
Towards Systematic Benchmarking in Answer

Set Programming: The Dagstuhl Initiative

Paul Borchert1, Christian Anger1, Torsten Schaub1?, and Miros law
Truszczyński2

1 Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam
{borchi,christian,torsten}@cs.uni-potsdam.de

2 Department of Computer Science, University of Kentucky, Lexington, KY
40506-0046, USA mirek@cs.uky.edu

1 The Dagstuhl Initiative

Answer-set programming (ASP) emerged in the late 90s as a new logic program-
ming paradigm [3–5], having its roots in nonmonotonic reasoning, deductive
databases and logic programming with negation as failure. Since its inception, it
has been regarded as the computational embodiment of nonmonotonic reason-
ing and a primary candidate for an effective knowledge representation tool. This
view has been boosted by the emergence of highly efficient solvers for ASP [7, 2].
It seems now hard to dispute that ASP brought new life to logic programming
and nonmonotonic reasoning research and has become a major driving force for
these two fields, helping dispell gloomy prophecies of their impending demise.

In September 2002, participants of the Dagstuhl Seminar on Nonmonotonic
Reasoning, Answer Set Programming and Constraints, agreed that in order to
foster further development of ASP, it is important to establish an infrastruc-
ture for benchmarking ASP solvers. The intention was to follow good practices
already in place in neighboring fields of satisfiability testing [6] and constraint
programming [1]. Thus, the Dagstuhl Initiative was born to set up an environ-
ment for submitting and archiving benchmarking problems and instances and in
which ASP systems can be run under equal and reproducible conditions, leading
to independent results.

As the testing ground for different designs of a benchmarking and testing
environment for ASP, we used the systems competition at the Dagstuhl Semi-
nar. The following answer set programming systems participated in that initial
competition.

– aspps, University of Kentucky,
– assat, UST Hong Kong,
– cmodels, University of Texas,
– dlv, Technical University of Vienna,
– smodels, Technical University of Helsinki.

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.



The difficulty that emerged right away was that these systems do not have a
common input language nor do they agree on all functionalities. This led to the
introduction of three different (major) categories of benchmarks:

Ground: Ground instances of coded benchmarks. As of now, these ground in-
stances are produced by lparse or by the dlv grounder. These benchmarks
can be used to test the performance of ASP solvers accepting as input ground
(propositional) programs in output formats of lparse or the dlv grounder.

Non-Ground: Non-ground programs (that is, with variables) coding bench-
mark problems. These programs can be used to test the performance of
grounders. It is well recognized that significant and by no means negligible
effort when solving problems by means of ASP software is spent in ground-
ing.

Free Style: Text descriptions of problems together with concrete (families of)
instances given as collections of ground instances. These benchmarks require
that users develop their own problem encodings. There are two goal here.
First, we want to see how far our solvers can go when faced with hard
benchmarks. Second, we hope that best encodings will lead to a set of good
programming practices.

While the first two categories rely on the syntax of logic programs, the last
category allows for the use of “programming tricks” and system-specific features,
like weight and weak constraints. It also supports participation in the effort of
systems that are based on other syntax than that of logic programming (for
instance, aspps).

Within these main categories the following benchmark problems were pro-
posed in Dagstuhl and are now implemented in the present version of the bench-
marking system:

– Strategic Companies3 (Ground, Non-Ground)

– 15-puzzle (Ground, Non-Ground)

– Factoring (Ground)

– Hamiltonian Path (Ground, Non-Ground)

– Schur Numbers (Ground)

– Ramsey Numbers (Non-Ground)

– Same Generation (Non-Ground)

– Coloring (Free Style)

– n-Queens (Free Style)

Clearly, the initial division into categories as well as the set of benchmarks are
subject to change and will evolve over time. In fact, one of the features of the
system will be to provide to the community a way of submitting new benchmarks
and new instances.

3 Necessitates disjunctive logic programs, or another language of similar expressive-
ness.



2 The Benchmarking System

The principal goals of the benchmarking system are (1) to provide an infrastruc-
ture for accumulating challenging benchmarks, and (2) to facilitate executing
ASP solvers under the same conditions, guaranteeing reproducible and reliable
performance results.

In the remainder of this section, we sketch the current development state of
the benchmarking system and give an outlook on future plans.

