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Abstract. We present a framework for updating logic programs under the an-
swer-set semantics that builds on existing work on preferences in logic program-
ming. The approach is simple and general, making use of two distinct comple-
mentary techniques: defaultification and preference. While defaultification re-
solves potential conflicts by inducing more answer sets, preferences then select
among these answer sets, yielding the answer sets generated by those rules that
have been added more recently. We examine instances of the framework with
respect to various desirable properties; for the most part, these properties are sat-
isfied by instances of our framework. Finally, the proposed framework is also
easily implementable by off-the-shelf systems.

1 Introduction

Over the last decade, answer-set programming (ASP) [1] has become a major approach
for knowledge representation and reasoning. Given that knowledge is always subject to
change, there has been a substantial effort in developing approaches to updating logic
programs under the answer-set semantics [2–10]. Unfortunately, the problem of update
appears to be intrinsically more difficult in a nonmonotonic setting (such as in ASP)
than in a monotonic one, such as in propositional logic [11]. As a consequence, many
approaches are quite involved and the set of approaches is rather heterogeneous.

In contrast to this, we propose a simple and general framework for updating logic
programs that is based on two well-known parameterisable techniques in ASP: default-
ification [12, 13] and preference handling [14–16]. This is based on the following idea:
The primary purpose of updating mechanisms is to resolve conflicts among more re-
cent and less recent rules. To this end, we first need to detect potential conflicts between
newer and older rules. Second, we need to prevent them from taking place. And finally,
we need to resolve conflicts in favour of more recent updating rules. The two last steps
are accomplished by defaultification and preferences. While defaultification resolves
potential conflicts by inducing complementary answer sets, preferences then are used



to select among these answer sets, producing those answer sets generated by rules that
have been added more recently. As a result, our approach is easily implementable by ap-
peal to existing off-the-shelf technology for preference handling, such as the front-end
tool plp4 (used in conjunction with standard ASP-solvers, like smodels5 or dlv6),
the genuine preference-handling ASP-solver nomore<7, or meta-interpretation meth-
ods [17].

Our techniques have further advantages: First, defaultification also allows for the
elimination of incoherent situations, even in an updating program or in intermediate
programs in an updating sequence. Second, preferences provide a modular way of cap-
turing an update history, rather than an explicit program transformation, as done for
instance in the approaches of Eiter et al. [9] or Zhang and Foo [4].

After giving some background, we introduce our framework in Section 3, along
with an evaluation according to update principles proposed by Eiter et al. [9] in the
context of ASP. Section 4 gives a more detailed comparison to the latter approach and
shows how our approach deals with two well-known examples from the literature. The
paper concludes with a discussion in Section 5.

2 Background

Given an alphabet P , an extended logic program, or simply a program, is a finite set of
rules of form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln, (1)

where n ≥ m ≥ 0 and each li (0 ≤ i ≤ n) is a literal, that is, an atom a ∈ P or its
negation ¬a. The set of all literals is given by L = P ∪ {¬a | a ∈ P}. For a literal l,
define l = a if l = ¬a, and l = ¬a if l = a. The set of atoms occurring in a program
Π is denoted by atom(Π). For a rule r of form (1), let head(r) = l0 be the head
of r and body(r) = {l1, . . . , lm,not lm+1, . . . ,not ln} the body of r. Furthermore,
let body+(r) = {l1, . . . , lm} and body−(r) = {lm+1, . . . , ln}. Rule r is positive, if
body−(r) = ∅.

A set of literals X is consistent if it does not contain a complementary pair a, ¬a
of literals. We say that X is logically closed iff it is either consistent or equals L. The
smallest set of literals being both logically closed and closed under a set Π of positive
rules is denoted by Cn(Π). The reduct, ΠX , of Π relative to a set X of literals is
defined by ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩ X = ∅} [18]. A set
X of atoms is an answer set of an extended logic program Π if Cn(ΠX) = X . Two
programs Π1 and Π2 are said to be equivalent, written Π1 ≡ Π2, if both programs have
the same answer sets.

