("Display","16MC"); pos("Display","8MC"))).
c(3, (neg("Email","GV"); neg("Camera","2MP"))).

c(4, (neg("Display","8MC"); neg("Camera","2MP"))).

c(5, (neg("Video","Yes"); pos("Camera","2MP"); pos("Camera","iMP"))).
c(6, (neg("Video","Yes"); pos("Display","16MC"); pos("Display","8MC"))).
c(7,(neg("Ringtones","Yes"); neg("Video","No"))).

c(8, (neg("Display","16MC"); neg("Email","TV"); neg("Camera","2MP"))).

Listing 1. Facts representing the phone product line of Fig. 1

O © S ot w

[

row(l..n). col(I) :- p(I,_). c(ID) :- c(ID,_).
1 { assigned(R,I,A) : p(I,A) } 1 :- row(R); col(I).

% domain constraints
:- not assigned(R,I,A) : c(ID,pos(I,A)); assigned(R,J,B) : c(ID,neg(J,B)); c(ID); row(R).

% coverage constraints
covered(I,J,A,B) :- assigned(R,I,A); assigned(R,J,B); I<J.
:- not covered(I,J,A,B); pair(I,J,A,B).

Listing 2. ASP encoding for strength-2 CMCA finding

rameter values in Line 1-2. The fact p(j,d) expresses that a parameter j can
have a value d. Note that the ‘;’ in the second argument is syntactic sugar,
and the first fact in Line 1 is expanded into three facts p("Display","16MC"),
p("Display","8MC"), and p("Display","BW"). The facts of the predicate c/2
provide constraints in Line 4-11. The fact c(£,lit) expresses that a constraint
clause identified by ¢ has literal lit. Again, the fact in Line 4 is expanded
into three facts c(1,neg("Email","GV")), c(1,pos("Display","16MC")), and
c(1,pos("Display","8MC")).

First-Order Encoding. We introduce the predicate assigned/3 to provide
the assignments of parameter values. Note that a solution is composed of a set
of these assignments. The atom assigned(R,I,A) expresses that a value A is
assigned to the (R, I)-entry of the array. We also use the predicate pair/4 to
provide pre-calculated valid pairs. The atom pair(/,J, A, B) expresses a valid
pair (A, B) in the interaction of parameters (I, J).

Our encoding for strength-2 CMCA finding is shown in Listing 2. Given an
instance of fact format with size n, the rules in Line 1 generate row(R), col(I),
and c(ID) for each row R, column I, and constraint ID. The rule in Line 3, for
every row R and column I, generates a candidate of assignments at first and then
constrains that there is exactly one value A such that assigned(R,I,A) holds.

For domain constraints, the rule in Line 6, for every row R and constraint ID,
ensures that a value A is assigned to the (R,I)-entry if ¢ (ID,pos(I,A)) holds and
value B is not if ¢(ID,neg(J,B)) holds. As an example, for the first row and the
constraint “c(3, (neg("Email","GV") ;neg("Camera","2MP")))”, this rule is
grounded to “:- assigned(1,"Email","GV"),assigned(1,"Camera","2MP").”
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row(l..n). col(I) :- p(I,_). c(ID) :- c(ID,_).

% activation atoms

{ activated(R) : row(R) }.

#minimize{ 1,R : activated(R) }.

:- not activated(R); activated(R+1); R>0. 7 can be omitted

1 { assigned(R,I,A) : p(I,A) } 1 :- activated(R); col(I).

% domain constraints
:- not assigned(R,I,A) : c(ID,pos(I,A)); assigned(R,J,B) : c(ID,neg(J,B)); c(ID); row(R).

% coverage constraints
covered(I,J,A,B) :- assigned(R,I,A); assigned(R,J,B); I<J.
:- not covered(I,J,A,B); pair(I,J,A,B).

Listing 3. ASP encoding for optimal strength-2 CMCA finding

For coverage constraints, the rule in Line 9, for every row R, different columns
I and J (I < J), and values A and B, generates an atom covered(I,J,A,B)
if assigned(R,I,A) and assigned(R,J,B) hold. The atom covered(I,J,A,B)
expresses that a pair (A,B) is covered in the interaction of parameter (I,J). Then,
the rule in Line 10 ensures that a pair (4,B) in (I,J) is covered if pair(I,J,A,B)
holds for every different columns I and J, and values A and B.

