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2 Université de Nantes, UMR 6241 LINA, 2 rue de la Houssinière, 44300 Nantes, France.

3 Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482, Deutschland.
4 University of Rennes 1, UMR 6074 IRISA, Campus de Beaulieu, 35042 Rennes, France.
5 INRIA, Centre Rennes-Bretagne-Atlantique, Projet Dyliss, Campus de Beaulieu, 35042

Rennes cedex, France.
6 INRIA-CIRIC, Rosario Norte 555, Of. 703, Las Condes, Santiago de Chile, Chile.

Abstract. Metabolic network reconstruction is of great biological relevance be-
cause it offers a way to investigate the metabolic behavior of organisms. However,
reconstruction remains a difficult task at both the biological and computational
level. Building on previous work establishing an ASP-based approach to this
problem, we present a report from the field resulting in the discovery of new bio-
logical knowledge. In fact, for the first time ever, we automatically reconstructed
a metabolic network for a macroalgae. We accomplished this by taking advantage
of ASP’s combined optimization and enumeration capacities. Both computational
tasks build on an improved ASP problem representation, incorporating the con-
cept of reversible reactions. Interestingly, optimization greatly benefits from the
usage of unsatisfiable cores available in the ASP solver unclasp. Applied to Ec-
tocarpus siliculosus, only the combination of unclasp and clasp allowed us to
obtain a metabolic network able to produce all recoverable metabolites among
the experimentally measured ones. Moreover, 70% of the identified reactions are
supported by an homologous enzyme in Ectocarpus siliculosus, confirming the
quality of the reconstructed network from a biological viewpoint.

1 Introduction

Systems biology is a field at the crossover of biology, computer science, and mathemat-
ics, which aims to elucidate the response of a living organism. Among all biological
processes occurring in a cell, metabolic networks are in charge of transforming input
nutrients into both energy and output nutrients necessary for the functioning of other
cells. From an industrial viewpoint, it is crucial to estimate and control the capability
of an organism to produce products of interest. Many computational and mathemati-
cal methods have been developed to model the response of such systems to external
perturbations, and applied to well-studied organisms [1–3].

In the last few years, sequencing technologies have drastically evolved, such that
it is now possible to sequence the genome of many less-studied organisms. As a natu-
ral follow-up, one needs to estimate the metabolic capability of an “exotic” organism



on the basis of its genome, and then apply well-established control methods to the
network. The usual strategy consists in checking whether the genome contains known
enzymatic “bricks”, that is, genomic sequences that appropriately match with genomic
sequences of enzymes characterized in other model organisms, such as Escherichia coli
[4] or Arabidopsis thaliana [5], whose genomes and networks have been manually cu-
rated over several years [6]. The combination of metabolic reactions associated with the
identified enzymes provides a draft of the metabolic network for the studied organism.
The integration of the different heterogeneous bio chemical resources leads to incon-
sistencies and ambiguities in the draft network. Semantic web approaches solve these
inconsistencies and rank the retrieved information by exploiting existing ontologies [7].
Nonetheless, genomes are of low quality and the expert community on “exotic” organ-
isms is too small to provide a wide manual curation of this network. Concretely, au-
tomatic genome-scale reconstructed networks suffer from substantial incompleteness,
and many networks are only partially defined. To overcome this limitation, the next
step consists in filling the gaps of the draft network. To that end, we rely on reference
databases of metabolic reactions and check whether adding such reactions to the net-
work improves its ability to produce metabolite compounds of interest from the growth
media of the organism. Several approaches to automatically reconstruct the missing
parts of metabolic networks have been proposed. To restore a desired metabolic behav-
ior they propose reactions (picked from reaction databases) that can be added to the
network. The reactions are chosen to optimize either graph-based criteria [8] or a linear
score modeling the quantitative production of the system [9]. The main limitation of
all approaches is the increasing size of the search space, since reaction databases like
KEGG7 or MetaCyc8 have substantially grown with the availability of high-throughput
methods in molecular biology. Other studies propose to overcome this limitation by us-
ing sampling heuristics [10], but unfortunately they give little information on the size
of solution sets and the quality of the sampling methods.

In previous work [11], we reformulated the gap filling problem as a qualitative
combinatorial (optimization) problem, and modeled it using Answer Set Programming
(ASP) [12]. The basic idea is that reactions apply only if all their reactants are avail-
able, either as nutrients or provided by other metabolic reactions. Starting from given
nutrients, referred to as seeds, this allows for extending a metabolic network by suc-
cessively adding operable reactions and their products. The set of metabolites in the
resulting network is called the scope of the seeds and represents all metabolites that can
principally be synthesized from the seeds. In metabolic network completion, we query
a database of metabolic reactions looking for minimal sets of reactions that can restore
the observed bio-synthetic behavior.

