
Enablers and Inhibitors in
Causal Justifications of Logic Programs

Pedro Cabalar and Jorge Fandinno

Department of Computer Science
University of Corunna, Spain

{cabalar, jorge.fandino}@udc.es

Abstract. In this paper we propose an extension of logic programming (LP)
where each default literal derived from the well-founded model is associated
a justification represented as an algebraic expression. This expression contains
both causal explanations (in the form of proof graphs built with rule labels) and
terms under the scope of negation that stand for conditions that enable or disable
the application of causal rules. Using some examples, we discuss how these new
conditions, we respectively call enablers and inhibitors, are intimately related
to default negation and have an essentially different nature from regular cause-
effect relations. The most important result is a formal comparison to the recent
algebraic approaches for justifications in LP: Why-not Provenance (WnP) and
Causal Graphs (CG). We show that the current approach extends both WnP and
CG justifications under the Well-Founded Semantics and, as a byproduct, we also
establish a formal relation between these two approaches.

1 Introduction

The strong connection between Non-Monotonic Reasoning (NMR) and Logic Program-
ming (LP) semantics for default negation has made possible that LP tools became nowa-
days an important paradigm for Knowledge Representation (KR) and problem-solving
in Artificial Intelligence (AI). In particular, Answer Set Programming (ASP) [1, 2] has
raised as a preeminent LP paradigm for practical NMR with applications in diverse ar-
eas of AI including planning, reasoning about actions, diagnosis, abduction and beyond.
The ASP semantics is based on stable models [3] and is also closely related to the other
mainly accepted interpretation for default negation, well-founded semantics (WFS) [4].
One interesting difference between these two LP semantics and classical models (or
even other NMR approaches) is that true atoms in LP must be founded or justified by
a given derivation. These justifications are not provided in the semantics itself, but can
be syntactically built in some way in terms of the program rules, as studied in several
approaches [5–11].

Rather than manipulating justifications as syntactic objects, two recent approaches
have considered multi-valued extensions of LP where justifications are treated as alge-
braic constructions: Why-not Provenance (WnP) [12] and Causal Graphs (CG) [13].
Although these two approaches present formal similarities, they start from different un-
derstandings of the idea of justification. On the one hand, WnP answers the query of

why some literal L might hold by providing conjunctions of “hypothetical modifica-
tions” on the program that would allow deriving L. These modifications include rule
labels, expressions like not(A) with A an atom, or negations ‘¬’ of the two previous
cases. As an example, a justification for L like r1 ∧ not(p)∧¬r2 ∧¬not(q) means that
the presence of rule r1 and the absence of atom p would allow deriving L if both rule
r2 were removed and atom q were added to the program. If we want to explain why
L actually holds, we have to restrict to justifications without ‘¬’, that is, those without
program modifications (which will be the focus of this paper).

On the other hand, CG-justifications start from identifying program rules as causal
laws so that, for instance, (p← q) can be read as “event q causes effect p.” Under
this viewpoint, (positive) rules offer a natural way for capturing the concept of causal
production, i.e. a continuous chain of events that has helped to cause or produce an
effect [14, 15]. The explanation of a true atom is made in terms of graphs formed by
rule labels that reflect the ordered rule applications required for deriving that atom.
These graphs are obtained by algebraic operations exclusively applied on the positive
part of the program. Default negation in CG is understood as absence of cause and,
consequently, a false atom has no justification.

The explanation of an atom A in CG is more detailed than in WnP, since the former
contains graphs that correspond to all relevant proofs of A whereas in WnP we just
get conjunctions that do not reflect any particular ordering among rule applications.
However, as explained before, CG does not reflect the effect of default negation in
a given derivation and, sometimes, this information is very valuable, especially if we
want to answer questions of the form “why not.”

To understand the kind of problems we are interested in, consider the following
example. A drug d in James Bond’s drink causes his paralysis p provided that he was
not given an antidote a that day. We know that Bond’s enemy, Dr. No, poured the drug:

p← d,not a (1)
d (2)

In this case it is obvious that d causes p, whereas the absence of a just enables the
application of the rule. Now, suppose we are said that Bond is daily administered an
antidote by the MI6, unless it is a holiday h:

a← not h (3)

Adding this rule makes a to become an inhibitor that prevents d to cause p. But suppose
now that we are in a holiday, that is, fact h is added to the program (1)-(3). Then, the
inhibitor a is disabled and d causes p again. However, we do not consider that the
holiday h is a (productive) cause for Bond’s paralysis p although, indeed, the latter
counterfactually depends on the former: “had not been a holiday h, Bond would have
not been paralysed.” We will say that the fact h, which disables an inhibitor of d, is an
enabler of d.

In this work we propose dealing with these concepts of enablers and inhibitors by
augmenting CG justifications with a new negation operator ‘∼’ in the CG causal al-
gebra. We show that this new approach, we call Extended Causal Justifications (ECJ)

captures WnP justifications under the Well-founded Semantics and, as a byproduct, we
establish a formal relation between WnP and CG.

The rest of the paper is structured as follows. The next section defines the new
approach. Sections 3 and 4 explain through a running example the formal relations to
CG and WnP, respectively. The next section discusses some related work and, finally,
Section 6 concludes the paper.

2 Extended Causal Justifications (ECJ)

A signature is a pair 〈At,Lb〉 of sets that respectively represent atoms (or propositions)
and labels. Intuitively, each atom in At will be assigned justifications built with rule
labels from Lb. These justifications will be expressions that combine four different al-
gebraic operators: a product ‘∗’ representing conjunction or joint causation; a sum ‘+’
representing alternative causes; a non-commutative product ‘·’ that captures the sequen-
tial order that follows from rule applications; and a non-classical negation ‘∼’ which
will precede inhibitors (negated labels) and enablers (doubly negated labels).

Definition 1 (Term). Given a set of labels Lb, a term, t is recursively defined as one
of the following expressions t ::= l | ∏S | ∑S | t1 · t2 | ∼t1 where l ∈ Lb, t1, t2 are in
their turn terms and S is a (possibly empty and possibly infinite) set of terms. A term is
elementary if it has the form ∼∼l, ∼l or l with l ∈ Lb being a label. �

When S = {t1, . . . , tn} is finite we simply write ∏S as t1 ∗ · · · ∗ tn and ∑S as t1 + · · ·+ tn.
Moreover, when S = /0, we denote ∏S by 1 and ∑S by 0, as usual, and these will be the
identities of the product ‘∗’ and the addition ‘+’, respectively. We assume that ‘·’ has
higher priority than ‘∗’ and, in its turn, ‘∗’ has higher priority than ‘+’.

pseudo-complement
t ∗ ∼t= 0
∼∼∼t=∼t

De Morgan
∼(t+u)=(∼t ∗∼u)
∼(t ∗u)=(∼t+∼u)

excluded middle
∼t + ∼∼t=1

appl. negation
∼(t · u)=∼(t ∗ u)

Associativity
t · (u·w) = (t·u) · w

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity
t = 1 · t
t = t · 1

Annihilator
0 = t · 0
0 = 0 · t

Indempotence
l · l = l

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c ·d · e = (c ·d)∗ (d · e) with d 6= 1

c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 1. Properties of the ‘∼’ and ‘·’operators (c,d,e are terms without ‘+’ and l is a label).

Definition 2 (Value). A (causal) value is each equivalence class of terms under ax-
ioms for a completely distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the
axioms of Figure 1. The set of (causal) values is denoted by VLb. �

Note that 〈VLb,+,∗,∼ ,0,1〉 forms a pseudo-complemented, completely distributive
(complete) lattice whose meet and join are, as usual, the product ‘∗’ and the addi-
tion ‘+’. Note also that all three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’

and addition ‘+’ are also commutative, and they hold the usual absorption and distribu-
tive laws with respect to infinite sums and products of a completely distributive lattice.
We say that a term is in negation normal form (NNF) if no operators are in the scope of
negation ‘∼’. Without loss of generality, we assume from now on that all terms are in
NNF. The lattice order relation is defined as usual in the following way:

t ≤ u iff (t ∗u = t) iff (t +u = u)

Consequently 1 and 0 are respectively the top and bottom elements with respect to the
≤ order relation.