An ordered logic program is a pair (Π,<), where Π is a logic program and
< ⊆ Π ×Π is a strict partial order. Given r1, r2 ∈ Π , the relation r1 < r2 ex-
presses that r2 has higher priority than r1. This informal interpretation can be made

4 http://www.cs.uni-potsdam.de/∼torsten/plp.
5 http://www.tcs.hut.fi/Software/smodels.
6 http://www.dlvsystem.com.
7 http://www.cs.uni-potsdam.de/wv/nomorepref.



precise in different ways. In what follows, we consider three such interpretations: B-
preference [14], D-preference [15], and W -preference [16]. Given (Π,<), all of these
approaches use < for selecting preferred answer sets among the standard answer sets
of Π . The approaches are defined as follows. Let X be a consistent set of literals and
define ΠX = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩X = ∅}. Then:

1. X is <D-preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for
every i, j ∈ I , we have that:
(a) if ri < rj , then j < i;
(b) body+(ri) ⊆ {head(rk) | k < i}; and
(c) if ri < r′ and r′ ∈ Π \ΠX , then

i. body+(r′) 6⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} 6= ∅.

2. X is <W -preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for
every i, j ∈ I , we have that:
(a) if ri < rj , then j < i;
(b) i. body+(ri) ⊆ {head(rk) | k < i} or

ii. head(ri) ∈ {head(rk) | k < i}; and
(c) if ri < r′ and r′ ∈ Π \ΠX , then

i. body+(r′) 6⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} 6= ∅ or

iii. head(r′) ∈ {head(rk) | k < i}.
3. X is <B-preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for

every i, j ∈ I , we have that:
(a) if ri < rj , then j < i; and
(b) if ri < r′ and r′ ∈ Π \ΠX , then

i. body+(r′) 6⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} 6= ∅ or

iii. head(r′) ∈ X .

As shown by Schaub and Wang [16], the three strategies yield an increasing number
of preferred answer sets. That is, D–preference is stronger than W–preference, which
is stronger than B–preference, which is stronger than the empty preference (i.e., having
no preference).

Analogously to the unordered case, we call two ordered logic programs equivalent
iff they have the same order-preserving answer sets, and we use again “≡” as a symbol
for program equivalence. Note that an unordered program Π is trivially equivalent to
the program (Π, ∅) having an empty order relation, as every answer set of Π is a <σ-
preserving answer set of (Π,<), for <= ∅ and σ ∈ {D,B,W}. Hence, allowing a
slight abuse of notation, we sometimes identify an unordered program Π with (Π, ∅).

3 The Basic Framework

3.1 Update Programs

The primary purpose of updating mechanisms is to resolve conflicts among newer and
older rules. As mentioned, our approach is to first detect potential conflicts, second,



to stop them from taking place, and third, to resolve these conflicts in favour of the
updating rules.

A potential conflict manifests itself by complementary head literals. Two rules r1,
r2 are said to be conflicting if head(r1) = head(r2). We represent potential conflicts
among rules within two programs Π1 and Π2 in terms of the set

C(Π1,Π2) = {(r1, r2) | r1 ∈ Π1, r2 ∈ Π2, head(r1) = head(r2)}.

For avoiding conflicts, we weaken rules by turning them into defaultised rules, as
originally used by Sadri and Kowalski [12]. For rule r, we define

rd = head(r)← body(r),not head(r).

Similarly, for a program Π , we define Πd = {rd | r ∈ Π} and call it the default-
ification of Π . For example, program {a ←,¬a ←} has the answer set L, while
{a ←,¬a ←}d = {a ← not ¬a,¬a ← not a} has two answer sets, {a} and {¬a}.
Note that, given that bodies of rules are sets, we have rd = (rd)d, for every rule r.

The next result shows how the aforementioned “weakening” is to be understood.

Theorem 1. Let Π be a logic program.
Every consistent answer set of Π is an answer set of Πd.

We propose to use preferences among rules for resolving inconsistencies. This
provides us with several degrees of freedom: First, one can choose among different
preference-handling strategies; and second, these strategies can be imposed in different
ways on the rules. As well, defaultification can be applied universally or selectively to
rules. We next detail three specific ways of applying the framework.

To begin with, we give the following very basic definition of an update operator on
logic programs:

Definition 1. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗0 is given by the ordered logic program

Π1 ∗0 Π2 = (Πd
1 ∪Πd

2 ,Πd
1 ×Πd

2 ).