As a follow-up to [11], we attempted to apply the same approach to reconstruct
the “exotic” metabolic network of Ectocarpus siliculosus, using the MetaCyc database.
This organism is a brown algae that belongs to the heterokonts, whose closest relative
(diatoms) exhibits a large phylogenetic distance to most other plant model species. Such
distinctions make a reconstruction of the metabolic network of Ectocarpus siliculosus
particularly challenging. In fact, we could not solve the reconstruction problem with the

7 http://www.genome.jp/kegg
8 http://metacyc.org



original approach that hits its limits with large databases like MetaCyc, which doubled
in size over the last four years.

In this work, we push former limits by taking advantage of ASP’s combined opti-
mization and enumeration capacities. For one, we introduce an improved ASP problem
representation incorporating the concept of reversible reactions. For another, optimiza-
tion greatly benefits from the usage of unsatisfiable cores available in the ASP solver
unclasp [13]. Applied to Ectocarpus siliculosus, only the combination of unclasp and
clasp [14] allowed us to obtain a metabolic network able to produce all recoverable
metabolites among the experimentally measured ones. Moreover, 70% of the identified
reactions are supported by an homologous enzyme in Ectocarpus siliculosus, confirm-
ing the quality of the reconstructed network from a biological viewpoint.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. In particular, our encodings are written in the input language
of gringo 3 [15]. Comprehensive treatments of ASP can be found in [12, 16].

2 Metabolic Network Completion

Metabolism is the sum of all chemical reactions occurring within an organism. As the
products of a reaction may be reused as reactants, reactions can be chained to complex
chemical pathways. Such complex pathways are described by a metabolic network.

A metabolic network is commonly represented as a directed bipartite graph G =
(R ∪M,E), where R and M are sets of nodes standing for reactions and metabolites,
respectively. When (m, r) ∈ E (or (r,m) ∈ E) for m ∈ M and r ∈ R, the metabolite
m is called a reactant (or product) of reaction r. More formally, for any r ∈ R, define
reac(r) = {m ∈M | (m, r) ∈ E} and prod(r) = {m ∈M | (r,m) ∈ E}.

The biological concept of the synthetic capabilities of a metabolism can be ex-
pressed in terms of reachability. Given a metabolic network (R ∪ M,E) and a set
S ⊆ M of seed metabolites, a reaction r ∈ R is reachable from S if all reactants in
reac(r) are reachable from S. Moreover, a metabolite m ∈ M is reachable from S if
m ∈ S or if m ∈ prod(r) for some reaction r ∈ R that is reachable from S. The scope
of S, written Σ(R∪M,E)(S), is the closure of metabolites reachable from S.

Given a metabolic network (R ∪ M,E), two sets S, T ⊆ M of seed and target
metabolites, and a reference network (R′ ∪M ′, E′), the metabolic network completion
problem is to find a set R′′ ⊆ R′ \R of reactions such that T ⊆ ΣG(S), where

G = ((R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′) ,

M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and
E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)) .

We call R′′ a completion of (R ∪M,E) from (R′ ∪M ′, E′) wrt (S, T ).
For reconstructing Ectocarpus siliculosus, we are interested in cardinality-minimal

completions as well as necessary reactions belonging to every completion. Therefore,
we need to solve the following sub-tasks:

– Problem 1: Compute the minimum size (number of reactions) of a completion.
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– Problem 2: Enumerate all cardinality-minimal completions.
– Problem 3: Compute the intersection of all cardinality-minimal completions.

As shown in [17, 18], the reconstruction of metabolic networks and related problems
are NP-hard.9 Problem variants (of higher computational complexity) rely on subset-
rather than cardinality-minimal completions. Further refinements may also optimize on
the distance between seeds and targets or minimize forbidden side products.

3 Reversible Reactions

Chemical reactions are in essence reversible. However, taking the metabolic context into
account (i.e. reactants and products) leads to considering some of them as irreversible
in view of energetic cost [19]. In the following, we describe two alternative methods to
capture reversible and irreversible reactions.

The first method represents a reversible reaction by two inverse reactions that
are separate nodes within the network. For example, given the metabolites H2, O,
and H2O and the reversible reaction r = H2 + O 
 H2O, we can construct the
metabolic network ({H2, O,H2O, rf , rb}, {(H2, rf ), (O, rf ), (rf , H2O), (H2O, rb),
(rb, H2), (rb, O)}), as illustrated in Figure 1. This method allows us to apply the frame-
work presented in [11]. Unfortunately, it also roughly doubles the number of reactions
that must be considered when looking for completions.

