
Implementing preferences with asprin?

Gerhard Brewka3, James Delgrande2, Javier Romero4, and Torsten Schaub1,4??

1 INRIA Rennes 2 Simon Fraser University 3 Universität Leipzig 4 Universität Potsdam

Abstract. asprin offers a framework for expressing and evaluating combinations
of quantitative and qualitative preferences among the stable models of a logic pro-
gram. In this paper, we demonstrate the generality and flexibility of the method-
ology by showing how easily existing preference relations can be implemented
in asprin. Moreover, we show how the computation of optimal stable models can
be improved by using declarative heuristics. We empirically evaluate our contri-
butions and contrast them with dedicated implementations. Finally, we detail key
aspects of asprin’s implementation.

1 Introduction

Preferences are pervasive and often are a key factor in solving real-world applications.
This was realized quite early in Answer Set Programming (ASP; [1]), where solvers
offer optimization statements representing ranked, sum-based objective functions (viz.
#minimize statements or weak constraints [2, 3]). On the other hand, such quantitative
ways of optimization are often insufficient for applications and in stark contrast to the
vast literature on qualitative and hybrid means of optimization [4–8].

This gulf is bridged by the asprin system, which offers a flexible and general frame-
work for implementing complex combinations of quantitative and qualitative prefer-
ences. The primary contribution of this paper is to substantiate this claim by showing
how easily selected approaches from the literature can be realized with asprin. In par-
ticular, we detail how answer set optimization [5], minimization directives [2], strict
partially ordered sets [8], and the non-temporal part of the preference language in [7]
can be implemented with asprin. Moreover, we sketch how the implementations of or-
dered disjunctions [4] and penalty-based answer set optimization [6] are obtained. In
fact, asprin’s simple interface and straightforward methodology reduces the implemen-
tation of customized preferences to defining whether one model is preferred to another.
This also lays bare asprin’s expressive power, which is delineated by the ability to ex-
press a preference’s decision problem within ASP. In view of the practical relevance
of preferences, we also investigate the use of ASP’s declarative heuristics for boosting
the search for optimal stable models. In particular, we are interested how the combina-
tion of ASP’s two general-purpose frameworks for preferences and heuristics compares
empirically with dedicated implementations.

The paper [9] introduced asprin’s approach and focused on fundamental aspects.
Apart from a formal elaboration of asprin’s propositional language, it provided se-
mantics and encodings for basic preferences from asprin’s library (like subset or
? This work was funded by DFG (BR 1817/5; SCHA 550/9) and NSERC.
?? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

less(weight)). As well, it empirically contrasted the implementation of such basic
preferences with the dedicated one in clasp and analyzed asprin’s scalability in view
of increasingly nested preference structures. Here, we build upon this work and focus
on engineering aspects. First, we introduce the actual first-order preference modeling
language of asprin, including its safety properties, and carve out its simple interfaces
and easy methodology. Second, we demonstrate how existing preferences from the lit-
erature can be implemented via asprin. In doing so, we provide best practice examples
for preference engineers. Third, we show how declarative heuristics can be used for
boosting the computation of optimal models. And last but not least, we detail aspects of
asprin’s implementation and contrast it with dedicated ones.

In what follows, we rely upon a basic acquaintance with ASP [1, 10].

2 asprin’s approach at a glance

asprin allows for declaring and evaluating preference relations among the stable models
of a logic program. Preferences are declared by preference statements, composed of an
identifier s, a type t, and an argument set: ‘#preference(s,t){e1;. . .;en} : B.’
The identifier names the preference relation, whereas its type and arguments define the
relation; the set B of built-in or domain predicates is used for instantiation.1 Identifiers
and types are represented by terms, while each argument ej is a preference element. For
safety, variables appearing in s or t must occur in a positive atom ofB. Let us consider
an example before delving into further details:
#preference(costs,less(weight)){ C :: activity(A) : cost(A,C) }.

This statement declares a preference relation costs with type less(weight).
Given atoms cost(sauna,40) and cost(dive,70), grounding results in
one of the simplest form of preference elements, namely the weighted literals
40::activity(sauna) and 70::activity(dive). Informally, the resulting
preference relation prefers stable models whose atoms induce the minimum sum of
weights. Hence, models with neither sauna nor dive are preferred over those with
only sauna. Stable models with only dive are still less preferred, while those with
both sauna and dive are least preferred. We refer the reader to [9] on how prefer-
ence statements induce preference relations by applying preference types to preference
elements. And we focus in what follows on asprin’s syntactic features.

Preference elements can be more complex than in the example. In the most general
case, we even admit conditional elements, which are used to capture conditional pref-
erences. Moreover, preference types may refer to other preferences in their arguments,
which is used for preference composition. For instance, the statement
#preference(all,pareto){ name(costs), name(temps) }.

defines a preference relation all, which is the Pareto ordering of preference relations
costs and temps.