Thus, the ordered logic program is over Πd
1 ∪Πd

2 , and < is defined so that every rule
in Πd

1 has less priority than every rule in Πd
2 . We do not suggest that this is a good

update operator; in fact this operator is usually too strict, since it establishes a preference
between all rules in programs Π1 and Π2 even though they may not conflict. However,
it provides a simple, basic instance of our approach.

A conflict-oriented approach is the following.

Definition 2. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗1 is given by the ordered logic program

Π1 ∗1 Π2 = (Πd
1 ∪Πd

2 , C(Πd
1 ,Πd

2 )).

Operator ∗1 globally weakens the rules in the program and imposes preferences along
potential conflicts.

A refinement of the above approach is the following:



Definition 3. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗2 is given by the ordered logic program

Π1 ∗2 Π2 = (Πd
c ∪ ((Π1 ∪Π2) \Πc)), C(Πd

1 ,Πd
2 )),

where Πc = {r1, r2 | (r1, r2) ∈ C(Π1,Π2)}.

Operator ∗2 restricts defaultification to conflicting rules. Unlike the previous update
operations, this necessitates program transformations whenever conflicting rules are
encountered upon iterated updates (see below). Further definitions are possible.

As well, one must also specify a preference-handling strategy, which we consider
next.

Definition 4. Let Π1 ∗ Π2 be an update program for some update operator ∗, σ ∈
{B,D,W} a preference-handling strategy, and X a set of literals.

Then, X is an answer set of Π1 ∗ Π2 with respect to σ iff X is a <σ-preserving
answer set of Π1 ∗Π2.

Depending on the chosen preference-handling strategy, update programs may admit
several, one, or no answer sets. The latter is worth illustrating because it motivates the
increasing restriction of preferences among rules when defining our update operators.
For instance, the update program {b ← not a} ∗0 {c ← not b} has no answer set
with respect to either the B-, D-, or W -strategy. In contrast, we obtain answer set {b}
when applying ∗1 and ∗2. For another example, consider {a←}∗0 {b← a}. We obtain
answer set {a, b} with respect to the B strategy, but no answer set with the D or W
strategy. In contrast to this, we get answer set {a, b} when applying ∗1 and ∗2 no matter
which preference-handling strategy we chose.

For illustrating the different behaviour of ∗0, ∗1, and ∗2 with respect to inconsistent
programs, consider Π1 = {r1 : a ←, r2 : ¬a ←} and Π2 = {r3 : b ← a}. Here, we
have

rd
1 = a← not ¬a, rd

2 = ¬a← not a,

rd
3 = b← a,not ¬b,

and C(Πd
1 ,Πd

2 ) = ∅. Hence, we get the following update programs:

Π1 ∗0 Π2 = ({rd
1 , rd

2 , rd
3}, {rd

1 < rd
3 , rd

2 < rd
3}),

Π1 ∗1 Π2 = Πd
1 ∪Πd

2 = {rd
1 , rd

2 , rd
3}, and

Π1 ∗2 Π2 = Π1 ∪Π2 = {r1, r2, r3}.

Clearly, Π1 is inconsistent, i.e., it has the single answer set L. Under B-preference,
Π1 ∗0 Π2 has {¬a} and {a, b} as its answer sets, whereas under D- and W -preference,
only {¬a} is an answer set of Π1 ∗0 Π2. Roughly speaking, {a, b} is not an answer
set under D- and W -preference because of the “prescriptive” nature of these preference
strategies. For Π1 ∗1 Π2, we also get the two answer sets {¬a} and {a, b}, while Π1 ∗2
Π2 again yields the inconsistent answer set L.

The common factor, however, is that each selection criterion chooses its preferred
answer sets among those of the defaultification of the union of the original programs.



Theorem 2. Let Π1 ∗i Π2 be an update program for some i = 0, 1, 2 and let σ ∈
{B,D,W} be a preference-handling strategy.

Then, every answer set of Π1∗iΠ2 with respect to σ is an answer set of (Π1∪Π2)d.

Iterated updates are easily defined.

Definition 5. Let (Π1, . . . ,Πn) be a sequence of logic programs, for n ≥ 2, and let ∗
be a binary update operator.