Definition 3 (Labelled logic program). Given a signature 〈At,Lb〉, a (labelled logic)
program P is a set of rules of the form:

ri : H ← B1, . . . , Bm, not C1, . . . , not Cn (4)

where ri ∈ Lb is a label or ri = 1, H (the head of the rule) is an atom and Bi’s and Ci’s
(the body of the rule) are either atoms or terms. �

When n = 0 we say that the rule is positive, furthermore, if m = 0 we say that the
rule is a fact and omit the symbol ‘←.’ When ri ∈ Lb we say that the rule is labelled;
otherwise ri = 1 and we omit both ri and ‘:’. By these conventions, for instance, an
unlabelled fact A is actually an abbreviation of (1 : A←). A program P is positive
when all its rules are positive, i.e. it contains no default negation. It is uniquely labelled
when each rule has a different label or no label at all. In this paper, we will we assume
that programs are uniquely labelled. Furthermore, for clarity sake, we also assume that,
for every atom A ∈ At, there is an homonymous label A ∈ Lb, and that each fact A in
the program actually stands for the labelled rule (A : A←). For instance, following
these conventions, a possible labelled version for the James Bond’s program could be
program P1 below:

r1 : p← d,not a

r2 : a← not h

d

h

where facts d and h stand for rules (d : d←) and (h : h←), respectively.
A CP-interpretation is a mapping I : At −→ VLb assigning a value to each atom. For

interpretations I and J we say that I ≤ J when I(A)≤ J(A) for each atom A∈ At. Hence,
there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that stands for the
interpretation mapping each atom A to 0 (resp. 1). The value assigned to a negative
literal not A by an interpretation I, denoted as I(not A), is defined as: I(not A) def=∼I(A).
Similarly, for a term t, I(t) def= [t] is the equivalence class of t.

Definition 4 (Reduct). Given a program P and an interpretation I we denote by PI the
positive program containing a rule like

ri : H← B1, . . . ,Bm, I(not C1), . . . , I(not Cn) (5)

per each rule of the form (4) in P.

Definition 5 (Model). An interpretation J is a (causal) model of a rule like (5) iff(
J(B1)∗ . . .∗ J(Bm)∗ I(not C1)∗ . . .∗ I(not Cn)

)
· ri ≤ J(H)

and it is a model of PI , written J |= PI , iff it is a model of all rules in PI . The operator
ΓP(I) returns the least model of the positive program PI .

Program PI is positive and, as happens in standard logic programming, it also has a least
causal model. Furthermore the operator ΓP is anti-monotonic, and therefore Γ 2

P is mono-
tonic having a least fixpoint LP and a greatest fixpoint UP

def= ΓP(LP) that respectively
correspond to the justifications for true and for non-false atoms in the (standard) well-
founded model (WFM), we denote WP. A query literal (q-literal) L is either an atom A,
its default negation ‘not A’ or the expression ‘undef A’ meaning that A is undefined.

Definition 6 (Causal well-founded model). Given a program P, the causal well-founded
model WP is a mapping from q-literals to values s.t.

WP(A)
def=LP(A) WP(not A) def= ∼UP(A) WP(undef A) def=∼WP(A)∗∼WP(not A) �

As we will formalise below, when A is undefined in the standard well-founded
model, LP(A) 6= UP(A) and, thus, WP(A) 6= 0. Continuing with our running example,
the causal WFM of program P1 corresponds to WP1(d)=d, WP1(h)=h, WP1(a)=∼h · r2
and WP1(p)=(∼∼h∗d)·r1 +(∼r2 ∗d)·r1. Intuitively (∼∼h∗d)·r1 means that the fact
h (double negated label∼∼h) has enabled d (non negated label) to produce p by means
of rule r1. In its turn, (∼r2 ∗d)·r1 means that d ·r1 would have been sufficient, had not
been present r2. Furthermore, WP1(a) means that a does not hold because the fact h
(negated label ∼h) has inhibited rule r2 to produce it. The following definitions for-
malise these concepts.

Let l be a label occurrence in a term t in the scope of n ≥ 0 negation ∼ operators.
We say that l is a odd or an even occurrence if n is odd or even, respectively. We further
say that it is strictly even if it is even and n > 0.

Definition 7 (Justification). Given a program P and a q-literal L we say that a term
with no sums E is a (sufficient causal) justification for L iff E ≤ WP(L). Odd (resp.
strictly even) labels1 in E are called inhibitors (resp. enablers) of E. A justification is
said to be inhibited if it contains some inhibitor and it is said to be enabled otherwise. �

For instance, in our previous example, there are two justifications, E1=(∼∼h∗d)·r1
and E2 = (∼r2 ∗ d)·r1, for atom p. Justification E1 is enabled because it contains no
inhibitors (in fact, E1 is the unique real support for p). Moreover, h is an enabler in E1
because it is strictly even (it is in the scope of double negation). On the contrary, E2
is disabled because it contains the inhibitor r2 (because it occurs here in the scope of
one negation). Intuitively, r2 has prevented d·r1 to become a justification of p. The next
theorem shows that the literals satisfied by the standard WFM are precisely those ones
containing at least one enabled justification in the causal WFM.

1 We just mention labels, and not their occurrences because terms are in NNF and E contains no
sums: having odd and even occurrences of a same label would mean that E = 0.

Theorem 1. Let P be a program and WP its (standard) well-founded model. A q-literal
L holds with respect to WP if and only if there is some enabled justification E of L, that
is E ≤WP(L) and E does not contain (odd) negative labels. �

Back to our example program P1, as we had seen, atom p had an enabled justification
(∼∼h∗d)·r1. The same happens for atoms d and h whose respective justifications are
just their own atom labels. Therefore, these three atoms hold in the standard WFM,
WP1 . On the contrary, as we discussed before, the only justification for a is inhibited
by h, and thus, a does not hold in WP1 . We can further check that a is false in WP1 (it
is not undefined) because literal not a holds, since WP1(not a) = ∼∼h+∼r2 provides
two justifications, being the first one, ∼∼h, enabled (it contains no inhibitors). The
interest of an inhibited justification for a literal is to point out “potential” causes that
have been prevented by some abnormal situation. In our case, the presence of ∼h in
WP1(a) = ∼h·r2 points out that an exception h has prevented r2 to cause a. When the
exception is removed, the inhibited justification (after removing the inhibitors) becomes
an enabled justification r2 for a.

Theorem 2. Let E be an inhibited justification of some atom A with respect to pro-
gram P. Let Q be the result of removing from P all rules ri whose labels are inhibitors
in E. Similarly, let F be the result of removing those inhibitors ∼ri from E. Then F is
an enabled justification of A with respect to Q. �

3 Relation to Causal Graph Justifications

We discuss now the relation between ECJ and CG approaches. Formally, ECJ extends
CG causal terms by the introduction of the new negation operator ‘∼’. Semantically,
however, there are more differences than a simple syntactic extension. A first minor
difference is that ECJ is defined in terms of a WFM, whereas CG defines (possibly)
several causal stable models. In the case of stratified programs, this difference is ir-
relevant, since the WFM is complete and coincides with the unique stable model. A
second, more important difference is that CG exclusively considers productive causes
in the justifications, disregarding additional information like the inhibitors or enablers
from ECJ. As a result, a false atom in CG has no justification – its causal value is 0
because there was no way to derive the atom. For instance, in program P1, the only
CG stable model I just makes I(a) = 0 and we lose the inhibited justification ∼h · r2
(default r2 could not be applied). True atoms like p also lose any information about
enablers: I(p) = d ·r1 and nothing is said about ∼∼h. Another consequence of the CG
orientation is that negative literals not A are never assigned a cause (different from 0
or 1), since they cannot be “derived” or produced by rules. In the example, we simply
get I(not a) = 1 and I(not p) = 0.