For an alternative method, let us represent a metabolic network as a graph G =
(Rrev ∪ Rirrev ∪M,E), where Rrev , Rirrev , and M are sets of nodes standing for re-
versible reactions, irreversible reactions, and metabolites, respectively. The difference
to our previous approach is that we distinguish between nodes for reversible and irre-
versible reactions. For any reaction r ∈ Rrev ∪Rirrev , the edges in E describe exactly
one direction, that is, (m, r) ∈ E (or (r,m) ∈ E) expresses that the metabolitem ∈M
is a reactant (or product) of r. Taking r to be reversible, the network ({H2, O,H2O, r},
{(H2, r), (O, r), (r,H2O)}) thus captures both reactions displayed in Figure 1.

Given a metabolic network (Rrev ∪ Rirrev ∪ M,E) and a set S ⊆ M of seed
metabolites, a reaction r ∈ Rrev ∪Rirrev is reachable from S if all reactants in reac(r)
are reachable from S; when r ∈ Rrev is reversible, r is also reachable from S if all
products in prod(r) are reachable from S. This reflects that, depending on the direction
in which a reversible reaction is applied, the roles of reactants and products may be

9 That is, the underlying decision problems are NP-hard.



interchanged. Moreover, a metabolite m ∈ M is reachable from S if m ∈ S or if
m ∈ reac(r) ∪ prod(r) for some reaction r ∈ Rrev ∪ Rirrev that is reachable from S.
As in the previous section, the scope of S, written Σ(Rrev∪Rirrev∪M,E)(S), is the closure
of metabolites reachable from S.

Using this alternative representation, the metabolic network completion problem for
a network (Rrev ∪Rirrev ∪M,E), two sets S, T ⊆M of seed and target metabolites,
and a reference network (R′

rev ∪R′
irrev ∪M ′, E′) is to find a setR′′ ⊆ (R′

rev ∪R′
irrev )\

(Rrev ∪Rirrev ) of reactions such that T ⊆ ΣG(S), where

G = ((Rrev ∪Rirrev ∪R′′) ∪ (M ∪M ′′), E ∪ E′′) ,

M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and
E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)) .

We call R′′ a completion of (Rrev ∪Rirrev ∪M,E) from (R′
rev ∪R′

irrev ∪M ′, E′) wrt
(S, T ).

Our ASP implementation addresses the alternative representation of reversible re-
actions by additional facts and rules in comparison to the seminal encoding [11]. In
particular, an instance of the network completion problem now contains additional facts
reversible(r) for reactions r ∈ Rrev ∪R′

rev , and our new encoding utilizes reversibility
information. For instance, the following rules define the scope of a network:

scope(M)← seed(M)
scope(M)← product(M,R), reaction(R), scope(M ′) : reactant(M ′, R)
scope(M)← reactant(M,R), reversible(R), scope(M ′) : product(M ′, R)

These rules illustrate the changes in our logic program.10 The first rule states that all
metabolites given as seeds are available in an organism, and the second rule derives the
products of a reaction whose reactants are available. Moreover, the third rule takes care
of interchanged roles of reactants and products in a reversible reaction, where reactants
can be derived from available products.

For instance, for implementing the example shown in Figure 1, one may consider
the metabolites H2 and O as seeds as well as H2O as target. The ground programs
obtained with the two alternative methods to represent reversible reactions are given in
Listing 1 and 2. Both include similar rules to derive H2 and O as available in the scope.
However, the first program relies on two reactions, rf and rb, while the second program
addresses the inverse reaction rb via a rule for reversibility.

The outcomes of the program in Listing 1 are given by the sets {rf} and {rf , rb}
of reactions, the first of which is cardinality-minimal. This tells us that rf is necessary
to produce H2O from H2 and O. The unique outcome {r} of the program in Listing 2
likewise yields the necessity of applying r, where the actual direction of r needed to
produce H2O from H2 and O can be inferred easily.

4 Experiments

In order to successfully solve the three problems introduced above, we propose to di-
vide the metabolic network completion into two phases. In the first phase, we compute
10 The full encoding is available at http://pypi.python.org/pypi/meneco.



Listing 1. Ground logic program instance without reversibility.