More formally, a preference element is of the form ‘F 1 > . . .> Fm || F : B’
where each F r is a set of weighted formulas, F is a non-weighted Boolean formula,
and B is as above. We drop ‘>’ if m = 1, and ‘||F ’ and ‘:B’ whenever F and/or

1 Just as with bodies, we drop curly braces from such sets.

B are empty, respectively. Intuitively, r gives the rank of the respective set of weighted
formulas. This can be made subject to condition F by using the conditional ‘||’. Pref-
erence elements provide a (possible) structure to a set of weighted formulas by giving
a means of conditionalization and a symbolic way of defining pre-orders.

A set of weighted formulas F r is represented as ‘{F1;. . .;Fm}’. We drop the
curly braces if m = 1. And finally, a weighted formula is of the form ‘t::F ’
where t is a term tuple and F is a either a Boolean formula or a naming atom.
We may drop :: and simply write F whenever t is empty. Boolean formulas are
formed from atoms, possibly preceded by strong negation (‘-’), using the connec-
tives not (negation), & (conjunction) and | (disjunction). Parentheses can be writ-
ten as usual, and when omitted, negation has precedence over conjunction, and con-
junction over disjunction. Naming atoms of form name(s) refer to the preference
associated with preference statement s (cf [9]). For safety, variables appearing in a
weighted formula must occur in a positive atom of the set B from either the corre-
sponding preference element or preference statement. Examples of preference elements
include ‘a(X)’, ‘42::b(X)’, ‘{1::name(p);2::name(q)}’, ‘{a(X);b(X)}
> {c(X);d(X)}’, and ‘a(X) > b(X) || c(X) : dom(X)’.

Since preference statements may only be auxiliary, a preference relation must be
distinguished for optimization. This is done via an optimization statement of form
‘#optimize(s).’ with the name of the respective preference statement as argument.

Finally, a preference specification is a set of preference statements along with an
optimization directive. It is valid if grounding results in acyclic and closed naming
dependencies along with a single optimization directive (see [9] for details).

Once a preference specification is given, the computation of preferred stable mod-
els is done via a branch-and-bound process relying on preference programs. Such pro-
grams, which need to be defined for each preference type, take two reified stable models
and decide whether one is preferred to the other. An optimal one is computed iteratively
by repeated calls to an ASP solver. First, an arbitrary stable model of the underlying pro-
gram is generated; then, this stable model is “fed” to the preference program to produce
a better one, etc. Once the preference program becomes unsatisfiable, the last stable
model obtained is an optimal one. The basic algorithm is described in [9]; it is imple-
mented via clingo 4’s Python library, providing operative grounder and solver objects.

asprin also provides a library containing a number of predefined, common, pref-
erence types along with the necessary preference programs. Users happy with what is
available in the library can thus use the available types without having to bother with
preference programs at all. However, if the predefined preference types are insufficient,
users may define their own relations. In this case, they also have to provide the prefer-
ence programs asprin needs to cope with the new preference relations.

3 Embedding existing approaches

The implementation of customized preference types in asprin boils down to furnishing
a preference program for the preference that is subject to optimization. For the sake of
generality, this is usually done for the preference type, which then gets instantiated to
the specific preference relation of interest.

The purpose of a preference program is to decide whether one stable model is
strictly preferred to another wrt the corresponding preference relation. To this end,
we reify stable models and represent them via the unary predicates holds/1 and
holds’/1. More formally, we define for a set X of atoms, the following sets of facts:

H(X) = {holds(a). | a ∈ X} and H ′(X) = {holds’(a). | a ∈ X}

Then, given a preference statement identified by s, the program Ps is a preference
program implementing preference relation �s, if for sets X,Y of atoms, we have

X �s Y iff Ps ∪H(X) ∪H ′(Y) is satisfiable. (1)

See [9] for a formal elaboration of preference programs.
In what follows, we explain asprin’s interfaces and methodology for implementing

preference programs.
To begin with, asprin represents preference specifications in a dedicated fact format.

Each optimization directive ‘#optimize(s).’ is represented as a fact
optimize(s).

Next, each preference statement ‘#preference(s,t){e1;. . .;en}:B.’ gives rise to
n rules encoding preference elements along with one rule of form
preference(s,t) :- B.

In turn, preference elements are represented by several facts, each representing a com-
prised weighted formula. Recall that a weighted formula Fk of form ‘t::F ’ occurs in
some set F i of form ‘{F1;. . .;Fm}’ (or equals F0) of a preference element ej of form
‘F 1 > . . .> F n || F0 : Bj’ that belongs itself to a preference statement s as given
above. Given this, the weighted formula Fk is translated into a rule of the form
preference(s,(j,v),i,for(tF),t) :- Bj, B.

where j and i are the indices of ej and F i, respectively, v is a term tuple contain-
ing all variables appearing in the rule, and tF is a term representing the Boolean
formula F by using function symbols not/1, and/2, and or/2 in prefix nota-
tion. For example, the formula (not a(X) | b(X)) & c(X) is translated into
and(c(X), or(not(a(X)),b(X))). For representing condition F0, we set i

to 0. A naming atom name(s) is represented analogously, except that for(tF) is
replaced by name(s).