To further illustrate the similitudes and differences between ECJ and CG, consider
the following program P2 capturing a variation of the Yale Shooting Scenario.

dt+1 : deadt+1 ← shoott , loadedt , not abt

lt+1 : loadedt+1← loadt

at+1 : abt+1 ← watert

loaded0

dead0

ab0

load1

water3

shoot8

plus the following rules corresponding inertia axioms

Ft+1← Ft , not F t+1 F t+1← F t , not Ft+1

for F ∈ {loaded, ab, dead}. Atoms of the form A represent the strong negation of A
and we assume we disregard models satisfying both A and A. Atom dead9 does not
hold in the standard WFM of P2, and so there is no CG-justification for it. Note here
the importance of default reasoning. On the one hand, the default flow of events is that
the turkey, Fred, continues to be alive when nothing threats him. Hence, we do not
need a cause to explain why Fred is alive. On the other hand, shooting a loaded gun
would normally kill Fred, being this a cause of its death. But, in this example, another
exceptional situation – water spilled out – has inhibited this existing threat and allowed
the world to flow as if nothing had happened (that is, following its default behaviour).

In the CG-approach, dead9 is simply false by default and no justification is pro-
vided. However, a gun shooter could be “disappointed” since another conflicting default
(shooting a loaded gun normally kills) has not worked. Thus, an expected answer for
the shooter’s question “why not dead9?” is that water3 broke the default, disabling d9.
In fact, ECJ yields the following inhibited justification for dead9:

WP2(dead9) = (∼water3 ∗ shoot8 ∗ load1·l2) ·d9 (6)

meaning that dead9 could not be derived because of inhibitor water3 prevented the
application of r1 to cause the death of Fred. Moreover, according to Theorem 2, if we
remove fact water3 (the inhibitor) from P2, then for the new program P3 we get:

WP3(dead9) = (shoot8 ∗ load1·l2) ·d9 (7)

which is nothing else but the result of removing ∼water3 from (6). In fact, the only
CG stable model of P3 makes this same assignment (7) which also corresponds to the
causal graph depicted in Figure 2. In the general case: CG-justifications intuitively cor-
respond to enabled justifications after forgetting all the enablers. We formalise next the
correspondence between CG and ECJ justifications.

shoot8

))

load1

��

l2

ttd9

G2

Fig. 2. Cause of dead9 in program P2.

Definition 8 (Causal values). A CG term, t is a term with no negation ‘∼’. CG values
are the equivalence classes of CG terms under the axioms of Definition 2. The set of

CG values is denoted by CLb. We also define a mapping λ c : VLb −→ CLb from values
into CG values in the following recursive way:

λ
c(t) def=


λ c(u)�λ c(w) if t = u� v with � ∈ {+,∗, ·}
1 if t =∼∼l with l ∈ Lb
0 if t = ∼l with l ∈ Lb
l if t = l with l ∈ Lb

Note that we have assumed that t is in negation normal form. Otherwise λ c(t) def= λ c(u)
where u is the equivalent term in negation normal form. �

Function λ c maps every negated label ∼l to 0 (which is the annihilator of both prod-
uct ‘∗’ and application ‘·’ and the identity of addition ‘+’). Hence λ c removes all the in-
hibited justifications. Furthermore λ c maps every doubly negated label∼∼l to 1 (which
is the identity of both product ‘∗’ and application ‘·’). Therefore λ c removes all the en-
ablers (i.e doubly negated labels ∼∼l) for the remaining (i.e. enabled) justifications.

Definition 9 (CG stable models). Given a program P, a CG stable model is a mapping
Ĩ : At −→ CLb from atoms to CG values such that there exists a fixpoint I of the operator
Γ 2

P satisfying λ c(I(A)) = λ c(ΓP(I(A))) and Ĩ(A) def= λ c(I(A)) for every atom A. �

Theorem 3. For any program P, the CG values (Definition 8) and the CG stable models
(Definition 9) are exactly the causal values and causal stable models defined in [13]. �

Theorem 3 shows that Definition 9 is an alternative definition of CG causal stable mod-
els. Furthermore, it settles that every causal model corresponds to some fixpoint of
the operator Γ 2

P . Therefore, for every enabled justification there is a corresponding
CG-justification common to all stable models. In order to formalise this idea we just
take the definition of causal explanation from [16]. A graph of labels is a causal graph
(c-graph) if it is a directed graph, transitively and reflexively closed. Furthermore we
also define a one-to-one correspondence between c-graphs and causal values.

value(G) def= ∏{ v1 · v2
∣∣ (v1,v2) is an edge of G }

Definition 10 (CG-justification). Given an interpretation I we say that a c-graph G is
a (sufficient) CG-justification for an atom A iff value(G)≤ Ĩ(A). �

Note that mapping value(·) is a one-to-one correspondence and, thus, we can define
graph(v) def= value−1(v) for all v ∈ CLb.

Theorem 4. Let P be a program. For any enabled justification E of some atom A w.r.t.
WP, i.e. E ≤WP(A), there is a CG-justification G def= graph(λ c(E)) of A with respect
to any stable model Ĩ of P. �

As happens between the (standard) Well-founded and Stable Model semantics, the con-
verse of Theorem 4 does not hold in general. For instance, let P4 be the program con-
sisting on the following rules:

r1 : a← not b r2 : b← not a,not c c r3 : c← a r4 : d← b,not d

The (standard) WFM of P4 is two-valued and corresponds to the unique (standard)
stable model {a,c}. Furthermore there are two causal explanations of c with respect
to this unique stable model: the fact c and the pair of rules r1 ·r3. Note that when c is
removed {a,c} is still the unique stable model, but all atoms are undefined in the WFM.
Hence, r1 ·r3 is a justification with respect to the unique stable model of the program,
but not with respect to is WFM.

4 Relation to Why-not Provenance

An evident similarity between ECJ and WnP is the use of an alternating fixpoint oper-
ator [17] which has been actually borrowed from WnP. However there are some slight
differences. A first one is that we have incorporated from CG the non-commutative op-
erator ‘·’ which allows capturing, not only which rules justify a given atom, but also the
dependencies among these rules. The second is the use of a non-classical negation ‘∼’
that is crucial to distinguish between productive causes and enablers, something that
cannot be represented with the classical negation ‘¬’ in WnP since double negation can
always be removed. Apart from the interpretation of negation in both formalisms, there
are other differences too. As an example, let us compare the justifications we obtain
for dead9 in program P3. While for ECJ we obtained (7) (or graph G2 in Figure 2), the
corresponding WnP justification has the form:

l2∧d9∧ load1∧ shoot8∧not(water0)∧not(water1)∧ . . .∧not(water7) (8)

A first observation is that the subexpression l2 ∧ d9 ∧ load1 ∧ shoot8 constitutes, infor-
mally speaking, a “flattening” of (7) (or graph G2) where the ordering among rules has
been lost. We get, however, new labels in the form of not(A) meaning that atom A is
required not to be a program fact, something that is not present in CG-justifications. For
instance, (8) points out that water can not be spilt on the gun along situations 0, . . . ,7.
Although this information can be useful for debugging (the original purpose of WnP)
its inclusion in a causal explanation is obviously inconvenient from a Knowledge Rep-
resentation perspective, since it explicitly enumerates all the defaults that were applied
(no water was spilt at any situation) something that may easily blow up the (causally)
irrelevant information in a justification.

An analogous effect happens with the enumeration of exceptions to defaults, like
inertia. Take program P5 obtained from P2 by removing all the performed actions, i.e.,
facts load1, water3, and shoot7. As expected, Fred will be alive, deadt , at any situa-
tion t by inertia. ECJ will assign no cause for deadt , not even any inhibited one, i.e.
WP(deadt) = 1 and WP(deadt) = 0 for any t. However, there are many WnP justifi-
cations of deadt corresponding to all the plans for killing Fred in t steps. For instance,
among others, all the following:

d9∧¬not(load0)∧ r2∧¬not(shoot1)∧not(water0)

d9∧¬not(load0)∧ r2∧¬not(shoot2)∧not(water0)∧not(water1)

d9∧¬not(load1)∧ r2∧¬not(shoot3)∧not(water0)∧not(water1)∧not(water2)

. . .

are WnP-justifications for dead9. The intuitive meaning of expressions of the form
¬not(A) is that dead9 can be justified by adding A as a fact to the program. For in-
stance, the first conjunction means that it is possible to justify dead9 by adding the facts
load0 and shoot1 and not adding the fact water0. We will call these justifications, which
contain a subterm of the form ¬not(A), hypothetical in the sense that they involve some
hypothetical program modification.