1 seed(H2). seed(O). target(H2O).
2

3 { reaction(rf) }. { reaction(rb) }.
4 reactant(H2,rf). reactant(O,rf). reactant(H2O,rb).
5 product(H2O,rf). product(H2,rb). product(O,rb).
6

7 scope(H2) :- seed(H2).
8 scope(O) :- seed(O).
9

10 scope(H2O) :- product(H2O,rf), reaction(rf), scope(H2), scope(O).
11

12 scope(H2) :- product(H2,rb), reaction(rb), scope(H2O).
13

14 scope(O) :- product(O,rb), reaction(rb), scope(H2O).
15

16 :- target(H2O), not scope(H2O).
17

18 #minimize{ reaction(rf), reaction(rb) }.

Listing 2. Ground logic program instance with reversibility.

1 seed(H2). seed(O). target(H2O).
2

3 { reaction(r) }. r e v e r s i b l e(r).
4 reactant(H2,r). reactant(O,r).
5 product(H2O,r).
6

7 scope(H2) :- seed(H2).
8 scope(O) :- seed(O).
9

10 scope(H2O) :- product(H2O,r), reaction(r), scope(H2), scope(O).
11

12 scope(H2) :- reactant(H2,r), r e v e r s i b l e(r), scope(H2O).
13

14 scope(O) :- reactant(O,r), r e v e r s i b l e(r), scope(H2O).
15

16 :- target(H2O), not scope(H2O).
17

18 #minimize{ reaction(r) }.

the minimum size of a network completion (Problem 1). To this end, ASP provides
powerful optimization techniques based on branch-and-bound algorithms. Albeit such
techniques can be highly effective, our application pinpoints their current limitations.
Hence, we take advantage of unclasp (version 0.1), whose usage of unsatisfiable cores



Table 1. Ranges of minimum size and number of cardinality-minimal completions for Meta-
Cyc subsets. The time-outs of clasp are also reported with and without the reversibility encoding.

Number of reactions 5000 6000 7000 8000 9000 10000 Full

Minimum completion size [6,14] [7,22] [7,29] [9,29] [16,47] [33,50] 52
clasp time-outs

with reversibility 0 0 1 3 9 10 10
without reversibility 0 0 0 2 8 10 10

Minimal completions [4,32] [6,324] [6,1728] [16,3456] [80,1150] [180,22800] 2600

is inspired by respective approaches to Maximum Satisfiability (MaxSAT) [20]. In the
second phase, we rely on clasp (version 2.2.1) to enumerate all minimal completions
(Problem 2) or to compute the intersection of all minimal completions (Problem 3).
The experiments were run on a cluster of three machines equipped with 128 to 144 GB
RAM and totaling 48 cores, clocked from 2.39 to 2.66 GHz.

4.1 Reconstruction of the Metabolic Network of Ectocarpus siliculosus

As a first experiment, we complete a draft metabolic network of the brown algae Ecto-
carpus siliculosus [21] with reactions from MetaCyc. The draft network, produced by
merging expert annotations [22] with orthologs in Arabidopsis thaliana [23], contained
1210 reactions and 1454 metabolites. Moreover, we consider 44 metabolites as seeds,
provided by biological experts, and 51 metabolites, which have been experimentally
shown to be natural products of Ectocarpus siliculosus, as targets. We checked that the
draft network can only produce 23 of the 51 experimentally established targets, which
exhibits the insufficiency of the draft network to recover some of the main metabolic ca-
pabilities of the brown algae. This also shows that metabolic reconstruction via manual
methods is not sufficiently detailed for an “exotic” species like Ectocarpus siliculosus.

Applying unclasp and clasp as described above, we could solve Problem 1, 2, and 3
for the draft network. It turns out that at least 52 reactions from the MetaCyc database
are required to produce 48 metabolites among the 51 experimentally established tar-
gets (Problem 1). We checked that the three remaining targets are not producible via
reactions from MetaCyc. Moreover, enumeration led to 2600 cardinality-minimal com-
pletions (Problem 2), whose intersection consists of 45 reactions (Problem 3).

The union of all cardinality-minimal completions, 70 reactions, was then added to
the draft network to reconstruct the first metabolic network of Ectocarpus siliculosus. A
comparison of the resulting network, containing 1280 reactions and 1507 metabolites,
to sequence information showed that 70% of the reactions are relevant in the brown
algae. This suggests that reconstruction by means of ASP is biologically meaningful.

4.2 Study of Scalability

Given that the size of the reaction database constitutes a primary factor regarding the
performance of metabolic network reconstruction, we further investigated the scalabil-
ity of our approach and the benefit of introducing the new model for reversible reactions.
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Fig. 2. Runtimes of clasp and unclasp for computing the minimum size of a completion
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We thus applied our method to the completion of Ectocarpus siliculosus relying
on databases of different sizes. We created 10 different subsets of MetaCyc, each con-
taining 10000 randomly selected reactions. Starting from them, smaller subsets of size
9000, 8000, 7000, 6000, and 5000 were created by randomly and successively remov-
ing reactions, yielding 10 distinguished benchmarks for each size. Each subset includes
the same proportion of reversible reactions as the full MetaCyc database (≈ 42%).