For optimal CMCA finding, we use the idea of blocking variables, in our case
the predicate activated/1. The atom activated(R) expresses that a row R
is used in a resulting array. Listing 3 shows our encoding of optimal strength-2
CMCA finding for a given instance with initial bound n. The differences from
Listing 2 are Line 4-6 and 8. The rule in Line 4 generates an atom activated(R)
for each row R. An optimal array can be found by minimizing the number of these
atoms in Line 5. The rule in Line 8 is adjusted to generate the assignments of
parameter values only for activated rows. Although the rule in Line 6 can be
omitted, we keep it as an additional rule for performance improvement. We refer
to the encoding of Listing 3 as basic encoding.

4 Extensions

We next extend the basic catnap encoding in view of enhancing the flexibility of
multi-criteria optimization.

Easy extension for CCT under limiting resources. The basic encoding
can concisely implement CCT solving based on CMCA as defined in Section 2.
However, it does not provide CCT solving under a limited number of test cases,
which happens in the real world. More precisely, the basic encoding cannot
generate any test suite if the initial bound n is less than the minimal size. This
is because the coverage constraints are not satisfied. To solve this practical issue,
we weaken the coverage constraints by switching them from hard to soft (and
refer to them as weak coverage constraints).

Listing 4 shows our encoding of strength-2 CCT solving with weak cover-
age constraints. The main difference from the basic encoding is that the num-
ber of covered pairs is maximized in Line 15. This encoding has two criteria,
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row(l..n). col(I) :- p(I,_). c(ID) :- c(ID,_).

% activation atoms

{ activated(R) : row(R) }.

#minimize{ 1@size,R : activated(R) }.

:- not activated(R); activated(R+1); R>0. 7 can be omitted

1 { assigned(R,I,A) : p(I,A) } 1 :- activated(R); col(I).

% domain constraints
:- not assigned(R,I,A) : c(ID,pos(I,A)); assigned(R,J,B) : c(ID,neg(J,B)); c(ID); row(R).

% coverage constraints (soft)
covered(I,J,A,B) :- assigned(R,I,A); assigned(R,J,B); I<J.
#maximize{ 1@coverage,I,J,A,B : covered(I,J,A,B) }.

Listing 4. ASP encoding for strength-2 CCT solving with weak coverage constraints

the minimality of size and the maximality of coverage. Their priority levels are
defined by integer constants size and coverage on the right-hand side of @
(size<coverage by default). An optimal solution can be found by a well-known
multi-criteria optimization strategy called lexicographic optimization in clingo.
It enables us to optimize criteria in a lexicographic order based on their priorities.

We refer to the encoding of Listing 4 as weakened encoding. The idea of weak
coverage constraints allows for flexible CCT solving. The weakened encoding can
generate test suites of maximal coverage under limiting resources if an initial
bound n is less than the minimal size, otherwise it can find optimal CMCAs.
Moreover, it does not require the pre-calculation of valid pairs which existing
implementations rely upon. From a viewpoint of hybridization, the weakened
encoding proposes a complementary approach to prioritized CT [6, 18], which is
an extension of CT with ordering (or re-ordering) strategies between test cases
for detecting failures as early as possible.

Easy extension of CCT with soft constraints. Soft constraints are useful
to express preferences and costs in a wide range of combinatorial optimization
problems. However, there are few implementations that provide CCT solving
with soft constraints. We here extend catnap’s fact format and weakened encod-
ing with soft constraints. For this, we utilize the idea of constraint atoms used
for timetabling [2]. The basic encoding can be extended in the same way.

Constraint atoms are instances of two predicates: hard_constraint/1 and
soft_constraint/2. The atom hard_constraint(C) expresses that a con-
straint clause C is a hard constraint. The atom soft_constraint (C,W) ex-
presses that C is a soft constraint and its weight is W. Listing 5 shows an exten-
sion of the fact representation of the phone product line with constraint atoms.
In this case, new constraint clauses in Line 3—4 are added as soft constraints.

Extending the weakened encoding with constraint atoms can be done by
replacing the rule in Line 11 of Listing 4 with the rules shown in Listing 6.
For hard domain constraints, the rule in Line 2-3 is the same as before except
hard_constraint (ID). For soft domain constraints, the rule in Line 6-8 gen-
erates an atom penalty(ID,R,W) if the assignments in R violate a constraint
ID for every row R and soft constraint identified by ID of weight W. That is, for
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hard_constraint(1..8).

soft_constraint(9..10,1).

c(9, (neg("Display","BW"); pos("Camera","None"))).

c(10, (neg("Camera","None"); neg("Display","BW"); neg("Email","None"))).

Listing 5. An extended fact representation with constraint atoms

% domain constraints (hard)
:- not assigned(R,I,A) : c(ID,pos(I,A)); assigned(R,J,B) : c(ID,neg(J,B));
hard_constraint (ID); row(R).