Definition 11 (Provenance values). A provenance term, t is recursively defined as one
of the following expressions t ::= l | ∏S | ∑S | ¬t1 where l ∈ Lb, t1, t2 are in their turn
provenance terms and S is a (possibly empty and possible infinite) set of provenance
terms. Provenance values are the equivalence classes of provenance terms under the
equivalences of the Boolean algebra. We denote by BLb the set of provenance values
over Lb. �

Informally speaking, with respect to ECJ, we have removed the application ‘·’ operator,
whereas product ‘∗’ and addition ‘+’ hold the same equivalences as in Definition 2
and negation ‘∼’ has been replaced by ‘¬’ from Boolean algebra. Thus, ‘¬’ is classical
and satisfies all the axioms of ‘∼’ plus ¬¬t = t. Note also that, we have followed the
convention from [12] of using the symbols ‘∧’ instead of ‘∗’ to represent the meet and
‘∨’ instead of ‘+’ to represent the join when we write provenance formulae. We define
a mapping λ p : VLb −→ BLb in the following recursive way:

λ
p(t) def=


λ p(u)�λ p(w) if t = u� v with � ∈ {+,∗}
λ p(u) ∗ λ p(w) if t = u · v
¬λ p(u) if t =∼u
l if t = l with l ∈ Lb

Definition 12 (Provenance). Given a program P the why-not provenance program
P(P) def= P∪P′ where P′ contains a labelled fact of the form of (∼not(A) : A) for each
atom A ∈ At not occurring in P as a fact. We will write P instead of P(P) when the
program P is clear by the context. We denote by WhyP(L)

def= λ p(WP(L)) the why-not
provenance of a q-literal L. �

Theorem 5. For any program P, the provenance of a literal according to Definition 12
is equivalent to the provenance defined in [12]. �

Theorem 5 shows that the provenance of a literal can obtained from replacing the nega-
tion ‘∼’ by ‘¬’ and ‘·’ by ‘∗’ in the causal WFM of the augmented program P.

Theorem 6. For any program P, a conjunction of literals D is a non-hypothetical WnP
justification of some q-literal L, i.e. D≤WhyP(L) iff there is a justification E, i.e.
E ≤WP(L) s. t. λ p(E) is the result of removing labels of the form ‘not(A)’ from D. �

Theorem 6 establishes a correspondence between non-hypothetical WnP-justifications
and (flattened) ECJ justifications. In the case of hypothetical justifications, they are not
directly captured by ECJ, but can be obtained using the augmented program P as stated
by Theorem 5. As a byproduct we establish a formal relation between WnP and CG.

Theorem 7. Let P be a program and D be a non-hypothetical and enabled WnP-
justification of some atom A, i.e. D≤WhyP(A). Then, for all CG stable model Ĩ of P,
there is some CG-justification G w.r.t. Ĩ s.t. D contains all the vertices of G. �

5 Related Work

There exists a vast literature on causal reasoning in Artificial Intelligence (AI). Papers
on reasoning about actions and change [18–20] have been traditionally focused on using
causal inference to solve representational problems (mostly, the frame, ramification and
qualification problems) without paying much attention to the derivation of cause-effect
relations. Perhaps the most established AI approach for causality is relying on causal
networks [21] (See [22] for an updated version). In this approach, it is possible to con-
clude cause-effect relations like “A has been an actual cause of B” from the behaviour
of structural equations by applying, under some contingency (an alternative model in
which some values are fixed) the counterfactual dependence interpretation from [23]:
“had A not happened, B would not have happened.” Causal networks and ECJ differ in
their final goals. While the former focuses on revealing a unique everyday-concept of
causation (actual causation), the latter tries to provide precise definitions of different
concepts of causation, leaving the choice of which concept corresponds to a particular
scenario to the programmer. The approach of actual causation has also been followed
in LP by [24] and [25].

As has been slightly discussed in the introduction, ECJ is also related to work by
Hall [14, 15], who has emphasized the difference between two types of causal relations:
dependence and production. The former relies on the idea “that counterfactual depen-
dence between wholly distinct events is sufficient for causation.” The latter is char-
acterised by being transitive, intrinsic (two processes following the same laws must
be both or neither causal) and local (causes must be connected to their effects via se-
quences of causal intermediates). In this sense, WnP is more oriented to dependence
while CG is mostly related to production. ECJ is a combination of the dependence-
oriented approach from WnP and the production-oriented behaviour from CG.

Focusing on LP, our work obviously relates to explanations obtained from ASP de-
bugging approaches [5–11]. The most important difference of these works with respect
to ECJ, and also WnP and CG, is that the last three provide fully algebraic semantics
in which justifications are embedded into program models. A formal relation between
[11] and WnP was established in [26] and so, using Theorems 5 and 6, it can be directly
extended to ECJ, but at the cost of flattening the graph information (i.e. losing the order
among rules).

6 Conclusions

In this paper we have introduced a unifying approach that combines causal production
with enablers and inhibitors. We formally capture inhibited justifications by introducing
a “non-classical” negation ‘∼’ in the algebra of causal graphs (CG). A inhibited justi-
fication is nothing else but an expression containing some negated label. We have also
distinguished productive causes from enabling conditions (counterfactual dependences

that are not productive causes) by using a double negation ‘∼∼’ for the latter. The ex-
istence of enabled justifications is a sufficient and necessary condition for the truth of a
literal. Furthermore, our justifications capture, under the Well-founded semantics, both
Causal Graph and Why-not Provenance justifications. As a byproduct we established a
formal relation between these two approaches.

Using an example, we have also shown how to capture causal knowledge in the
presence of dynamic defaults – those whose behaviour are not predetermined, but rely
on some program condition – as for instance the inertia axioms. As pointed out by [27],
causal knowledge is structured by a combination of inertial laws – how the world would
evolve if nothing intervened – and deviations from these inertial laws. The importance
of default knowledge has been widely recognised as a cornerstone of the problem of
actual causation in [28, 29] among others.

Interesting issues for future study are incorporating enabled and inhibited justifi-
cations to the stable model semantics and replacing the syntactic definition in favour
of a logical treatment of default negation, as done for instance with the Equilibrium
Logic [30] characterisation of stable models. Other natural steps would be the con-
sideration of syntactic operators for capturing more specific knowledge about causal
information, like the influence of a particular event or label in a conclusion, and the
representation of non-deterministic causal laws, by means of disjunctive programs and
the incorporation of probabilistic knowledge. From a KR point of view, another inter-
esting future line of study is to apply our semantics to other traditional examples of the
actual causation literature like short-circuits and switches [15].

Acknowledgements We are thankful to Carlos Damasio for his suggestions and com-
ments on earlier versions of this work. We also thank the anonymous reviewers for their
help to improve the paper. This research was partially supported by Spanish Project
TIN2013-42149-P.