For instance, the earlier preference statement costs is translated as follows.
preference(costs,(1,(A,C)),1,for(activity(A)),(C)) :- cost(A,C).
preference(costs,less(weight)).

Grounding the first rule in the presence of cost(sauna,40) and cost(dive,70)
yields two facts, representing the weighted literals 40::activity(sauna) and
70::activity(dive).

Second, asprin extends the basic truth assignment to atoms captured by holds/1
and holds’/1 to all Boolean formulas occurring in the preference specification at
hand. To this end, formulas are represented as terms as described above. Hence, for any
formula F occurring in the preference specification, asprin warrants that holds(tF) is
true whenever F is entailed by the stable model X captured in H(X), where tF is the
term representation of F . This is analogous for holds’/1.

Third, in asprin’s methodology a preference program is defined generically for the
preference type, and consecutively instantiated to the specific preference in view of
its preference elements. Concretely, asprin stipulates that preference programs define
the unary predicate better/1, taking preference identifiers as arguments. The user’s
implementation is required to yield better(s) whenever the stable model captured
by H(X) is strictly better than that comprised in H ′(X). For illustration, consider the
preference program for asprin’s pre-fabricated preference type less(weight).

1 better(P) :- preference(P,less(weight)),
2 1 #sum { -W,X : holds(X), preference(P,_,_,for(X),(W));
3 W,X : holds’(X), preference(P,_,_,for(X),(W))}.

asprin complements this by the generic integrity constraint
:- not better(P), optimize(P).

ensuring that better(P) holds whenever P is subject to optimization and enforces
the fundamental property of preference programs in (1).

All in all, a preference program thus consists of (i) facts representing preference
and optimization statements, (ii) auxiliary rules, extending predicates holds/1 and
holds’/1 to Boolean formulas as well as the above integrity constraint, and finally
(iii) the definition of the preference type(s). While parts (i) and (ii) are provided by
asprin, only part (iii) must be provided by the “preference engineer”. Our methodol-
ogy accounts for this by defining predicate better/1. However, this is not strictly
necessary as long as all three parts constitute a preference program by fulfilling (1).

Additionally, the customization of preferences can draw upon asprin’s library
containing various pre-defined preference types. This includes the primitive types
subset and superset, less(cardinality) and more(cardinality),
less(weight) and more(weight), along with the composite types neg, and
pareto, and lexico. In fact, for these types, asprin not only provides definitions
of better(s) but also its non-strict, and equal counterparts, namely, bettereq/1,
equal/1, worse/1, and worseeq/1. Such definitions are very useful in defining
aggregating preference types such as pareto (see below).

Answer set optimization. For capturing answer set optimization (ASO; [5]), we con-
sider ASO rules of form

φ1 > · · · > φm ← B (2)

where each φi is a propositional formula for 1 ≤ i ≤ m and B is a rule body.
The semantics of ASO is based on satisfaction degrees for rules as in (2). The sat-

isfaction degree of such a rule r in a set of atoms X , written vX(r), is 1 if X 6|= b for
some b ∈ B, or if X |= b for some ∼b ∈ B, or if X 6|= φi for every 1 ≤ i ≤ m, and it
is min{k | X |= φk, 1 ≤ k ≤ m} otherwise. Then, for sets X,Y of atoms and a set O
of rules of form (2), X �O Y if for all rules r ∈ O, vX(r) ≤ vY (r), and X �O Y is
defined as X �O Y but Y 6�O X .

In asprin, we can represent an ASO rule r as in (2) as preference statement of form
#preference(sr,aso){ φ1 > . . .>φm || B } .

A set {r1, . . . , rn} of ASO rules is represented by corresponding preference statements
sr1 to srn along with an aggregating pareto preference subject to optimization.
#preference(paraso,pareto){name(sr1), . . .name(srn)}.

#optimize(paraso).

Note that aggregating preferences other than pareto could be used just as well.
The core implementation of preference type aso is given in Lines 1-23 below.

Predicate one/1 is true whenever an ASO rule has satisfaction degree 1 wrt the stable
model captured by H(X). The same applies to one’/1 but wrt H ′(Y).

1 one(P) :- preference(P,aso),
2 not holds(F) : preference(P,_,R,for(F),_), R>1.
3 one(P) :- preference(P,aso),
4 holds(F), preference(P,_,1,for(F),_).
5 one(P) :- preference(P,aso),
6 not holds(F), preference(P,_,0,for(F),_).

8 one’(P) :- preference(P,aso),
9 not holds’(F) : preference(P,_,R,for(F),_), R>1.

10 one’(P) :- preference(P,aso),
11 holds’(F), preference(P,_,1,for(F),_).
12 one’(P) :- preference(P,aso),
13 not holds’(F), preference(P,_,0,for(F),_).

With these rules, we derive better(sr) in Line 15 whenever some ASO rule r has
satisfaction degree 1 in X and one greater than 1 in Y . Otherwise, better(sr) is
derivable in Line 16 whenever r has satisfaction degree R inX but none of the formulas
φ1 to φR are true in Y . This is analogous for bettereq/1 in lines 20-23.