2.1 Functionality

The benchmarking system provides the following functionality:

– submitting benchmarking problems, encodings and instances (only registered
users)

– installing solvers (only registered users)
– requesting benchmarking runs
– running solvers on benchmarks, independently and in a uniform environment
– testing solvers for correctness against other systems (only registered users)
– displaying results.

2.2 Architecture

We aim at a dynamic system that solves its tasks (running and storing bench-
marks) largely without supervision. To achieve this, we have chosen a 2-server
architecture, combining an internal server for actually running the benchmarks
and an external server for the remaining functionalities including interaction and
storage.

The external server is accessible via the Internet. Its main tasks are first to
provide database functionalities for handling the benchmark library and second
to provide access to the results of running benchmarks in human or machine
readable ways. Among others, it is responsible for adding new benchmarking
requests, solvers and benchmarking problems. Furthermore, the external server
provides user management and a web server. Its central components include a
mySQL database storing all information about

Solvers: These are executable answer-set solvers (and auxiliary programs, like
parsers and grounders) that may be competing against each other. Stored
information includes version, name, path and execution rights.

Call Scripts: These are used to enable suppliers of solvers to ensure their sys-
tems are called in the correct way (options, front-ends, etc.). We note that
this is the weakest point of the platform since scripts are provided by regis-
tered yet external users. Scripts are run with the same privileges a user has.
Thus, they need to be hand checked to ensure the unobstructed flow of the
benchmarking cycle.

Benchmark Problems: These are text descriptions of benchmark problems
and families of corresponding instances (e.g. collections of ground atoms).



Benchmark Encodings: These are logic programs encoding benchmark prob-
lems.

Benchmark Instances: These are, usually, ground programs obtained by ground-
ing the union of a program encoding a benchmark problem and the instance
description (a set of ground atoms). Non-ground programs are of interest
whenever solvers integrating grounding are taken into account.
We note that there is yet no syntax common to all answer-set solvers, even
those based on the language of logic programs, and some standardization is
necessary.

Benchmark Machine: A description of the system used for benchmarking
runs, including data about hardware and software.

Results: Once a solver is run on a benchmark, the results are stored in the
database. This part of the database is publicly available via the web interface.

The internal server can only be reached locally. Thus, it is impossible to
disturb it from the outside. On this server the actual benchmarking runs take
place. It is a largely bare system to minimize side effects (of other software) on
the benchmarks. A Perl script is responsible for retrieving benchmark requests
from the external servers database and running them. Only one benchmark is
run at a time. After a predefined period, the process is killed (if necessary) and
completely removed from the system. The next benchmarking request is only
handled after a clean environment has been restored. This is very important for
obtaining comparable results.

The overall architecture comprising the external and internal server is given
in Figure 1.

Fig. 1. Two Server Architecture.



2.3 Usage

At this time, the primary user profile is that of a system developer, who wants
her system to participate in a system competition. To do so, a developer has to
become a registered user, including a system account on the external server. The
next step is to upload the solver along with appropriate call scripts, followed by
requests for running certain benchmarks. All of this is done via the (upcoming)
web interface. A registered user can test his scripts and/or solver on the external
server via an ssh connection. Because both servers are kept very similar, this
testing on the external server is usually sufficient for guaranteeing executability
on the internal server.

Further user profiles, among them benchmark suppliers and independent ex-
perimenters, are partially supported and envisaged to be further developed in
the future.

Acknowledgments

We would like to thank all participants of the Dagstuhl Seminar on Nonmono-
tonic Reasoning, Answer Set Programming and Constraints for many stimulating
discussions. In particular, we are grateful to the system developers involved in
the first system competition for their help, suggestions, and patience with us.

References

1. csplib. http://4c.ucc.ie/∼tw/csplib/.
2. dlv. http://www.dbai.tuwien.ac.at/proj/dlv/.
3. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive

databases. New Generation Computing, 9:365–385, 1991.
4. V. Marek and M. Truszczyński. Stable models and an alternative logic program-

ming paradigm. In K. Apt, W. Marek, M. Truszczyński, and D. Warren, editors,
The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398. Springer-
Verlag, 1999.

5. I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273,
1999.

6. satlib. http://www.satlib.org/.
7. smodels. http://www.tcs.hut.fi/Software/smodels/.