Table 1 summarizes the minimum network completion sizes, the time-outs of
clasp upon computing (or proving, respectively) minimum sizes, and the numbers of
cardinality-minimal completions for MetaCyc subsets of different sizes. Notably, the
minimum sizes of completions recovering producible targets remain relatively small
(≤ 50). The small sizes and apparent locality of network completions promote unclasp,
which turns out to be highly effective upon optimization in the first phase. As the cur-
rent functionalities of unclasp do not include enumeration or intersection computation,
the respective experiments are limited to clasp in the second phase.

Solving Problem 1. In order to determine the minimum sizes of network com-
pletions, we ran unclasp in its default configuration as well as clasp with the op-
tions --time-limit=86400 --restart-on-model --reset-restarts
--local-restarts --opt-heu --save-progress. The latter configure
clasp’s sign heuristic to falsify literals subject to minimization and also foster restarts
to avoid getting stuck in local minima. However, the runtimes plotted in Figure 2 stay
around one second with unclasp but grow exponentially with clasp. Moreover, the ex-
plicit representation of reversible reactions speeds up unclasp by factors from 2 to 11,
while it leads to more time-outs with clasp (cf. Table 1).
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Fig. 3. Runtimes of clasp for enumerating all cardinality-minimal completions (Problem 2).
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Solving Problem 2. For enumerating cardinality-minimal completions, we ran
clasp with the options --time-limit=86400 --configuration=handy
--opt-all=optimum , where the “handy” configuration is geared towards large
problems. The results plotted in Figure 3 show that the runtimes of clasp and the num-
bers of solutions tend to grow exponentially with the size of the reaction database. The
number of solutions, however, reaches a plateau from 9000 reactions on, thus exhibiting
a correlation with the minimum completion sizes given in Table 1.

Solving Problem 3. Adding the option --enum-mode=cautious switches clasp
from enumeration to computing the intersection of cardinality-minimal completions.
The runtimes plotted in Figure 4 still parallel those for enumeration. Unlike this, the
intersection size grows much more moderately than the number of cardinality-minimal
completions, so that future advancements of ASP solving technology may shrink the
efforts of computing consequences below those of enumeration.

5 Conclusions

As a first conclusion, we note that unclasp enables the calculation of minimum comple-
tion size from an unabridged reaction database, which is necessary to accomplish the
metabolic reconstruction of an “exotic” organism like Ectocarpus siliculosus. While
clasp cannot solve this problem for the full MetaCyc database (in allotted time), un-
clasp completes the same task in a few seconds. Moreover, Figure 2 shows that unclasp
remains almost unaffected by database growth. In fact, the usage of unsatisfiable cores
allows for exploiting local problem structure to quickly converge to an optimal solu-
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tion. Therefore, it appears that unclasp is especially well-suited to solve problems with
plenty abducibles (>10000 reactions) but rather small optima (about 50 reactions).

As a second conclusion, integrating the reversibility concept into our ASP encoding
reduces the runtime of unclasp by up to one order of magnitude. Somewhat surpris-
ingly, clasp cannot benefit from the improved ASP encoding, even though reversibility
reduces the number of candidate reactions from MetaCyc by about one third.

As a third conclusion, only the combination of unclasp and clasp allowed us to
reconstruct the metabolic network of Ectocarpus siliculosus because the current func-
tionalities of unclasp do not include enumeration or intersection computation. Fortu-
nately, these two tasks can be accomplished by clasp when the minimum completion
size is known. While enumeration enables an exhaustive exploration of (cardinality-
minimal) completions, their intersection yields necessary reactions needed to produce
target metabolites. Such information is crucial for the biological post-validation of a
metabolic network without manual curation.

In summary, the combination of ASP modeling and solving capacities enabled the
successful automatic reconstruction of the first metabolic network of a macroalgae.
However, Figure 3 and 4 also indicate that the capabilities of clasp to compute all
cardinality-minimal completions or their intersection almost hit the limits in view of
the current size of the MetaCyc database. Anticipating its future extension, reconstruc-
tion tasks will be difficult to address without further advances in ASP solving. To this
end, the incorporation of domain knowledge and heuristics to guide the solving process
appear to be promising. As a direction for future work, we aim at the development of
dedicated heuristics and their employment in the recent ASP solver hclasp [24].
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