15 better(P) :- preference(P,aso), one(P), not one’(P).
16 better(P) :- preference(P,aso),
17 preference(P,_,R,for(F),_), holds(F), R > 1, not one’(P),
18 not holds’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ <= R.

20 bettereq(P) :- preference(P,aso), one(P).
21 bettereq(P) :- preference(P,aso),
22 preference(P,_,R,for(F),_), holds(F), R > 1, not one’(P),
23 not holds’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ < R.

The remaining rules implement the composite preference type pareto.
25 better(P) :- preference(P,pareto),
26 better(R), preference(P,_,_,name(R),_),
27 bettereq(Q) : preference(P,_,_,name(Q),_).

Note how pareto makes use of both the strict and non-strict preference types, viz.
better/1 and bettereq/1. In fact, we only list this here for completeness since
the definition could be imported from asprin’s library.

Altogether, the rules in Line 1-27 capture the semantics of ASO. To see this, con-
sider a set O of ASO rules and the program PO consisting of Line 1-27 along with
the facts for the preference and optimization statements corresponding to O and the
auxiliary rules in (ii) mentioned above. Then, we can show that X �O Y holds iff
PO ∪H(X) ∪H ′(Y) is satisfiable.

asprin also includes an implementation of the ASO extension with penalties intro-
duced in [6]. Here, each formula φi in (2) is extended with a weight and further weight-
oriented cardinality- and inclusion-based composite preference types are defined. The

implementation in asprin extends the one presented above by complex weight handling
and is thus omitted for brevity. Similarly, logic programs with ordered disjunction [4]
are expressible in asprin via the translation to ASO described in [5].

Partially ordered sets. In [8], qualitative preferences are modeled as a strict partially
ordered set (Φ,<) of literals. The literals in Φ represent propositions that are preferably
satisfied and the strict partial order< on Φ gives their relative importance. We (slightly)
generalize this to sets of Boolean formulas. Then, for sets X,Y of atoms and a strict
partially ordered set (Φ,<), X �(Φ,<) Y if there exists a formula φ ∈ Φ such that
X |= φ and Y 6|= φ, and for every formula φ ∈ Φ such that Y |= φ and X 6|= φ, there
is a formula φ′ ∈ Φ such that φ′ < φ and X |= φ′ but Y 6|= φ′.

We represent a partially ordered set (Φ,<) by a preference statement s(Φ,<) of form:

#preference(s(Φ,<),poset)Φ∪{φ′ >φ | φ′ < φ}.

The preference type poset captures all preference relations �(Φ,<) for all strict par-
tially ordered sets (Φ,<).

The core implementation of preference type poset is given in Lines 1-13 below.
In fact, Line 1 to 4 are only given for convenience to project the components of (Φ,<).

1 poset(P,F) :- preference(P,poset),
2 preference(P,_,_,for(F),_).
3 poset(P,F,G) :- preference(P,poset),
4 preference(P,I,1,for(F),_), preference(P,I,2,for(G),_).

6 better(P,F) :- preference(P,poset),
7 poset(P,F), holds(F), not holds’(F).
8 notbetter(P) :- preference(P,poset),
9 poset(P,F), not holds(F), holds’(F),

10 not better(P,G) : poset(P,G,F).

12 better(P) :- preference(P,poset),
13 better(P,_), not notbetter(P).

Given the reification of two setsX,Y in terms of holds/1 and holds’/1, we derive
an instance of better(P,F) whenever X |= φF but Y 6|= φF (and F is the represen-
tation of φF). Similarly, we derive notbetter(P) whenever there is a formula φF
such that Y |= φF and X 6|= φF but better(P,G) fails to hold for all φG preferred to
φF by the strict partial order <. Finally, these two auxiliary predicates are combined in
Line 12 and 13 to define the preference type poset.

Finally, we sketch how these rules capture the intended semantics. For this, given
a strict partially ordered set (Φ,<), we consider the program P(Φ,<) consisting of the
rules in Line 1-13, the facts for the preference and optimize statements corresponding
to (Φ,<), and the auxiliary rules (ii) described above. Then, we can show that for two
sets of atoms X and Y , X �(Φ,<) Y holds iff P(Φ,<) ∪H(X) ∪H ′(Y) is satisfiable.

Son and Pontelli [7] propose a language for specifying preferences in planning that
distinguishes three types of preferences: basic, atomic, and general preferences. A basic
preference is originally expressed by a propositional formula using Boolean as well as
temporal connectives. Given that our focus does not lie on planning, we restrict basic
preferences to Boolean formulas. Then, for sets X,Y of atoms and a formula φ, [7]
defines X �φ Y by if X |= φ and Y 6|= φ.

In asprin, such a basic preference is declared by a preference statement sφ of form
#preference(sφ,basic){ φ }.

And the preference type basic is implemented by the following rule.
better(P) :- preference(P,basic), preference(P,_,_,for(F),_),

holds(F), not holds’(F).

