
plp : A Generic Compiler for Ordered Logic Programs

James P. Delgrande1, Torsten Schaub2?, and Hans Tompits3

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6,
jim@cs.sfu.ca

2 Institut für Informatik, Universiẗat Potsdam, Postfach 60 15 53, D–14415 Potsdam, Germany,
torsten@cs.uni-potsdam.de

3 Institut für Informationssysteme, Abt. Wissensbasierte Systeme 184/3,
Technische Universität Wien, Favoritenstraße 9–11, A–1040 Vienna, Austria,

tompits@kr.tuwien.ac.at

Abstract This paper describes a generic compiler, calledplp, for translating or-
dered logic programs into standard logic programs under the answer set seman-
tics. In an ordered logic program, preference information is expressed at the ob-
ject level by atoms of the forms ≺ t, wheres and t are names of rules. An
ordered logic program is transformed into a second, regular, extended logic pro-
gram wherein the preferences are respected, in that the answer sets obtained in
the transformed theory correspond with the preferred answer sets of the origi-
nal theory. Currently,plp treats three different types of preference strategies, viz.
those proposed by (i) Brewka and Eiter, (ii) Delgrande, Schaub, and Tompits, and
(iii) Wang, Zhou, and Lin. Since the result of the translation is an extended logic
program, existing logic programming systems can be used as underlying reason-
ing engine. In particular,plp is conceived as a front-end to the logic programming
systemsdlv andsmodels.

1 General information

Several approaches have been introduced in recent years for expressing preference in-
formation within declarative knowledge representation formalisms [7,11,1,10]. How-
ever, most of these methods treat preferences at the meta-level and require a change of
the underlying semantics. As a result, implementations need in general fresh algorithms
and cannot rely on existing systems computing the regular (unordered) formalisms.

In this paper, we describe the systemplp, which avoids the need of new algorithms,
while computing preferred answer sets of an ordered logic program.plp is based on
an approach for expressing preference informationwithin the framework of standard
answer set semantics [6], and is conceived as a front-end to the logic programming
systemsdlv [5] andsmodels [8]. The general technique is described in [4] and derives
from a methodology for addressing preferences in default logic first proposed in [2].

We begin with anordered logic program, which is an extended logic program in
which rules are named by unique terms and in which preferences among rules are given
by a new set of atoms of the forms ≺ t, wheres andt are names. Such an ordered logic
program is then transformed into a second, regular, extended logic program wherein the

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.



Meaning Symbols Internal
⊥,> false/0 , true/0
¬ neg/1 , -/1 (prefix) neg L, L ∈ L
not not/1 ,∼/1 (prefix)
∧ ,/1 (infix; in body)
∨ ;/1 , v/2 , |/2 (infix; in head)
← :-/1 (infix; in rule)
≺ </2 (infix) prec/2
nr : 〈head(r)〉 ← 〈body(r)〉 〈head(r)〉 :- name(nr), 〈body(r)〉

〈head(r)〉 :- [nr], 〈body(r)〉
ok, rdy ok/1 , rdy/2
ap, bl ap/1 , bl/1

Table 1.The syntax ofplp input files.

preferences are respected, in the sense that the answer sets obtained in the transformed
theory correspond to the preferred answer sets of the original theory. The transforma-
tion is realized by adding sufficient control elements to the rules of the given ordered
logic program which guarantee that successive rule applications are in accord with the
intended order. More specifically, the transformed program contains control atomsap(·)
andbl(·), which detect when a rule has been applied or blocked, respectively, as well
as auxiliary atomsok(·) andrdy(·, ·) which control the applicability of rules based on
antecedent conditions reflecting the given order information.

The approach is sufficiently general to allow the specification of preferences among
preferences, preferences holding in a particular context, and preferences holding by de-
fault. Moreover, the approach permits a generic compilation methodology, making it
possible to express differing preference strategies. Basically, this is achieved by vary-
ing the specific antecedent conditions for the control atomsok(·) and rdy(·, ·). Cur-
rently, plp treats three kinds of preference strategies, viz. those proposed by Brewka
and Eiter [1], Delgrande, Schaub, and Tompits [2,4], and Wang, Zhou, and Lin [10].

2 Applying the system

The syntax ofplp is summarised in Table 1. An example file comprising an ordered
logic program is the following:

neg a .
b :- name(n2), neg a, not c.
c :- name(n3), not b.

(n3 < n2) :- not d.

Here,name(n2) andname(n3) serve as names for the rules in which these terms
occur, and the last rule expresses that the rule namedn2 is preferred over the rule named
n3 , in case atomd cannot be inferred.