Then, ∗(Π1, . . . ,Πn), the update program obtained from (Π1, . . . ,Πn), is the or-
dered logic program given as follows:

∗(Π1, . . . ,Πn) =
{

Π1 ∗Π2, if n = 2;
([∗(Π1, . . . ,Πn−1)] ∗Πn), if n > 2.

Definition 6. Let ∗(Π1, . . . ,Πn) be an update program for some update operator ∗,
let σ ∈ {B,D,W} be a preference-handling strategy, and let X be a set of literals.

Then, X is an answer set of ∗(Π1, . . . ,Πn) with respect to σ iff X is a <σ-
preserving answer set of ∗(Π1, . . . ,Πn).

Whenever convenient, we write (Π1 ∗ . . .∗Πn) instead of ∗(Π1, . . . ,Πn). As in Theo-
rem 2, every answer set of (Π1∗. . .∗Πn) is selected among the ones of (Π1∗. . .∗Πn)d.

3.2 Properties of Updates

Different instantiations of our framework yield different properties. To this end, we ex-
amine some properties proposed by Eiter et al. [9]. We focus below on the slightly more
elaborate operators ∗1 and ∗2. For comparison, we also mention whether a property at
hand is satisfied by the update operation defined by Eiter et al. [9], which we denote by
◦e (the operator ◦e is formally defined in Section 4).

The first property is the following:8

Initialisation: ∅ ∗Π ≡ Π . (Fulfilled by ◦e.)

While this property holds for ∗2 over all preference strategies, it is not satisfied by ∗1,
no matter which preference-handling strategy is used. To see this, consider the program
{a←,¬a← not a}. While ∅ ∗2 Π = Π and hence ∅ ∗2 Π ≡ Π , we get

∅ ∗1 Π = Πd = {a← not ¬a,¬a← not a} 6= Π.

Π has the single answer set {a}, but Πd admits two answer sets, {a} and {¬a}.
A similar situation is encountered when regarding the following property:

Idempotency: Π ∗Π ≡ Π . (Fulfilled by ◦e.)

For analogous reasons as above, ∗1 fails to satisfy this property, while it is satisfied by
∗2, whenever Π has consistent answer sets (see below).

8 Henceforth we understand a property to hold for all strategies unless otherwise mentioned.



In fact, despite the lack of the previous two properties, ∗1 yields only consistent
answer sets, even if an update is inconsistent. For instance, in a variation of one of the
above examples, updating program Π1 = {a←} by Π2 = {b←,¬b←} yields

Π1 ∗1 Π2 = Πd
1 ∪Πd

2 = {a← not ¬a} ∪ {b← not ¬b,¬b← not b},

from which we obtain two answer sets, {a, b} and {a,¬b}. Unlike this, Π1 ∗2 Π2 =
Π1 ∪Π2 has the inconsistent answer set L (as in the above example).

Another property deals with the addition of tautologies (or more generally, the in-
fluence of redundant information).

Tautology: If head(r) ∈ body+(r), for all r ∈ Π2, then Π1 ∗Π2 ≡ Π1.
(Violated by ◦e.)

This property is violated by most update approaches in the literature. For example, let us
update Π1 = {a← not ¬a,¬a←} by Π2 = {a← a}. No matter which of the above
update operators we take, we obtain a single answer set {a} from the update program,
which is generated by rule a ← not ¬a in Π1. The conclusion of ¬a is prohibited by
the single rule in Π2, taking precedence over the second one in Π1.

For another example, consider ((Π1 ∗Π2) ∗Π3) where

Π1 = {a←}, Π2 = {¬a←}, Π3 = {a← a} .

Clearly, (Π1 ∗ Π2) induces a single answer set {¬a} in all of the above approaches,
including ◦e. Unlike this, update operation ◦e results in two answer sets, {¬a} and {a},
once Π3 has been added and so does each update operation in our framework when us-
ing the preference-handling strategy B. This is different, however, when using strategy
D, in which case we obtain only a single answer set {¬a} from ((Π1 ∗ Π2) ∗ Π3).
It remains for future work to see how the addition of tautologies can be counterbal-
anced by stronger preference-handling strategies. A general approach to overcome this
deficiency is proposed by Alferes et al. [19]; it also remains future work whether that
technique applies in our framework as well.