Interestingly, atomic and general preferences can be captured by composite pref-
erences pre-defined in asprin’s library. That is, the language constructs !, &, |, and /
directly correspond to neg, and, pareto, and lexico. For brevity, we refrain from
further details and refer the reader to [7, 9] for formal definitions.

Optimization statements. Finally, it is instructive to see how common optimization
statements are expressed in asprin.2 A #minimize directive is of the form

#minimize{w1@k1, t1 : `1, . . . , wn@kn, tn : `n}

where each wi and ki is an integer, and `i = `i1 , . . . , `ik and ti = ti1 , . . . , tim are
tuples of literals and terms, respectively. For a set X of atoms and an integer k, let ΣX

k

denote the sum of weights wi over all occurrences of elements (wi@ki, ti : `i) in M
such that X |= `i. Then, for sets X,Y of atoms and minimize statement M as above,
X �M Y if ΣX

k < ΣY
k and ΣX

k′ = ΣY
k′ for all k′ > k.

In asprin, a minimize statement M as above can be represented by the following
preference specification.
#preference(sM,lexico){ −k :: name(sk) | (w@k, t : `) ∈M }.
#preference(sk,less(weight)){ w,(t) :: ` | (w@k, t : `) ∈M }.
#optimize(sM).

The preference type less(weight) is defined as follows.
better(P) :- preference(P,less(weight)),
1 #sum { -W,T,F : holds(F), preference(P,_,_,for(F),(W,T));

W,T,F : holds’(F), preference(P,_,_,for(F),(W,T)) }.

Note that by wrapping tuples t into (t), we only deal with pairs w,(t) rather than
tuples of varying length.

asprin’s separation of preference declarations from optimization directives not only
illustrate how standard optimization statements conflate both concepts but it also expli-
cates the interaction of preference types lexico and less(weight).

4 Heuristic support in asprin

Optimization problems are clearly more difficult than decision problems, since they
involve the identification of optimal solutions among all feasible ones. To this end, it
seems advantageous to direct the solving process towards putative optimal solutions by
supplying heuristic information. Although this runs the risk of search degradation [11],
it has already indicated great prospects by improving regular optimization in ASP [12]
as well as qualitative preferences [8]. While the latter had to be realized by modifica-
tions to a SAT solver, in asprin we draw upon the integration with clingo 4’s declarative

2 The decomposition of weak constraints is analogous, and is omitted for brevity.

heuristic framework [12] . Heuristic information is represented in a logic program by
means of the dedicated predicate heuristic. Different types of heuristic informa-
tion can be controlled with clingo 4’s domain heuristic along with the basic modifiers
sign, level, init, and factor. In brief, sign allows for controlling the truth
value assigned to variables subject to a choice within the solver, while level estab-
lishes a ranking among atoms such that unassigned atoms of highest rank are chosen
first. With init, a value is added to the initial heuristic score of an atom. The whole
search is biased with factor by multiplying heuristic scores by a given value. Further-
more, modifiers true and false are defined as the combination of a positive sign
and a level, and a negative sign and a level, respectively. See [12] for a details.

This framework seamlessly integrates into asprin by means of so-called heuristic
programs, where heuristics for concrete preference types may be specified. For exam-
ple, consider the following heuristic program for less(weight):
_heuristic(holds(X),false,1) :- preference(P,less(weight)),

preference(P,_,_,for(X),_).

This tells the solver to decide first on formulas appearing in preference statements of
type less(weight) and to assign false to them. As another example, we can repli-
cate the modification of the sign heuristic proposed in [8] for poset as follows:
_heuristic(holds(X),sign,1) :- preference(P,poset),

preference(P,_,_,for(X),_).

The idea is to assign true when deciding on formulas of a poset preference statement.
In general, the goal of these heuristic programs is to direct the search towards optimal
solutions in such a way that fewer intermediate solutions have to be computed.

For activating the domain heuristics, the option --heuristic=Domain must be
supplied. In addition, asprin provides an easy way to modify it from the command line
via option --domain-heuristic=<m>[,<v>]; it turns on the domain heuristic
and applies heuristic modifier m with value v (1 by default) to the formulas occurring in
preference statements. For example, instead of adding the previous heuristic program
for poset, we could have issued the option --domain-heuristic=sign.

As put forward in [13, 8], even domain heuristics alone may be used to compute
optimal models by a single call to a solver. In other words, preference types may actually
be implemented by domain heuristics. For example, the preference type subset can
alternatively be implemented by the following heuristic program
_heuristic(holds(X),false,1) :- preference(P,subset),

preference(P,_,_,for(X),_).

which guarantees that the first answer set computed is (already) optimal. Similarly, the
following heuristic program implements a more sophisticated version of poset:
_heuristic(holds(F),true,1) :- preference(P,poset),

preference(P,_,_,for(F),_),
assigned(P,G) : poset(P,G,F).

assigned(P,G) :- poset(P,G,_), holds(G).
assigned(P,G) :- poset(P,G,_), not holds(G).