Once this file, sayexample.lp , is read intoplp, it is subject to multiple transfor-
mations. Most of these transformations are rule-centered in the sense that they apply in



〈file〉.lp
�� ��plp

〈file〉.dlv

〈file〉.sm

�� ��dlv

�� ��smodels

Standard
output

Standard
output

- �
���

A
AAU

-

-

-

-

lp2dlv/1

lp4dlv/1

lp2sm/1

lp4sm/1

Figure 1. Compilation withplp: external view.

turn to each single rule. The first phase of the compilation is system-independent and
corresponds to the transformations given in [4]. While the original file is supposed to
have the extensionlp , the result of the system-independent compilation phase is kept
in an intermediate file with extensionpl (e.g.,example.pl ).

While this compilation phase can be engaged explicitly by the commandlp2pl/1 ,
one is usually interested in producing system-specific code that is directly usable by ei-
ther dlv or smodels. This can be done by means of the commandslp2dlv/1 and
lp2sm/1 ,1 which then produce system-specific code resulting in files having exten-
sionsdlv andsm, respectively. These files can then be fed into the respective system
by a standard command interpreter, such as a UNIX shell, or from within the Prolog
system through commandsdlv/1 or smodels/1 . For example, after compiling our
example bylp2dlv , we may proceed as follows:

| ?- dlv(’Examples/example’).
Calling :dlv Examples/example.dlv
dlv [build BEN/Jun 11 2001 gcc 2.95.2 19991024 (release)]

{true, name(n2), name(n3), neg_a, ok(n2), rdy(n2,n2),
rdy(n2,n3), rdy(n3,n3), prec(n3,n2), neg_prec(n2,n3),
ap(n2), b, rdy(n3,n2), ok(n3), bl(n3)}

Both commands can be furnished with the optionnice (as an additional argument) in
order to strip off the auxiliary predicates:

| ?- dlv(’Examples/example’,nice).
Calling :dlv -filter=a [...] -filter=neg_d Examples/example.dlv
dlv [build BEN/Jun 11 2001 gcc 2.95.2 19991024 (release)]

{neg_a, b}

1 These files are themselves obtainable from the intermediatepl -files via commands
pl2dlv/1 andpl2sm/1 , respectively.



The above series of commands can be engaged within a single one by means of
lp4dlv/1 andlp4sm/1 , respectively. Moreover, for changing the underlying prefer-
ence strategy, a simple patch is executed, which redefines certain predicates. The overall
(external) comportment ofplp is illustrated in Figure 1.

For treating variables, some additional preprocessing is necessary for instantiating
the rules before they are compiled. The presence of variables is indicated by file ex-
tensionvlp . The content of such a file is first instantiated by systematically replacing
variables by constants and then freed from function symbols by replacing terms by
constants, e.g.,f(a) is replaced byf a. This is clearly a rather pragmatic approach. A
more elaborated compilation would be obtained by proceeding right from the start in a
system-specific way.

Finally, the current prototype is available at
http://www.cs.uni-potsdam.de/˜torsten/plp/ .

Acknowledgements.The first author received partial support from the Natural Sciences
and Engineering Research Council of Canada; the second author was partially sup-
ported by the German Science Foundation (DFG) under grant FOR 375/1-1, TP C; the
third author was partially supported by the Austrian Science Fund (FWF) under grant
P13871-INF.

References

1. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs.Artificial Intel-
ligence, 109(1-2):297–356, 1999.

2. J. Delgrande and T. Schaub. Compiling reasoning with and about preferences into default
logic. In Proc. IJCAI-97, pages 168–174. Morgan Kaufmann Publishers, 1997.

3. J. Delgrande, T. Schaub, and H. Tompits. A compilation of Brewka and Eiter’s approach to
prioritization. InProc. JELIA-00, pages 376–390. Springer Verlag, 2000.

4. J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences. In
Proc. ECAI-00, pages 392–398. IOS Press, 2000.

5. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for nonmono-
tonic reasoning. InProc. LPNMR-97, pages 363–374. Springer Verlag, 1997.

6. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generation Computing, 9:365–385, 1991.

7. M. Gelfond and T. Son. Reasoning with prioritized defaults. InThird International Workshop
on Logic Programming and Knowledge Representation, pages 164–223. Springer Verlag,
1997.

8. I. Niemel̈a and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal logic programs. InProc. LPNMR-97, pages 420–429. Springer Verlag,
1997.

9. T. Schaub and K. Wang. A comparative study of logic programs with preference: Preliminary
report. InProc. AAAI Spring Symposium on Answer Set Programming, pages 151–157.
AAAI Press, 2001.

10. K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for logic programs with priority.
In Proc. First International Conference on Computational Logic, pages 164–178. Springer
Verlag, 2000.

11. Y. Zhang and N. Foo. Answer sets for prioritized logic programs. InProc. ILPS-97,
pages 69–84. MIT Press, 1997.