The next property deals with iterated updates.

Associativity: (Π1 ∗ (Π2 ∗Π3)) ≡ ((Π1 ∗Π2) ∗Π3). (Violated by ◦e.)9

This property holds for all instances of our framework. In fact, one can show that both
updates yield the same update programs.

Absorption: If Π2 = Π3, then ((Π1 ∗Π2) ∗Π3) ≡ (Π1 ∗Π2). (Fulfilled by ◦e.)

This property is also satisfied by all instances of our framework. This is also the case
with the following generalisation of absorption:

Augmentation: If Π2 ⊆ Π3, then ((Π1 ∗Π2) ∗Π3) ≡ (Π1 ∗Π3). (Violated by ◦e.)

9 Strictly speaking, in the approach of Eiter et al. [9], the associativity principle is formulated
not in terms of the update operation itself, but in terms of the associated update program PC

(see Section 4); the same applies for the disjointness and parallelism properties below.



Table 1. Summary of update properties.

∗1 ∗2 ◦e

Initialisation
√ √

Idempotency
√ √

Tautology
Associativity

√ √

Absorption
√ √ √

Augmentation
√ √

Disjointness
√ √ √

Non-Interference
√ √ √

The next property captures update with disjoint programs.

Disjointness: If atom(Π1) ∩ atom(Π2) = ∅, then (Π1 ∪Π2) ∗Π3 ≡ (Π1 ∗Π3) ∪
(Π2 ∗Π3). (Fulfilled by ◦e.)

This principle is satisfied by all instances of our framework.
The next property is a variant of the previous.

Parallelism: If atom(Π2) ∩ atom(Π3) = ∅, then Π1 ∗ (Π2 ∪ Π3) ≡ (Π1 ∗ Π2) ∪
(Π1 ∗Π3). (Violated by ◦e.)

This property does not hold in our approach. To see this, let Π3 = ∅. Clearly, we obtain
different results from Π1 ∗ Π2 and (Π1 ∗ Π2) ∪ Π1. Arguably, given this example,
unrestricted parallelism is not a desirable property.

The last property deals with commutativity when dealing with non-interacting up-
date programs.

Non-Interference: If atom(Π2) ∩ atom(Π3) = ∅, then (Π1 ∗ Π2) ∗ Π3 ≡ (Π1 ∗
Π3) ∗Π2. (Fulfilled by ◦e.)

This property is satisfied by all instances of our framework.
These properties are summarised in Table 1 (with the exception of parallelism,

which we feel is undesirable). We note that ∗2 satisfies the most properties, followed by
◦e, and then ∗1.

Up to now, we have ignored the treatment of integrity constraints (cf. Baral [1]) in
updating logic program. In this respect, we simply follow the approach taken by Eiter et
al. [9] by handling them as global constraints that are discarded in the defaultification
and preference-handling process. Updating a program Π1 by the program Π2 in the
presence of integrity constraints Πc then amounts to computing the order-preserving
answer sets of (Π1 ∗ Π2) ∪ Πc. Although we do not detail it here, we mention that
our approach allows for accommodating the update of integrity constraints just as well
by making them subject to an appropriately adapted defaultification and preference-
handling mechanism.



4 Examples and Properties vis-à-vis ◦e

In what follows, we discuss some examples comparing the present update approach with
the update approach due to Eiter et al. [9]. For simplicity, we focus on our operator ∗1
under the weakest (reasonable) preference handling strategy, B, given that it is closest
to ◦e (cf. Theorem 3 below).

In the approach of Eiter et al. [9], the semantics of an n-fold update Π1◦e· · ·◦eΠn is
given by the semantics of an (ordinary) program PC, for P = (Π1, . . . ,Πn), containing
the following elements:

1. all integrity constraints in Πi, 1 ≤ i ≤ n;
2. for each r ∈ Πi, 1 ≤ i ≤ n:

li ← body(r),not rej (r), where head(r) = l;

3. for each r ∈ Πi, 1 ≤ i < n:

rej (r)← body(r),¬li+1, where head(r) = l;

4. for each literal l occurring in P (1 ≤ i < n):

li ← li+1; l← l1.