With poset/3 defined as in Section 3, predicate assign/2 represents that a formula
is assigned by the solver. Given this heuristic program, the solver prefers to satisfy

formulas whose dominating formulas are already assigned. As shown in [8], such a
heuristic guarantees that the first optimal model computed is optimal. The asprin library
includes such heuristic program also for aso. Using them, there is no need for checking
the optimality of a solution. For this case, option --mode=heuristic tells asprin
to avoid the check and activate the domain heuristic.

5 Using the asprin System

asprin is implemented in Python (2.7) and consists of a parser along with a solver that
uses clingo 4’s Python library. This library provides clingo objects maintaining a logic
program and supporting methods for adding, deleting and grounding rules, as well as
for solving the current logic program. This approach allows for continuously changing
the logic program at hand without any need for re-grounding rules. Also, it benefits
from information learned in earlier solving steps.

The input of asprin consists of a set of ASP files structured by means of clingo 4’s
#program directives into base, preference, and heuristic programs. Base programs
consist typically of a problem instance and encoding, and may contain a prefer-
ence specification (just as with #minimize statements).3 Rules common to all types
of preference programs are grouped under program blocks headed by ‘#program
preference.’, while type-specific ones use ‘#program preference(t).’
where t is the preference type. Similarly for ‘#program heuristic.’ and
‘#program heuristic(t).’. Among all the type-specific preference and heuris-
tic programs in the input files, asprin only loads those for the preference types appear-
ing in the preference specification of the base program. On the other hand, for every
preference type t of the preference specification, asprin requires a corresponding pref-
erence program ‘preference(t)’, and when using option --mode=heuristic
there must also be a corresponding heuristic program ‘heuristic(t)’.4 asprin’s
implementation relies on the correctness of preference and heuristic programs. In other
words, if the preference (or heuristic) programs implement correctly the corresponding
preference types, then asprin also functions correctly, as shown in [9].

asprin’s parser starts translating preference and optimization statements as ex-
plained in Section 3. Then every atom a appearing in a weighted formula is reified
into holds(a,0) adding a rule of form ‘ holds(a,0) :- a.’ to the base pro-
gram. Similar auxiliary rules are added for handling Boolean formulas. The successive
answer sets computed by asprin are reified into atoms of the form holds(tF,n)
where n takes successively increasing integer values starting with 1. Next, preference
programs are slightly modified for comparing answer sets numbered m1 and m2. Atoms
of the form holds(t) and holds’(t) are translated into holds(t,m1) and
holds(t,m2), respectively. After parsing, the base program generated by the parser

is solved by clingo. If the program is unsatisfiable, then asprin terminates and returns
UNSAT. Otherwise, asprin enters a loop, where the last generated answer set is reified
into facts of form holds(tF,n); the preference program is grounded setting m1 to
0 and m2 to n; and clingo solves the resulting program. If a new answer set is found,

3 If no preference specification is given, asprin computes answer sets of the base program.
4 In this case, for computing a single optimal model no preference program is needed.

asprin returns to the beginning of the loop, and otherwise it returns the last answer set
found. By construction, this last answer set is optimal wrt the preference in focus.

asprin can be configured by several command line options. As with standard ASP
solvers, a natural number n tells asprin how many optimal models should be computed
(where 0 initiates the computation of all optimal models). Option --project allows
for projecting the optimal models on the atoms occurring in the preference specification.
Options for modifying the underlying clingo solver can be directly issued from the
command line. More options and details are obtained with asprin’s --help option.

6 Empirical evaluation of asprin

In [9], we contrasted asprin (1.0) ’s performance with that of clingo 4.4 on basic weight-
and subset-based preferences. We begin with extending this study to investigate the
impact of heuristic information on asprin’s performance. To this end, we consider in
Table 1 the benchmarks from [9] and solve them by increasing the heuristic influence
on asprin’s search. We ran all benchmarks with asprin 1.1 using clingo 4.5 on a Linux

Benchmark \ System asprinw asprinw+s asprinw+l asprinw+f asprins asprins+s asprins+l asprins+f
Ricochet (30) 20.00 432 (8, 4) 407 (7,4) 68 (1, 0) 71 (1, 0) 365 (8,3) 461 (7,10) 69 (1, 0) 71 (1, 0)
Timetabling(12)23687.75 345 (285, 3) 255 (202,2) 900 (4,12) 6 (1, 0) 217 (144,2) 21 (18, 0) 900 (2, 12) 5 (1, 0)
Puzzle (7) 580.57 82 (2, 0) 112 (2,0) 136 (2, 0) 416 (2, 1) 31 (1,0) 32 (1, 0) 21 (1, 0) 51 (1, 0)
Crossing (24) 211.92 104 (42, 1) 98 (35,0) 805 (19,20) 387 (6, 6) 0 (6,0) 1 (6, 0) 7 (9, 0) 3 (1, 0)
Valves (30) 56.63 69 (7, 0) 65 (6,0) 460 (8,11) 715 (0, 22) 38 (4,0) 39 (4, 0) 339 (4, 6) 673 (0, 21)
Expansion (30) 7501.87 216 (299, 0) 10 (15,0) 38 (7, 0) 12 (3, 0) 64 (295,0) 14 (54, 0) 4 (4, 0) 3 (1, 0)
Repair (30) 6750.73 76 (48, 0) 15 (47,0) 71 (3, 2) 8 (2, 0) 8 (43,0) 3 (11, 0) 1 (1, 0) 1 (1, 0)
Diagnosis (30) 1669.00 196 (341, 3) 76 (66,0) 43 (4, 0) 118 (3, 2) 19 (338,0) 2 (39, 0) 0 (1, 0) 0 (1, 0)
∅(∅, Σ) 190 (129,11) 130 (48,6) 315 (6,45) 217 (2, 31) 93 (105,5) 72 (18,10) 168 (3, 18) 101 (1, 21)