References

1. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25(3-4) (1999) 241–273

2. Marek, V., Truszczyńki, M. Artificial Intelligence. In: Stable Models and an Alternative
Logic Programming Paradigm. Springer Berlin Heidelberg (1999) 375–398

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Pro-
gramming: Proc. of the Fifth International Conference and Symposium (Volume 2). (1988)

4. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM (JACM) 38(3) (1991) 619–649

5. Specht, G.: Generating explanation trees even for negations in deductive database systems.
LPE 1993 (1993) 8–13

6. Pemmasani, G., Guo, H.F., Dong, Y., Ramakrishnan, C., Ramakrishnan, I.: Online justifica-
tion for tabled logic programs. In: Functional and Logic Programming. Springer (2004)

7. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: Meta-programming technique for debugging
answer-set programs. In: Proc. of the 23rd Conf. on Artificial Inteligence (AAAI’08). (2008)

8. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground
answer-set programs. Theory and Practice of Logic Programming 10(4-6) (2010) 513–529

9. Schulz, C., Toni, F.: Aba-based answer set justification. TPLP 13(4-5-Online-Suppl.) (2013)

10. Denecker, M., De Schreye, D.: Justification semantics: A unifiying framework for the se-
mantics of logic programs. In: Proc. of the LPNMR Workshop. (1993)

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming (TPLP) 9(1) (2009) 1–56

12. Damásio, C.V., Analyti, A., Antoniou, G.: Justifications for logic programming. In: Proc. of
LPNMR’13). (2013)

13. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs. TPLP
14(4-5) (2014) 603–618

14. Hall, N.: Two concepts of causation. In Collins, J., Hall, E.J., Paul, L.A., eds.: Causation
and counterfactuals. Cambridge, MA: MIT Press (2004) 225–276

15. Hall, N.: Structural equations and causation. Philosophical Studies 132(1) (2007) 109–136
16. Cabalar, P., Fandinno, J., Fink, M.: A complexity assessment for queries involving sufficient

and necessary causes. In: Logics in Artificial Intelligence. Volume 8761. (2014) 297–310
17. Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Proceedings of

the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
ACM (1989) 1–10

18. Lin, F.: Embracing causality in specifying the indirect effects of actions. In Mellish, C.S., ed.:
Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI), Montreal, Canada, Morgan
Kaufmann (August 1995)

19. McCain, N., Turner, H.: Causal theories of action and change. In: Proc. of the AAAI-97.
(1997) 460–465

20. Thielscher, M.: Ramification and causality. Artificial Intelligence Journal 1-2(89) (1997)
317–364

21. Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press, New
York, NY, USA (2000)

22. Halpern, J.Y., Hitchcock, C.: Actual causation and the art of modeling. (2011)
23. Hume, D.: An enquiry concerning human understanding (1748) Reprinted by Open Court

Press, LaSalle, IL, 1958.
24. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in

databases. IEEE Data Eng. Bull. 33(EPFL-ARTICLE-165841) (2010) 59–67
25. Vennekens, J.: Actual causation in CP-logic. TPLP 11(4-5) (2011) 647–662
26. Damásio, C.V., Analyti, A., Antoniou, G.: Justifications for logic programming. In: Proc. of

LPNMR’13. (2013)
27. Maudlin, T.: Causation, counterfactuals, and the third factor. In Collins, J., Hall, E.J., Paul,

L.A., eds.: Causation and Counterfactuals. MIT Press (2004)
28. Halpern, J.Y.: Defaults and normality in causal structures. In Brewka, G., Lang, J., eds.:

Proc. of the Eleventh International Conference on Principles of Knowledge Representation
and Reasoning (KR 2008), AAAI Press (2008) 198–208

29. Hitchcock, C., Knobe, J.: Cause and norm. Journal of Philosophy 11 (2009) 587–612
30. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Non mono-

tonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). (1996)

7 Proofs

Proposition 1. Negation ‘∼’ is anti-monotonic. That is, given two terms t and u, then
t ≤ u implies that ∼t ≥∼u. �

Proof. Note that by definition t ≤ u iff t ∗u = t and then∼(t ∗u) =∼t iff∼t+∼u =∼t
iff ∼t ≥∼u. �

Proposition 2. Given any term t, it can be rewritten as an equivalent term u in negation
normal form. �

Proof. This is a trivial proof by structural induction using the DeMorgan laws and nega-
tion of application axiom. Furthermore, using the axiom ∼∼∼t = t no more than two
nested negations are required. �

Theorem 8 (From [12]). Given a labelled logic program P, let N be a set of facts
not in program P and R be a subset of rules of P. A literal L belongs to the WFM of
(P\R)∪N iff there is a conjunction of literals D |=WhyP(L), such that Remove(D)⊆ R,
Keep(D)∩R = /0, AddFacts(D)⊆ N, and NoFacts(D)∩N = /0. �

Proof of Theorem 1 . Form Theorem 8, a literal L holds with respect to WP if and
only there is a positive WnP justification D≤WhyP(L). Positive WnP justifications are
non-hypothetical and enabled. Thus, whether there is a is a positive WnP-justification
D ≤WhyP(L), then, by Theorem 6, there is a enabled justification E ≤WP(L). The
other way around, if there is a enabled justification E ≤WP(L), also by Theorem 6,
there is a positive WnP-justification D ≤WhyP(L). That is, there is a positive WnP-
justification D ≤WhyP(L) if and only if there is a enabled justification E ≤WP(L).
Therefore a q-literal L holds with respect to WP if and only if there is some enabled
justification E of L. �

Definition 13 (Direct consequences). Given a positive logic program P over signature
〈At,Lb〉, the operator of direct consequences is a function TP from interpretations to
interpretations such that

TP(I)(A)
def= ∑

{ (
I(B1)∗ . . .∗ I(Bn)

)
· t

| (t : p← B1, . . . ,Bn) ∈ P
}

for any interpretation I and any atom A ∈ At.

Theorem 9 (From [13]). Let P be a (possibly infinite) positive logic program. Then,
(i) lfp(TP) is the least model of P, (ii) furthermore, if P is positive and has n rules,
then lfp(TP) = TP ↑ω (0) = TP ↑n (0). �

Proposition 3. Let P be a (possibly infinite) positive logic program. Then, (i) lfp(TP)
is the least model of P, (ii) furthermore, if P is positive and has n rules, then lfp(TP) =
TP ↑ω (0) = TP ↑n (0). �

Proof. Each Bi is either an atom or a term. By assuming that those Bi that are terms are
in negation normal form and treating each term of the form ∼l and ∼∼l as new labels
it follows that every ECJ program is a CG program. Hence, by Theorem 9, it follows
that lfp(TP) = TP ↑ω (0) = TP ↑n (0). Finally, note that ECJ satisfies the same equalities
thatn CG (and more), so t = u under CG implies t = u under ECJ. �

Lemma 1. Let P1 and P2 be two positive programs and U1 and U2 be two interpre-
tations such that P1 ⊇ P2 and U1 ≤U2. Let also I1 and I1 be the least models of pro-
grams P1

U1 and P2
U2 , respectively. Then I1 ≥ I2. �

Proof. Firstly, for all rule ri and pair of interpretations J1 and J2 s.t. J1 ≥ J2,

J1(body+(rU1
i))≥ J2(body(rU2

i))

Furthermore, since U1 ≤U2, by Proposition 1, it follows

U1(body−(rU1
i))≥U2(body−(rU2

i))

Then, by Definition 4,

J j(body−(rU1
i)) def=U j(body−(rU1

i))

and then
J1(body−(rU1

i))≥ J2(body−(rU2
i))

Hence, we obtain that J1(body(rU1
i))≥ J2(body(rU2

i)).
Since P1 ⊇ P2, it follows that every rule ri ∈ P2 is in P1 as well and then it holds that

TP1
U1 (I)(p)≥ TP2

U2 (I)(p) for all atom A. Furthermore, since

TP1
U1 ↑0 (0)(A) = TP2

U2 ↑0 (0)(A) = 0

it follows TP1
U1 ↑i (0)(A)≥ TP1

U1 ↑i (0)(A) for all 0≤ i. Finally,

TPj
U j ↑ω (0)(A) def= ∑

i≤ω

TPj
U j ↑i (0)(A) = 0

and hence TP1
U1 ↑ω (0)(A)≥ TP1

U1 ↑ω (0)(A). By Theorem 9, these are respectively the
least models of P1

U1 and P2
U2 . That is I1 ≥ I2. �

Proposition 4. The ΓP operator is anti-monotonic and the operator Γ 2
P is monotonic.