Here, for each rule r, rej (r) is a new atom not occurring in Π1, . . . ,Πn. Intuitively,
rej (r) expresses that r is “rejected.” Likewise, each li, 1 ≤ i ≤ n, is a new atom not
occurring in Π1, . . . ,Πn. Then, answer sets of Π1 ◦e · · · ◦e Πn are given by the answer
sets of PC, modulo the original language. This is similar to compiling ordered logic
programs to standard ones as done in our previous work [15].

Example 1. Consider the following programs:

Π1 = {r1 : ¬a←},
Π2 = {r2 : a← b,not ¬a},
Π3 = {r3 : b←}.

The program Π1 has a single answer set, namely {¬a}. In updating Π1 by Π2, nothing
changes because rd

2 = r2 is not applicable (b is not derivable). A further update by
Π3 changes this situation: b becomes derivable and rd

2 can be applied. In fact, since
rd
1 < rd

2 , rule rd
2 must be applied before rd

1 and so rd
1 is defeated. Thus, {a, b} is the

single answer set of ∗1P , for P = (Π1,Π2,Π3). Observe that {a, b} is of course also
an answer set of the unordered program Πd

1 ∪Πd
2 ∪Πd

3 , together with {¬a, b}. In fact,
the latter set is the unique answer set of Π1∪Π2∪Π3, which shows that answer sets of
update programs ∗P are not selected among answer sets of the union of the constituents
of P , but rather of the union of the defaultification of its constituents (cf. Theorem 2).
Note, however, that Π1 ◦e Π2 ◦e Π3 has both {a, b} and {¬a, b} as answer sets. ♦



The operations ∗1 and ◦e also yield different results on inconsistent programs. Con-
sider:

Π1 = {b←, ¬b←},
Π2 = {a←},
Π3 = {b←},

and let P = (Π1,Π2). PC has the set of all literals as its unique (inconsistent) answer
set, but ∗1P has {a, b} and {a,¬b} as answer sets. On the other hand, both Π1 ◦e Π2 ◦e
Π3 and Π1 ∗1 Π2 ∗1 Π3 have {a, b} as unique answer set.

The same holds for programs which may become inconsistent due to new informa-
tion:

Π1 = {b← a, ¬b← a},
Π2 = {a←},
Π3 = {¬a←}.

Π1 has a consistent answer set, but Π1 ∗1 Π2 has {a, b} and {a,¬b} as answer sets,
whereas Π1 ◦e Π2 has the set of all literals as unique answer set. For the additional
update with Π3, both approaches yield {¬a} as unique answer set.

In general, we can formulate the following relation between the answer sets of ∗1
and ◦e:

Theorem 3. Let P = (Π1, . . . ,Πn) be a sequence of programs such that PC has only
consistent answer sets.

Then, any answer set of ∗1P is also an answer set of Π1 ◦e · · · ◦e Πn.

The converse does not hold, as Example 1 illustrates. Actually, there is an even
simpler counterexample: consider

Π1 = {a←} and Π2 = {¬a← not a}.

Then, Π ◦e Π2 has two answer sets, viz. {a} and {¬a}, while Π1 ∗1 Π2 has only {¬a}
as answer set. Actually, {¬a} is the only answer set of Π1 ∗1 Π2 under any of the three
preference strategies B, D, and W .

Finally, let us consider two examples on updating logic programs that have been
discussed in the literature, showing that ∗1 and ◦e behave the same in these cases.

Example 2 (Adapted from [5]). Consider the update of Π1 by Π2, where

Π1 = { r1 : sleep ← not tv on, r2 : night ← ,
r3 : tv on ←, r4 : watch tv ← tv on },

Π2 = { r5 : ¬tv on ← power failure, r6 : power failure ← }.

The single answer set of both Π1 ∗1 Π2 and Π1 ◦e Π2 is

S = {power failure,¬tv on, sleep,night}.