Table 1. Comparing asprin with different heuristic settings

machine with an Intel Dual-Core Xeon 3.4 GHz processor, imposing a limit of 900 s
and 4 GB of memory per run. A timeout is counted as 900 s. Each entry in Table 1 gives
average time and in parentheses the number of enumerated models and timeouts. The
number of enumerated models reflects how well asprin converges to the optimum. Each
group of four data columns contains results from running asprin in its default setting and
heuristics modifying sign, level and both, viz. false. The first group deals with
weight-based optimization and the second with subset-based optimization. Overall each
heuristic modification improves over the standard in terms of runtime and convergence.
This somewhat holds for timeouts as well, though certain heuristic settings degenerate
on specific classes. Generally, we observe that the stronger the heuristic influence, the
better asprin converges to the optimum. Interestingly, the best runtime is however ob-
tained with the least interfering strategy, simply preferring negative signs for preference
elements. On the other hand, classes like Puzzle are resistant to heuristic manipulations
and weight-based optimization is even worse in this case. Here, convergence is imme-
diate and cannot be improved by heuristic means. The bad performance can thus be
explained by the interference of the heuristics with the final UNSAT problem needed
for establishing optimality. Just modifying the sign thus appears as the best overall
compromise, boosting convergence without overly hindering the final UNSAT proof.
Otherwise, the best heuristic modification must be decided case-by-case.

Our next series of experiments aims at comparing the general-purpose approach
of asprin with dedicated implementations of aso [14] and poset [8] preferences. In
both cases, we use their benchmark generators and sets to contrast the approaches. The
experimental settings are the same as above.

n aso asol asprina asprinl+a

350 9 (0) 17 (0) 4 (0) 5 (0)
360 14 (0) 22 (0) 48 (0) 50 (0)
370 15 (0) 25 (0) 38 (0) 39 (0)
380 10 (0) 23 (0) 8 (0) 9 (0)
390 59 (0) 72 (0) 50 (1) 52 (1)
400 22 (0) 33 (0) 28 (0) 30 (0)
410 87 (1) 96 (1) 124 (2) 125 (2)
420 97 (1) 108 (1) 60 (0) 62 (0)
430 68 (0) 79 (0) 144 (0) 147 (0)
440 165 (3) 175 (3) 165 (2) 167 (2)
450 45 (0) 61 (0) 52 (0) 54 (0)
460 112 (1) 125 (1) 117 (2) 120 (2)
470 201 (4) 210 (4) 161 (2) 162 (2)
480 152 (2) 165 (2) 70 (1) 72 (1)
490 206 (2) 218 (2) 265 (4) 267 (4)

∅(Σ) 84 (14) 95 (14) 89 (14) 91 (14)

Table 2. Comparing asprin with aso

First, we compare asprin with the system for
aso preferences [14]; it implements a branch-
and-bound approach in C++ and calls clingo each
time from scratch via a system call. We refer to
it as aso. We also used the benchmark genera-
tor from [14] to generate random 3CNF formulas
with n variables and 4n clauses. For each formula
of n variables, it randomly generates 3n prefer-
ence rules with a > ¬a or ¬a > a for some a
in the head, and 0 to 2 literals in the body. In ad-
dition, the approach handles ranked aso prefer-
ences (asol), which amounts to an aggregation of
aso preferences with lexico in asprinl+a. The
generator accounts for this by assigning a higher rank to half of the aso rules. The
results of comparing both systems on both sets of random benchmarks are shown in Ta-
ble 2. Each cell gives average runtime and number of timeouts. We see that the general-
purpose approach of asprin is comparable with the dedicated approach of [14] on their
benchmark set. On the other hand, we observed with asprin a very fast convergence, so
that no real difference can be expected on these benchmarks.