% domain constraints (soft)
penalty(ID,R,W) :- not assigned(R,I,A) : c(ID,pos(I,A));
assigned(R,J,B) : c(ID,neg(J,B));
soft_constraint (ID,W); row(R).
#minimize{ W@soft,ID,R : penalty(ID,R,W) }.

Listing 6. An extended domain constraints with constraint atoms

each violation in R for ID, the atom penalty(ID,R,W) is generated. Then, the
number of these atoms is minimized in Line 9, where its priority level is defined
by an integer constant soft.

The resulting encoding has three criteria, the minimality of size, the maxi-
mality of coverage, and the minimality of penalty costs. The default ordering of
priority levels is soft<size<coverage, but can be changed by the command
line option of clingo. As an example, in a case of soft=size, the encoding can
generate optimal test suites of minimal sum of size and penalty costs.

CCT solving with catnap can be promising, since it allows for flexible CCT
solving of generating optimal test suites by varying a set of hard and soft con-
straints, switching them between hard and soft, and varying the priority levels
of criteria, even if the number of test cases is limited.

5 Experiments

As we have mentioned, catnap accepts a CCT instance in fact format and com-
bines it with a first-order ASP encoding for CCT solving, which is subsequently
solved by the ASP system clingo that returns an assignment representing a so-
lution to the original CCT instance. The catnap system also accepts the CASA
format [12]. For this, we implemented a converter that provides us with the
resulting CCT instance in catnap’s fact format.

For our experiments, we use all 35 instances® proposed in [8], five of which
are from highly configurable software systems such as SPIN, GCC, Apache, and
Bugzilla. Note that these are CMCA instances in CASA format which have no
soft constraints. We ran them on a multi-core Linux machine equipped with Xeon
3.16GHz and 32GB RAM. We imposed a time-limit (¢.0) of 1 hour for each run.

® http://cse.unl.edu/~citportal/public/tools/casa/benchmarks.zip
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Table 1. Comparison between the basic and weakened encodings

instance t k Vi, ..., V) IC] weakened  basic
benchmark_apache 2 172 215838475161 T 30 30
benchmark_bugzilla 2 52 2493142 5 16 16
benchmark_gcc 2 199 2189310 40 15 15
benchmark_spins 2 18 21345 13 19 19
benchmark_spinv 2 55 24232411 49 31 31
benchmark_1 2 97 28633415562 24 38 38
benchmark_2 2 94 28633435161 22 30 30
benchmark_3 2 29 22742 10 18 18
benchmark_4 2 58 251344251 17 20 t.o
benchmark_5 2 174 219937435%6* 39 46 46
benchmark_6 2 77 2734361 30 24 t.o
benchmark_7 2 30 22931 15 9 9
benchmark_8 2 119 210932425363 37 37 38
benchmark_9 2 61 25731415161 37 20 t.o
benchmark_10 2 147 213036455264 47 41 41
benchmark_11 2 96 28434425264 32 40 41
benchmark_12 2 147 213634435163 27 36 36
benchmark_13 2 133 212434415262 26 36 36
benchmark_14 2 92 281354363 15 36 36
benchmark_15 2 58 25034415261 22 30 30
benchmark_16 2 87 281334261 34 24 t.o
benchmark_17 2 137 212833425163 29 36 36
benchmark_18 2 141 212732445662 28 41 41
benchmark_19 2 197  2172394953%6* 43 44 t.o
benchmark_20 2 158 213834455467 48 59 54
benchmark_21 2 85 27633425162 46 36 36
benchmark_22 2 79 272344162 22 36 36
benchmark_23 2 27 225311 15 12% 12%
benchmark_24 2 119 2110325364 29 43 42
benchmark_25 2 134 211836425266 o7 48 50
benchmark_26 2 95 287314354 32 27 27
benchmark_27 2 62 25532425162 20 36 36
benchmark_28 2 194 2167316425366 37 50 51
benchmark_29 2 144 21343753 929 25 25
benchmark_30 2 79 2733343 35 16 16
#best 33 26

We used the ASP system clingo (version 4.5.3) with the multi-threaded portfolio
search of four configurations.®

At first, we analyze the difference between the basic and weakened encodings.
Table 1 contrasts the bounds obtained from both encodings. The information of
the CMCA(t, k, (v1,...,v;),C) instances is given in the first five columns. We
highlight the best bound of different encodings for each instance. The #best row
gives the number of best bounds for each encoding. The symbol ‘*’ indicates that
catnap proved the optimality of the obtained bound. The weakened encoding was
able to find the best bounds for 33 instances compared with 26 obtained with
the basic encoding. The basic encoding found no solution to 5 instances in the
time limit. Both encodings were able to prove that the previous known bound
(12) for benchmark_23 is optimal. Because of these observations, we adopt the
weakened encoding as the default setting of catnap.