If new information arrives as program Π3, given by

Π3 = { r7 : ¬power failure ← },

then again Π1 ∗1 Π2 ∗1 Π3 and Π1 ◦e Π2 ◦e Π3 have the unique answer set

T = { ¬power failure, tv on,watch tv ,night }. ♦

Example 3 ([9]). An agent consulting different sources in search of a performance or
a final rehearsal of a concert on a given weekend may be faced with the following
situation. First, the agent is notified that there is no concert on Friday:

Π1 =
{

r1 : ¬concert friday ←
}
.

Later on, a second source reports that there is neither a final rehearsal on Friday nor a
concert on Saturday:

Π2 =
{

r2 : ¬final rehearsal friday ←, r3 : ¬concert saturday ←
}
.

Finally, the agent is assured that there is a final rehearsal or a concert on Friday and that
whenever there is a final rehearsal on Fridays, a concert on Saturday or Sunday follows:

Π3 =
{
r4 : concert friday ← not final rehearsal friday ,
r5 : final rehearsal friday ← not concert friday ,
r6 : concert saturday ← final rehearsal friday ,not concert sunday ,
r7 : concert sunday ← final rehearsal friday ,not concert saturday

}
.

The update program Π1 ∗1 Π2 ∗1 Π3 has three answer sets:

S1 = {final rehearsal friday ,¬concert friday , concert saturday},
S2 = {final rehearsal friday ,¬concert friday ,¬concert saturday ,

concert sunday},
S3 = {¬final rehearsal friday , concert friday ,¬concert saturday},

where Π1 ∗1 Π2 ∗1 Π3 is given as follows:

Πd
1 ∪Πd

2 ∪Πd
3 ={

rd
1 : ¬concert friday ← not concert friday ,

rd
2 : ¬final rehearsal friday ← not final rehearsal friday ,

rd
3 : ¬concert saturday ← not concert saturday ,

rd
4 : concert friday ← not final rehearsal friday ,not ¬concert friday ,

rd
5 : final rehearsal friday ← not concert friday ,

not ¬final rehearsal friday ,

rd
6 : concert saturday ← final rehearsal friday ,not concert sunday ,

not ¬concert saturday ,

rd
7 : concert sunday ← final rehearsal friday ,not concert saturday ,

not ¬concert sunday
}
,



together with the following order:

rd
1 < rd

4 , rd
2 < rd

5 , and rd
3 < rd

6 .

The same answer sets are obtained in case of Π1 ◦e Π2 ◦e Π3. ♦

5 Discussion

We have presented a simple and general framework to updating logic programs under
the answer-set semantics. Our approach is based on two well-known techniques in ASP:
defaultification and preference handling. Depending on how we fix the interplay among
both techniques, we obtain distinct update operations. An interesting feature is that in-
consistencies are removed by defaultification and can subsequently be resolved through
preferences. Also, the approach is iterative and the history of the continued updates is
(mainly10) captured by preferences rather than explicit program transformations. An-
other advantage of this approach is that it is easily implementable by off-the-shelf sys-
tems developed for ASP.

More elaboration of the different instances of our framework is desirable. In par-
ticular, it will be interesting to see how the properties of the framework change with
different ordering mechanisms, in particular, ones that are especially designed for up-
date purposes. Another interesting question is in how far our framework is suitable as a
uniform approach in which other approaches can be simulated. As well, although our fo-
cus has been on the development of a general framework, it appears that the approaches
under strategy ∗2 have good properties (as evidenced by our survey of properties, as
well as the examples presented) and warrant fuller investigation in their own right.

Given the numerous approaches to updating logic programs, among them [2–10],
a detailed comparison to the literature is beyond the scope of this paper. An excellent
survey is given by Eiter et al. [9]. We have already compared our approach in some
detail to the one of Eiter et al. [9]. We summarise here differences with some particu-
larly related approaches. Alferes et al. [8] use similar techniques for combining update
operations with preferences. However, in contrast to our approach, preferences are not
used to implement updates but rather as an additional means for guiding the update.
Zhang and Foo [4] were first in mapping update operations onto preference handling in
answer-set programming. Unlike us, however, their approach is based on the elimina-
tion of conflicting rules and thus on rewriting logic programs. Furthermore, the resulting
update program is given in terms of a set of programs, which prohibits iterated update
operations as well as a comparison in view of the postulates discussed in Section 3.
Interesting recent work [10] gives a framework for characterising update approaches in
terms of the notion of forgetting.
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