Benchmark\System satpref satpref+s satpref+H asprinp asprinp+s asprinp+H
0.0 0 (29, 0) 0 (1, 0) 0 (1, 0) 1 (16, 0) 0 (2, 0) 0 (1, 0)
0.00621 0 (35, 0) 0 (1, 0) 90 (1, 6) 1 (17, 0) 1 (2, 0) 1 (1, 0)
0.01243 1 (75, 0) 1 (3, 0) 118 (1, 7) 6 (26, 0) 2 (3, 0) 3 (1, 0)
0.02486 8 (388, 0) 6 (10, 0) 635 (1, 38) 55 (74, 0) 9 (8, 0) 64 (1, 4)
0.04972 67 (1463, 2) 16 (36, 0) 900 (0,100) 318 (203, 16) 26 (17, 0) 176 (1, 14)
1.0 850 (10315,88) 243 (590,10) 177 (1, 12) 856 (323, 92) 174 (96, 0) 280 (1, 24)
∅(∅, Σ) 154 (2051,90) 44 (107,10) 320 (1,163) 206 (110,108) 35 (21, 0) 88 (1, 42)
MAXSAT 54 (8849, 0) 9 (7, 0) 62 (1, 0) 835 (957, 31) 109 (31, 3) 171 (1, 6)
PBO/pbo-mqc-nencdr 5 (267, 0) 2 (2, 0) 664 (1, 88) 150 (207, 14) 9 (2, 0) 244 (1, 20)
PBO/pbo-mqc-nlogencdr 3 (228, 0) 1 (2, 0) 237 (1, 21) 110 (214, 3) 5 (2, 0) 141 (1, 15)
PSEUDO/primes 110 (396,18) 110 (1,18) 110 (1, 18) 215 (334, 27) 106 (5,17) 110 (1, 17)
PSEUDO/routing 346 (409, 4) 49 (1, 0) 50 (1, 0) 85 (475, 0) 4 (1, 0) 86 (1, 1)
Partial-MINONE 14 (2, 0) 14 (2, 0) 7 (1, 0) 24 (2, 0) 24 (1, 0) 25 (1, 0)
∅(∅, Σ) 88 (1692,22) 31 (2,18) 188 (1,127) 236 (365, 75) 43 (7,20) 129 (1, 59)

Table 3. Comparing satpref and asprin under different heuristic settings

Next, we compare asprin with the system satpref for poset preferences [15]. Inter-
estingly, satpref not only extends the SAT solver minisat with branch-and-bound-based
optimization but also uses heuristic support for boosting optimization. Table 3 contains
the results of our comparison on benchmarks from [15]. The first six lines of data stem
from 600 random instances (each with 500 variables and 1750 clauses), in which an
order a > b between variables a and b is generated with the probabilities given in the
left column. The second six lines of data stem from instances taken from various com-
petitions (cf. [15]). As above, we compare both systems in their basic setting and with
sign-based heuristics. In addition, we contrast the declarative heuristics from the end
of Section 4 (asprinp+H) with its hard-coded counterpart in satpref+H. Such a heuris-

tic ensures that the first found model is optimal. In fact, as above, the best results with
both systems are obtained with a light sign-based heuristics. The slight edge of satpref
over asprinp is due to additional grounding efforts (given that problems are expressed in
ASP). Despite this, the experiments show that the general-purpose approach of asprin
is overall comparable with the dedicated approach of satpref.

7 Discussion

We have presented asprin, a general and flexible ASP-based system for representing and
evaluating combinations of quantitative and qualitative preferences. We presented as-
prin’s first-order modeling language and showed how existing (and future) preferences
can be expressed in asprin. We showed that our general-purpose approach matches
the performance of dedicated systems for aso and poset preferences. Moreover, we
demonstrated how well-chosen heuristics can boost the optimization process.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3) (2006) 499–562

4. Brewka, G.: Logic programming with ordered disjunction. In Proceedings of AAAI, AAAI
Press (2002) 100–105

5. Brewka, G., Niemelä, I., Truszczyński, M.: Answer set optimization. In Proceedings of
IJCAI, Morgan Kaufmann (2003) 867–872

6. Brewka, G.: Complex preferences for answer set optimization. In Proceedings of KR, AAAI
Press (2004) 213–223

7. Son, T., Pontelli, E.: Planning with preferences using logic programming. Theory and
Practice of Logic Programming 6(5) (2006) 559–608

8. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences.
Constraints 15(4) (2010) 485–515

9. Brewka, G., Delgrande, J., Romero, J., Schaub, T.: asprin: Customizing answer set prefer-
ences without a headache. In Proceedings of AAAI, AAAI Press (2015) 1467–1474

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

11. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
Boolean circuits. Annals of Mathematics and Artificial Intelligence 44(4) (2005) 373–399

12. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific
heuristics in answer set programming. In Proceedings of AAAI, AAAI Press (2013) 350–356

13. Castell, T., Cayrol, C., Cayrol, M., Le Berre, D.: Using the Davis-Putnam procedure for an
efficient computation of preferred models. In Proceedings of ECAI, Wiley (1996) 350–354

14. Zhu, Y., Truszczyński, M.: On optimal solutions of answer set optimization problems. In
Proceedings of LPNMR. Springer (2013) 556–568

15. Di Rosa, E., Giunchiglia, E.: Combining approaches for solving satisfiability problems with
qualitative preferences. AI Communications 26(4) (2013) 395–408