That is, ΓP(U1)≥ΓP(U2) and Γ 2
P (U1)≥Γ 2

P (U2) for any pair of interpretation U1 and U2
such that U1 ≤U2. �

Proof. Since U1 ≤U2, by Lemma 1, it follows I1 ≥ I2 with I1 and I2 being respectively
the least models of PU1 and PU2 . Then, ΓP(U1) = I1 and ΓP(U2) = I2 and, consequently,
ΓP(U1)≥ ΓP(U2). Since ΓP is anti-monotonic it follows that Γ 2

P is monotonic. �

Lemma 2. Let t be a term. Then λ p(∼t) = ¬λ p(t). �

Proof. We proceed by structural induction assuming that t is in negated normal form. In
case that t = a is elementary, it follows that λ p(∼a) = ¬a = ¬λ p(a). In case that t =∼a
with a elementary, λ p(∼t) = λ p(∼∼a) and λ p(∼∼a) = a = ¬¬a = ¬λ p(∼a) = λ p(t).
In case that t =∼∼a, with a elementary, λ p(∼t) = λ p(∼∼∼a) and

λ
p(∼∼∼a) = λ

p(∼a) = ¬a = ¬λ
p(∼∼a) = ¬λ

p(t)

In case that t = u+ v. Then

λ
p(∼t) = λ

p(∼u∗∼v) = λ
p(∼u)∧λ

p(∼v)

By induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v) and, therefore, it
holds that λ p(∼t) = ¬λ p(u)∧¬λ p(v). Thus, ¬λ p(t) = ¬(λ p(u)∨λ p(v)) = ¬λ p(u)∧
¬λ p(v) = λ p(∼t).

In case that t = u⊗ v with ⊗ ∈ {∗, ·}. Then λ p(∼t) = λ p(∼u+∼v) = λ p(∼u)∨
λ p(∼v) and by induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v). Con-
sequently it holds that λ p(∼t) = ¬λ p(t). �

Lemma 3. Let t be a term φ a provenance term. If φ ≤ λ p(t), then λ p(∼t)≤ ¬φ and
if λ p(t)≤ φ , then ¬φ ≤ λ p(∼t). �

Proof. If φ ≤ λ p(t), then φ = λ p(t)∗φ and then ¬φ =¬λ p(t)+¬φ and, by Lemma 2,
it follows that ¬φ = λ p(∼t)+¬φ . Hence λ p(∼t)≤ ¬φ .

Furthermore if λ p(t)≤ φ , then φ = λ p(t)+φ and then ¬φ = ¬λ p(t)∗¬φ and, by
Lemma 2, it follows that ¬φ = λ p(∼t)∗¬φ . Hence ¬φ ≤ λ p(∼t). �

Proof of Theorem 2

Lemma 4. Let P be a labelled logic program and Q be the result of removing all rules
labelled by t ∈ {l,∼l} with l a label. Let I, J, U and V be four causal interpretations
such that J and V are the result of removing ∼t in the NNF of I and U, respectively.
Then TPV (I) is the result of the result of removing ∼t in the NNF of TPV (J). �

Proof. Let E be an addend of the disjunctive normal form of TPU (I)(A). Then

E = (EB1 ∗ . . .∗EBm ∗EC1 ∗ . . .∗ECn) · ri

where rU
i ∈ PU is a rule of form of (5) and EB j ≤ I(B j) and EC j ≤∼U(C j) for each

positive literal B j and each negative literal not C j in the body of ri.

1. Assume that ∼t does not occur in E. Then ∼t does not occur in EB j nor EC j .
By hypothesis, EB j and EC j are addends of the disjunctive normal form of J(B j)
and ∼V (C j), respectively. Then E is an addend of the disjunctive normal form of
TQV (J)(A).

2. Otherwise, ∼t occurs in some EB j or EC j . By hypothesis all the result of removing
∼t from EB j and EC j are addends of J(B j) and V (C j), respectively. Hence, the
result of removing ∼t in E is an addend of TQV (J)(A).

The other way around. Let E ′ be an addend of the disjunctive normal form of TQV (J)(A).
Then

E ′ = (E ′B1
∗ . . .∗E ′Bm ∗E ′C1

∗ . . .∗E ′Cn) · r
′
i

with a rule in the form of (5) in QV and each E ′B j
and each E ′C j

being addends of
the disjunctive normal form of J(B j) and ∼V (C j) for each positive literal B j and each

negative literal not C j in the body of (5), respectively. By hypothesis, for all E ′B j
and E ′C j

,
there are addends EB j and EC j in the disjunctive normal form of I(B j) and∼U(C j), and
E ′B j

and E ′C j
are the result of removing ∼t in EB j and EC j . Finally, note that a rule r′i is

also in PU and, thus, E ′ is also an addend of the disjunctive normal form of TPU (I)(A). �

Lemma 5. Let P be a labelled logic program and Q be the result of removing all rules
labelled by t ∈ {l,∼l} with l a label. Let U and V two causal interpretations such that
V are the result of removing ∼t in the NNF of U. Let I and J be the least models of PV

and QU ,respectively. Then J is the result of the result of removing∼t in the NNF of I. �

Proof. The proof follows by induction using Lemma 4 as induction step. �

Lemma 6. Let P be a labelled logic program and Q be the result of removing all rules
with some labelled by t ∈ {l,∼l} with l a label. Let U and V two causal interpretations
such that V are the result of removing ∼t in the NNF of U. Then ΓQ(J) is the result of
the result of removing all addends containing ∼t in the NNF of ΓP(I). �

Proof. Note that, by definition ΓP(U) and ΓQ(V) are respectively the least model of the
programs PU and QV . Then the lemma statement follows directly from Lemma 5. �

Lemma 7. Let P be a labelled logic program and Q be the result of removing all rules
with some label t ∈ {l,∼l} with l a label. Let U and V two causal interpretations such
that V are the result of removing ∼t in the NNF of U. An interpretations J is a fixpoint
of Γ 2

Q if and only if there is a fixpoint I of Γ 2
P such that J is the result of removing ∼t in

the NNF of I. �

Proof. For any pair of interpretations I′ and J′, by Lemma 6, it follows that ΓP(I′)
is the result of removing all addends containing l in the disjunctive normal form of
ΓQ(J′). Then Γ 2

P (I′) = ΓP(ΓP(I′)) is the result of removing all addends containing l in
the disjunctive normal form of Γ 2

Q (J′) = ΓQ(ΓQ(J′)).
For the only if direction, let I def=Γ 2

P ↑∞ (J). Then I is a fixpoint of Γ 2
P and inductively

applying that Γ 2
P (I) is the result of removing all addends containing l in the disjunctive

normal form of Γ 2
Q (J) = J it follows that I is the result of removing all addends con-

taining l in the disjunctive normal form of J. The if direction is symmetric. �

Proof of Theorem 2 . In case that L = A is an atom then E ≤WP(A) iff E ≤ LP(A)
and E ≤WQ(A) iff E ≤ LQ(A). By Lemma 7, LP is the result of removing ∼l in LQ. If
E ≤ LP(A) then there is some F ≤ LQ(A) such that F is the result of removing∼l in E.
In case that L = not A then E ≤WP(not A) iff E ≤∼UP(not A) and E ≤WP(not A)
iff E ≤∼UP(not A) and the proof is analogous. �

Proof of Theorem 3

Definition 14. Given a program P, a CG interpretation is a mapping Ĩ : At −→ CLb
assigning a causal term to each atom. We also define the operator Γ̃P(Ĩ) to be the least
model of the program PĨ . �

Lemma 8. Let P be a program, U and Ṽ respectively be a CP and a CG interpretation
such that Ṽ ≤ λ c(Ũ). Let also I and J̃ respectively be a CP and a CG interpretation
such that J̃ ≤ I. Then T̃PṼ (J̃)≤ TPU (I). �

Proof. For all E ≤ T̃PṼ (J̃)(p) there is a rule in PṼ in the form of

ri : p← B1, . . . ,Bm

that corresponds to a rule in the form of (4) in P and furthermore E ≤ (EB1 ∗ . . .∗EBm) ·ri
with each EB j ≤ J̃(B j) and Ṽ (C j) = 0 for all B j and C j in body(ri). Hence there is a
rule in PU in the form of (5) and, by hypothesis, EB j ≤ I(B j) for all B j. Furthermore,
clearly Ṽ (C j) = 0≤∼U(C j) for all C j. Hence E ≤ (I(B1)∗ . . .∗ I(Bm)∗∼U(C1)∗ . . .∗
∼U(Cm)) · ri ≤ TPU (I). �

Lemma 9. Let P be a labelled logic program, U and Ṽ respectively be a CP and a CG
interpretation such that Ṽ (p)≤ λ c(U). Let also I and J̃ respectively be the least model
of programs PU and PṼ . Then J̃ ≤ I. �

Proof. Since I and J̃ are the least models respectively of programs PU and PṼ it fol-
lows that I = TPU ↑ω (0) and J̃ = T̃PṼ ↑ω (0). We proceed by induction on the number
of iterations k. When k = 0, it follows that T̃PṼ ↑0 (0)(p) = 0 ≤ TPU ↑0 (0)(p). When
0 < k < ω , we assume as induction hypothesis the statement holds for the case k− 1.
Then, by Lemma 8, it follows for the case k.