5 The combination of -~-config={trendy, jumpy} and --opt-strat={bb,1,usc,1}
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Table 2. Comparison of catnap with other approaches

instance catnap TCA CASA Cascade ACTS
benchmark_apache 30 30 32 n.a 33
benchmark_bugzilla 16 16 16 20 19
benchmark_gcc 15 16 19 n.a 23
benchmark_spins 19 19 19 27 26
benchmark_spinv 31 31 36 41 45
benchmark_1 38 36 38 n.a 48
benchmark_2 30 30 30 n.a 32
benchmark_3 18 18 18 19 19
benchmark_4 20 20 20 24 22
benchmark_5 46 43 45 n.a 54
benchmark_6 24 24 24 30 25
benchmark_7 9 9 9 12 12
benchmark_8 37 37 38 n.a 47
benchmark_9 20 20 20 23 22
benchmark_10 41 40 42 n.a 47
benchmark_11 40 39 41 n.a 47
benchmark_12 36 36 39 n.a 43
benchmark_13 36 36 36 n.a 40
benchmark_14 36 36 37 n.a 39
benchmark_15 30 30 30 37 32
benchmark_16 24 24 24 n.a 25
benchmark_17 36 36 38 n.a 41
benchmark_18 41 39 41 n.a 52
benchmark_19 44 43 47 n.a 51
benchmark_20 59 49 52 n.a 60
benchmark_21 36 36 36 n.a 39
benchmark_22 36 36 36 n.a 37
benchmark_23 12 12 12 14 14
benchmark_24 43 40 42 n.a 48
benchmark_25 48 45 47 n.a 52
benchmark_26 27 27 30 n.a 34
benchmark_27 36 36 36 45 37
benchmark_28 50 47 50 n.a 57
benchmark_29 25 25 29 n.a 29
benchmark_30 16 16 19 n.a 22
#best 25 34 15 0 0

Next, we compare the performance of catnap with other approaches. Table 2
contrasts the bounds obtained by catnap with the best known ones in [14] ob-
tained from dedicated implementations: CASA [12], TCA [14], ACTS [21], and
Cascade [22]. CASA and TCA are metaheuristics-based dedicated implementa-
tions. ACTS and Cascade are based on greedy algorithms. The symbol ‘n.a’
indicates that a solver found no solution in [14]. The catnap system was able to
find the best bounds for 25 instances, compared with 34 of TCA, 15 of CASA,
and 0 of Cascade and ACTS. For the large instance benchmark_gcc, catnap was
able to find a better bound (15) than the others. Although it does not fully
match the performance of TCA, catnap can be competitive to CASA and can
outperform Cascade and ACTS.

Finally, we discuss some more details of our experimental results. We used a
simple configuration for multi-threaded portfolio search of clingo, but it took a
longer time to find the best bounds of many instances than the others. This is a
limitation of our approach at present. To overcome this issue, we will investigate
the best configuration of clingo, since it offers several optimization strategies.
Evaluating the scalability of catnap for higher strength ¢ > 3 is also an important
future work.
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6 Conclusion

From an ASP perspective, the most relevant related works are ASP encodings
of event-sequence testing [3,5,11]. Event-sequence testing is a testing technique
especially for event-driven systems and is different from CCT that focuses on
highly configurable systems. The ASP encodings in [5, 11] use #maximize state-
ments including covered atoms for two purposes. One is to generate single test
cases of maximal coverage in each iteration of ASP-based greedy algorithms.
Cascade adopts a similar technique. Another is to generate strength-t test suites
of maximal (t + 1)-coverage for early failure detection. This technique is closely
related to prioritized CT [18]. Note that the purpose of the weak coverage con-
straints in Section 4 is to provide CCT under limiting resources.

We presented an ASP-based approach to solving the CCT problems. The
resulting system catnap consists of first-order encodings and delegates solving
tasks to general-purpose ASP systems. We showed that ASP is an ideal mod-
eling language for combinatorial testing, as demonstrated by catnap’s compact
encodings for CCT solving. We contrasted the performance of catnap to the
best known bounds obtained via dedicated implementations. The catnap system
demonstrated that ASP’s general-purpose technology allows us to compete with
state-of-the-art CCT solving techniques. All source code of catnap is available
from https://potassco.org/doc/apps/.

Closely related to constraint solving in CCT, recent advances in Constraint
ASP (CASP; [1,13]) open up a successful direction to extend ASP to be more
expressive. CASP solvers such as clingcon can solve finite linear Constraint Sat-
isfaction Problems in a declarative way. We will investigate the possibilities of
CCT solving with CASP to extend CCT with richer constraints.
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