Finally, when k = ω , for all E ≤ T̃PṼ ↑ω (0)(p)) there is some i such that E ≤
T̃PṼ ↑i (0)(p)) and then, by induction hypothesis,

E ≤ λ
c(T̃PṼ ↑i (0)(p))≤ λ

c(TPU ↑ω (0)(p))

Therefore J̃ ≤ I. �

Lemma 10. Let P be a labelled logic program, I and J̃ respectively be a CP and a CG
interpretation such such that Ṽ (p)≤ λ c(U). Then Γ̃P(J̃)≤ ΓP(I). �

Proof. By Lemma 8 it follows that J̃′ ≤ I′ with I′ and J̃′ respectively the least models
of PI and PJ and by definition Γ̃P(J̃) = J̃′ and ΓP(I) = I′. Hence Γ̃P(J̃)≤ ΓP(I). �

Lemma 11. Let P be a labelled logic program, U and Ṽ respectively be a CP and a
CG interpretation such that Ṽ = λ p(U). Let also I and J̃ respectively be a CP and a
CG interpretation such that J̃ ≥ λ c(I). Then T̃PṼ (J̃) = λ c(TPU (I)). �

Proof. For all explanation F ≤ TPU (J̃)(p) there is a rule rU
i in PU in the form of (5)

and so that a rule in the form of (4) in P and there are justifications FB j ≤ I(B j) and
FC j ≤∼U(C j) for all B j and C j such that F ≤ (FB1 ∗ . . .∗FBm ∗FC1 ∗ . . .∗FCn) · ri. If FC j

contains a negative label for some C j, then λ c(FC j) = 0 and consequently it follows that
λ c(F) = 0≤ T̃PṼ (J̃)(p). Thus, we assume that FC j does not contain negated labels, i.e.
it only contains double negated labels, for all C j. Therefore λ c(FC j = 1 and there is not
positive justification of C j w.r.t. U for all atom C j and so that Ṽ (C j) = 0 for all C j. Thus
there is a rule in PṼ in the form of

ri : p← B1, . . . ,Bm

By hypothesis, λ c(FB j)≤ T̃PṼ (B j) for all B j. Hence λ c(F)≤ T̃PṼ (p) for all atom p and,
thus, T̃PṼ (J̃)≥ λ c(TPU (Ĩ)). Furthermore, by Lemma 8, it follows that T̃PṼ (J̃)≤ TPU (Ĩ).
Hence T̃PṼ (J̃) = λ c(TPU (Ĩ)). �

Lemma 12. Let P be a labelled logic program, U and Ṽ respectively be a CP and a
causal CG such that Ṽ = λ c(U) for all atom p. Let also I and J̃ respectively be the least
model of programs PU and PṼ . Then J̃ = λ c(I). �

Proof. Since I and J̃ are the least models respectively of programs PU and PṼ it follows
that I = TPU ↑ω (0) and J̃ = T̃PṼ ↑ω (0). We proceed by induction on the number of
iterations k. When k = 0, it follows that T̃PṼ ↑0 (0)(p) = 0≥ λ c(0) = λ c(TPU ↑0 (0)(p)).
When 0 < k < ω , we assume as induction hypothesis the statement holds for the case
k−1. Then, by Lemma 11, it follows for the case k.

Finally when k=ω , for all F ≤TPU ↑ω (0)(p)) there is some i s.t. F ≤TPU ↑i (0)(p))
and then, by induction hypothesis, λ c(F)≤ T̃PṼ ↑i (0)(p) and, since furthermore it holds
that T̃PṼ ↑i (0)(p))≤ T̃PṼ ↑ω (0)(p), then λ c(F) ≤ T̃PṼ ↑ω (0)(p). That is J̃ ≥ λ c(I).
Furthermore, by Lemma 8, it follows that J̃ ≤ I. Hence J̃ = λ c(I). �

Lemma 13. Let P be a labelled logic program, I and J̃ respectively be a CP and a CG
interpretation such that Ṽ = λ c(U). Then Γ̃P(J̃)≥ λ c(ΓP(I)). �

Proof. By Lemma 12 it follows that J̃′ = I′ with I′ and J̃′ respectively the least models
of PI and PJ and by definition Γ̃P(J̃) = J̃′ and ΓP(I) = I′. Hence Γ̃P(J̃)≥ λ c(ΓP(I)). �

Proof of Theorem 3 . Let Ĩ causal stable model of P and let I def= Γ 2
P ↑∞ (Ĩ) be the least

fixpoint of Γ 2
P iterating on Ĩ. By Lemma 13, it follows that Γ̃P(Ĩ) = λ c(ΓP(Ĩ)). Then,

since Ĩ is a causal stable model of P (i.e. Ĩ = Γ̃P(Ĩ)), it also holds that Ĩ = λ c(ΓP(Ĩ)).
Furthermore, since Ĩ = λ c(ΓP(Ĩ)), it follows, again by Lemma 13, that

Ĩ = Γ̃P(Ĩ) = λ
c(ΓP(ΓP(Ĩ))) = λ

c(Γ 2
P (Ĩ)))

Inductively applying this argument, Ĩ = λ c(Γ 2
P ↑∞ (Ĩ)) = λ c(I) = λ c(Γ̃P(I)).

The other way around. Let I be a fixpoint of Γ 2
P such that λ c(I) = λ c(ΓP(I)) and let

Ĩ def= λ c(I). Then , by Lemma 13, it follows that Γ̃P(Ĩ) = λ c(Γ 2
P (I)) = λ c(I) = Ĩ. That is

Γ̃P(Ĩ) = Ĩ and so that Ĩ is a causal stable model of P. �

Proof of Theorem 4 . Let Ĩ be a causal stable model of P and I be the correspondent fix-
point of Γ 2

P . Since E is a enabled justification of A, i.e. E ≤WP(A), then E ≤LP(A) with
LP the least fixpoint of Γ 2

P . Therefore E ≤ I(A) and, since E is enabled, λ c(I)(A) 6= 0.
Them, it follows that Ĩ(A) = λ c(I) and, so that, λ c(E)≤ Ĩ(A). Then G def= graph(λ c(E))
is, by definition, a causal explanation of the atom A.

Definition 15. Given a program P, a WnP interpretation is a mapping I : At −→ BLb
assigning a boolean formulas to each atom. We also define the operator GP(I) to be
the least model of the program PI. �

Lemma 14. Let P be a labelled logic program, U and U respectively be a CP and a
WnP interpretation such that U ≤ λ p(U). Let also I and I respectively be a CP and
WnP interpretation such that λ p(Ĩ)≤ I. Then it holds that λ p(TPU (Ĩ))≤ TPU(I).

Proof. Suppose not, and let the atom A and the CP justification E be the witnesses.
Since E ≤ TPU (Ĩ)(A), there is a rule ri ∈P in the form of (4) and

E = (EB1 ∗ . . .∗EB1 ∗EC1 ∗ . . .∗EC1) · ri

where EB j ≤ I(B j) and EC j ≤∼U(C j). By hypothesis λ p(I)≤ I and U≤ λ p(U). Since
λ p(I) ≤ I and EB j ≤ I(B j), it follows that, λ p(EB j) ≤ I(B j). Furthermore, since U ≤
λ p(U), by Lemma 3, it follows that λ p(∼U) ≤ ¬U and then, since EC j ≤∼U(C j), it
follows that λ p(ECi)≤ ¬U(C j) for all C j. Therefore λ p(E) ≤ TPU(I)(A) which is a
contradiction with the assumption. �

Lemma 15. Let P be a causal logic program, U and U respectively be a CP and a
WnP interpretation such that λ p(U) ≤ U. Let also I and I respectively be a CP and
WnP interpretation such that I≤ λ p(I). Then it holds that TPU(I)≤ λ p(TPU (I)). �

Proof. Suppose not, and let the atom A and the WnP justification D be the witness.
Since D≤ TPU(I)(A), there is some rule ri ∈PU in the form of (4) and

D = DB1 ∗ . . .∗DBm ∗DC1 ∗ . . .∗DCn ∗ ri

where DB j ≤ I(B j) for each B j and DC j ≤ ¬U(C j) for each C j. By hypothesis, λ p(U)≤
U and I ≤ λ p(I). Since DB j ≤ I(B j) and I ≤ λ p(I), it follows that DB j ≤ λ p(I)(B j).
Furthermore, since λ p(U) ≤ U, by Lemma 3, it follows that ¬U≤ λ p(∼U) and then,
since DC j ≤ ¬U(C j), it follows that DC j ≤ λ p(∼U)(C j). Therefore E def= (EB1 ∗ . . . ∗
EB1 ∗ EC1 ∗ . . . ∗ EC1) · ri ≤ TPU (I)(A) such that DB j ≤ λ p(EB j) and DC j ≤ λ p(EC j).
Then D≤ λ p(E) which contradicts the assumption. �

Lemma 16. Let P be a causal logic program, U and U respectively be a CP and
a WnP interpretation such that λ p(U) = U. Let also I be a CP-interpretation. Then
TPU(λ p(I)) = λ p(TPU (I)). �

Proof. The proof directly follows by combination of Lemmas 14 and 15. �

Lemma 17. Let P be a causal logic program, U and U respectively be a CP and a WnP
interpretation such that λ p(U) = U. Let also I be the least model of the program PU .
Then λ p(I) is the least model of PU. �

Proof. Since I and I respectively are the least fixpoints of TPU and TPU , it follows,
by Theorem 9, that I = TPU ↑ω (0) and I = TPU ↑ω (⊥). We proceed by induction on
the number of iterations k. When k = 0, it follows that λ p(TPU ↑0 (0)(p)) = λ p(0) and
TPU ↑0 (⊥)(p) = 0 and, since λ p(0) =⊥, then it follows that

λ
p(TPU ↑0 (0)(p)) = TPU ↑0 (⊥)(p)

When 0 < k < ω , we assume as induction hypothesis the statement holds for the case
k− 1. Then, by Lemma 16, it follows for the case k. Finally when k = ω , for all
justification E ≤ TPU ↑ω (0)(p)) (resp. for all D ≤ TPU ↑ω (⊥)(p))) there is some
i < ω s.t. E ≤ TPU ↑i (0)(p)) (resp. D≤ TPU ↑i (⊥)(p))). By induction hypothe-
sis, λ p(E)≤ TPU ↑i (⊥)(p) (resp. D ≤ λ p(TPU ↑i (0)(p)))). Therefore it holds that
λ p(E)≤TPU ↑ω (⊥)(p) (respectively D≤ λ p(TPU ↑ω (0)(p))). Consequently, it holds
that λ p(TPU ↑ω (0)(p)) = TPU ↑ω (⊥)(p). �

Lemma 18. Let P be a labelled logic program and I be a CP interpretation. Then
GP(λ p(I)) = λ p(ΓP(I)). �

Proof. By definition ΓP(I) is the least models of PI . Then, by Lemma 17, it follows
that λ p(ΓP(I)) is the least model of Pλ p(I) therefore GP(λ p(I)) = λ p(ΓP(I)). �

Lemma 19. Let P be a labelled logic program and I and J be two fixpoints of the
operator Γ 2

P such that λ p(J) = λ p(I). Then I = J. �

Proof. Since λ p(J) = λ p(I), then ¬λ p(J) = ¬λ p(I) and by Lemma 3, λ p(∼J) =
λ p(∼I), furthermore, this implies ∼J =∼I. Hence PI = PJ and ΓP(I) = ΓP(J). Then it
is clear that Γ 2

P (I) = Γ 2
P (J), i.e. I = J. �

Theorem 10. Let P be a labelled logic program and I be WnP interpretation. Then I
is a fixpoint of the operator G2

P if and only if there is a CP fixpoint I of Γ 2
P such that

I= λ p(I). Furthermore, given I, then I is unique. �

Proof. By Lemma 18, for any interpretation J s.t. J = λ p(I), GP(λ p(J)) = λ p(ΓP(J)).
Then

Γ
2

P (I) = λ
p(ΓP(λ

p(ΓP(J))))

Since, for all J, it holds that ΓP(λ
p(J)) = ΓP(J), then

Γ
2

P (I) = λ
p(Γ 2

P (J))

Hence, if I is a fixpoint of Γ 2
P , i.e. Γ 2

P (I) = I

I= λ
p(Γ 2

P (J))

Therefore, for I def= Γ 2
P ↑∞ (J), it holds that

I= λ
p(Γ 2

P ↑∞ (J))

Furthermore, let J be fixpoint such that I 6= J and λ p(J) = I. By Lemma 19, it follows
that I = J which is a contradiction. So that I is unique. The other way around. Since
I = Γ 2

P (I), by Lemma 18, λ p(I) = λ p(Γ 2
P (I)) =G2

P(λ p(I)). �

Proof of Theorem 5. According to the definition of [12], WhyP(A)
def= TP(A) where

TP is the least fixpoint of the operator G2
P. Furthermore, by Theorem 10, there is a

fixpoint I of Γ 2
P such that TP = λ p(I). Then TP ≥ λ p(LP) where LP is the least

fixpoint of ΓP. Also by Theorem 10, λ p(LP) is a fixpoint of G2
P and so that TP ≤

λ p(LP). Hence TP = λ p(LP). Furthermore by definition WP(A) = LP(A). There-
fore WhyP(A) = λ p(WP)(A). The proofs of WhyP(not A) and WhyP(undef A) are anal-
ogous. �

Theorem 11. Let P be program. A term with no sums E is a justification of some q-
literal L, i.e. E ≤ WP(L) if and only if there is some non-hypothetical justification
F with respect to the augmented program P, i.e. F ≤WP(L) and E is the result of
removing each occurrence in the form of ∼∼not(B) from F. �

Proof. By definition P is the result of removing all rules labelled with ∼not(B) in P.
In case that L = A is an atom then E ≤WP(A) iff E ≤ LP(A) and E ≤WQ(A) iff
E ≤ LQ(A). By Lemma 7, LP is the result of removing ∼∼not(B) in LQ. If E ≤ LP(A)
then there is some F ≤ LQ(A) such that F is the result of removing ∼∼not(B) in E. In
case that L = not A then E ≤WP(not A) iff E ≤∼UP(not A) and E ≤WP(not A) iff
E ≤∼UP(not A) and the proofs are analogous. Then, E is justification of literal L, i.e.
E ≤WP(L) if and only there is some justification F of L w.r.t. P i.e. F ≤WP(L) such
that E is the result of removing each occurrence of ∼∼not(B) in F . �

Proof of Theorem 6. By definition D≤WhyP(L) if and only if D≤ λ p(WP)(L) if and
only if there is F ≤WP(L) such that D = λ p(F). That is, if D is a non-hypothetical
WnP-justification of L, then there is a non-hypothetical justification F of L w.r.t. P such
that D = λ p(F). From Theorem 11 there is some E ≤WP(L) such that E is the result
of removing each occurrence of the form ∼∼not(B) from F . Then λ p(E) is the result
of removing each occurrence in the form of not(B) from λ p(F) = D.

The other way around. If E ≤WP(L), from Theorem 11 there is some F ≤WhyP(L)
and E is the result of removing each occurrence in the form of ∼∼not(B) from F .
Then λ p(E) is the result of of removing each occurrence in the form of not(B) from
λ p(F) = D. �

Proof of Theorem 7. If D is positive, then it is also non-hypothetical and then, by
Theorem 6, there is a non-preempted justification E, i.e. E ≤WP(L) such that λ p(E)
is the result of removing each occurrence in the form on not(B) from D. Then, from
Theorem 4, G def= graph(λ c(E)) is a causal explanation of A and D contains all the
labels of E and so that all the vertices of G. �

