
The Second Answer Set Programming Competition

Marc Denecker1, Joost Vennekens1, Stephen Bond1, Martin Gebser2, and Mirosław
Truszczyński3

1 Department of Computer Science, Katholieke Universiteit Leuven Celestijnenlaan 200A,
B-3001-Heverlee, {marcd,joost,stephen}@cs.kuleuven.be

2 Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam,
Germany, gebser@cs.uni-potsdam.de

3 Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA,
mirek@cs.uky.edu

Abstract. This paper reports on the Second Answer Set Programming Competi-
tion. The competitions in areas of Satisfiability checking, Pseudo-Boolean con-
straint solving and Quantified Boolean Formula evaluation have proven to be a
strong driving force for a community to develop better performing systems. Fol-
lowing this experience, the Answer Set Programming competition series was set
up in 2007, and ran as part of the International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR). This second competition, held
in conjunction with LPNMR 2009, differed from the first one in two important
ways. First, while the original competition was restricted to systems designed for
the answer set programming language, the sequel was open to systems designed
for other modeling languages, as well. Consequently, among the contestants of
the second competition were a CLP(FD) team and three model generation sys-
tems for (extensions of) classical logic. Second, this latest competition covered
not only satisfiability problems but also optimization ones. We present and dis-
cuss the set-up and the results of the competition.

1 Introduction

In many real-life problems, we search for objects of complex nature — plans, sched-
ules, assignments. Several research areas within computer science, operations research
and mathematics are concerned with the development of systems that compute such
objects from their specifications. Researchers in these areas design and study languages
to describe objects of interest, as well as algorithms to extract them from these descrip-
tions. Depending on the language and the area, such objects are called “answer sets”,
“valuations”, “structures”, “interpretations”, “functions” or “arrays”. Answer Set Pro-
gramming (ASP), propositional Satisfiability (SAT) and Constraint Programming (CP)
are arguably the three most prominent areas developing such languages and techniques.

In the context of logic, it is often the case that once constraints on objects to search
for are given as formulas (rules), models of the resulting theory determine answers to
the search problem — objects satisfying the constraints. For instance, each model of
a theory specifying a scheduling domain typically defines a correct schedule. Thus,
a model generator applied to such a theory will solve the corresponding scheduling



problem. This idea of model generation as a declarative problem solving paradigm has
been pioneered in the area of ASP [1–3].

ASP has three fundamental characteristics: a modeling language based on the syn-
tax of logic programs, the use of the answer set semantics [4] to interpret programs in
that language, and a problem-solving methodology in which a program is written so that
its answer sets provide solutions. ASP has its origins in Logic Programming (LP) [5,
6], in particular in the attempts in the 1980s to develop a declarative semantics for logic
programs with negation and to turn this logic into a formalism suitable for knowledge
representation. Gelfond and Lifschitz sought inspiration in nonmonotonic reasoning [7,
8] and proposed to interpret logic programs as special default theories under the se-
mantics of Reiter [8]. Based on this view, they developed the stable model semantics
for logic programs [9], and extended it later to the answer set semantics for disjunctive
logic programs with classical negation [4], which is the core ASP language today.

The area made a major leap in 1997, when the first two systems to compute an-
swer sets of logic programs were developed: dlv [10] and smodels [11]. These systems
demonstrated that effective tools for processing answer set programs are possible. Fol-
lowing that, in 1999, Marek and Truszczyński [1] and Niemelä [2] proposed answer set
computation as a new declarative problem solving paradigm, and Lifschitz dubbed the
area answer set programming [12]. It turned out that a rich class of problems could be
modeled elegantly as answer set programs according to this paradigm. That became a
strong driving force for the development of fast computational techniques in ASP, and
for studies of practical applications where the ASP tools could be used effectively.

Experience in areas concerned with checking propositional or Pseudo-Boolean (PB)
satisfiability and evaluating Quantified Boolean Formulas (QBF) shows that a program-
ming competition gives an effective incentive to the research community to work on
developing better performing systems. ASP sought to emulate that experience. The first
preliminary competitions for ASP systems were held in 2002 and 2005 at two Dagstuhl
meetings [13]. In 2007, the First Answer Set Programming System Competition [14]
was organized as part of LPNMR. That competition consisted of four tracks. In three
tracks, solvers were tested on prespecified answer set programs. In the SCore-v and
SCore tracks, input consisted of a ground logic program, respectively with and without
disjunction; in the SLparse track, the programs used lparse’s output language (includ-
ing aggregates). In the fourth track, called Model, Ground, Solve (MGS), contestants
encoded problems in a language of their choice. Ten teams competed. The clasp solver
won the SCore and SLparse tracks, and the competition version of dlv won in SCore-v
and MGS.

In the past two years, some important developments have occurred in ASP. First,
as it is clear from the results of the second ASP competition (see Section 5), exist-
ing systems have improved considerably, both in available language features and in the
speed of the solvers. In addition, new systems have been built, and more teams com-
peted. Clearly, the first ASP competition has had its desired effect! Second, the ASP
community has been gradually opening up to other domains. The fields of SAT [15],
SAT Modulo Theories (SMT) [16], CP [17] and, in some way, also Abductive Logic
Programming (ALP) [18] are in one key respect very close to ASP. Namely, the ASP
declarative problem solving paradigm does not depend on the answer set programming



language but applies to and, in fact, has been used with other declarative languages too.
For example, Mitchell and Ternovska [19] proposed to use model expansion (a form of
model generation) for (extensions of) first-order logic as a declarative problem solving
paradigm for NP search problems. (Ground) abduction in ALP is similar to model gen-
eration [18], and integrations of ALP and CLP have been used for planning, scheduling
and constraint solving problems [20, 21]. Moreover, workshops organized by the ASP
community such as Answer Set Programming and Other Computing Paradigms (AS-
POCP), held in conjunction with the International Conferences on Logic Programming
in Udine in 2008 and Pasadena in 2009, and Logic and Search (LaSh), held in Seattle in
2006 and Leuven in 2008, explicitly aimed to bring together researchers from all fields
that share the problem solving methodology based on model generation.

The Second Answer Set Programming Competition, organized in conjunction with
LPNMR 2009, further fortified this trend. Having a competition that would be open not
only to the ASP community but also to the communities of SAT, LP, CP, etc. was an
important objective of the program committee, and a key condition for accepting the
charge of organizing it put forth by the members of the Knowledge Representation and
Reasoning (KRR) group at the K.U. Leuven. The underlying idea was that only such
an open competition can lead to progress and result in new insights into the strengths of
different technologies in the context of diverse applications. An important ramification
was that the competition had to be restricted to the Model and Solve track, as only that
mode allows teams using tools based on different languages and logics to compete. On
the other hand, the scope of the competition was expanded to include not only decision
problems but also optimization ones.

The first step in organizing the competition was to collect benchmarks — specific
problems together with sets of instances. Many researchers contributed, and we grate-
fully acknowledge their efforts. In total, we received 38 benchmarks, nine of which were
optimization problems. Most benchmarks came from ASP researchers, some came from
the Constraint Logic Programming (CLP) [22] community. We split these benchmarks
into four categories: the P decision class consisting of polynomially solvable decision
problems, the NP decision class consisting of decision problems in NP not known to be
polynomially solvable, the global decision class consisting of all problems in the first
two groups and of one Σp

2 -complete problem and, finally, the optimization class.
The competition was a success. Sixteen teams competed, with nine of them for the

first time! Twelve teams used the ASP language and tools. The call for participation
to other communities had limited success. Three teams, Enfragmo, IDP and amsolver,
used model generators/expanders for first-order logic extended with aggregates, arith-
metic and, in the case of IDP and amsolver, also with inductive definitions. However,
the amsolver team competed only on eight benchmarks. One team, BPSolver-CLP(FD),
led by Neng-Fa Zhou, used the CLP(FD) solver B-Prolog. There were no SAT, PB nor
SMT participants, but SAT, PB or SMT solvers were used in many systems.

It is important to note that the second ASP competition had a policy of openness
about benchmark solutions (programs encoding problem specifications). Several teams
made their codes publicly available, allowing other teams to profit from their efforts.
For example, at least eight teams used the benchmark solutions by the Potassco team
available at [23].



The paper is organized as follows. In the next section, we give an outline of the
competition and specify its format. In Section 3, we discuss the collection of bench-
marks, the ranking system and the competition platform. In Section 4, we introduce the
teams that competed. We present the results in Section 5. Finally, we close by summa-
rizing our experience and outlining potential future improvements. For more detailed
information on the results of this competition, we refer to [24].

2 Outline of the Competition

The second ASP competition had one track, referred to as Model and Solve, and in-
cluded both decision and optimization problems.

The first step of the competition was a call for submitting benchmark problems. This
call was sent to research communities of ASP, LP, SAT and CP. Benchmark authors
were invited to provide an (informal) problem description, input and output predicates,
a set of instances and a checker program to verify the correctness of solutions (see
Section 3 for details).

Contributed benchmarks were then evaluated by the organizers and the program
committee (from now on referred to simply as organizers). The overall benchmark pool
was a mixture of many diverse decision problems and several optimization problems.
There were fundamental differences between decision benchmarks, and some seemed
to favor particular types of systems quite strongly. To understand better which features
were useful for particular types of problems, the organizers decided to split decision
benchmarks into the following sub-categories:

Decision-in-P class: Problems that can be solved in polynomial time. While they are
simple, the challenge is the sheer size of the instances requiring highly optimized
grounding techniques.

Decision-in-NP class: Problems that are in NP but are not known to be in P. They are
the problems that require highly effective search algorithms.

Decision-global class: Problems from the previous two groups and one Σp
2 -complete

problem, the well-known Strategic Companies problem. The goal of this category
is to evaluate solving systems with respect to both their grounding and search ef-
fectiveness on a broad range of problems of varying complexity.

In the competition, each team was to solve each benchmark problem for several
instances. To this end, each team had to submit a script for each benchmark on which the
team wanted to compete. This script was to call the solver and apply it to the benchmark
encoding and a problem instance given through standard input. During the competition,
this script was called repeatedly for each instance of the benchmark.

For both decision and optimization problems, a problem instance was represented
as a sequence of atomic clauses (an atom followed by a period) over predicates from
the input vocabulary. The output depended on the type of problem:

Decision problems: The script should write the following to standard output:
– UNSATISFIABLE, if the instance has no solution.



– A sequence of atomic clauses in the output vocabulary, if the instance is satis-
fiable. Such a sequence should represent a ”witness” to the satisfiability of the
instance, that is, it should be the set of atoms over the output predicates in an
answer set or model (for first-order logic formalisms) determining a solution
for the instance. The format is the same as with the input except that it must
not contain line breaks.

– UNKNOWN, if the solver decides to give up before timeout.

Optimization problems: The script should output the following:
– UNSATISFIABLE, in case of an unsatisfiable instance.
– A series of witnesses of the search problem, if the instance is satisfiable. The

format of a witness is the same as for decision problems. Witnesses are sepa-
rated by line breaks. The last (and hopefully best) witness is considered as the
generated solution.

– OPTIMUM FOUND, if the instance is satisfiable and the solver can ascertain
the optimality of the last produced witness.

Remark. The use of separate scripts for different benchmarks gives teams the freedom
to fine-tune parameter settings to specific benchmarks, or even to use different solvers.
During the installation phase of the competition, this raised some controversy among
the participants. Our point of view is that for an open competition, there is no option
but to offer this freedom. For example, a SAT team should have the freedom to develop
for each benchmark a program to compute the CNF theory corresponding to an in-
stance. However, only two teams, Potassco and BPSolver-CLP(FD) made extensive use
of the facility to tune systems towards benchmarks. Potassco used various grounders
and solvers, with different parameter settings. The BPSolver-CLP(FD) team used B-
Prolog’s control structures to implement various labeling strategies. Other teams used
the same combination of systems and parameters for all decision problems and for all
optimization problems. This distinction is relevant for the interpretation of the compe-
tition results and will be taken into account in Section 5.

3 Benchmarks

The collected benchmarks constitute the result of efforts by many researchers, mostly
from the ASP community; some were provided by the BPSolver-CLP(FD) team. The
author(s) of a benchmark problem provided us with the following information:

– a clear non-ambiguous (informal) problem description,
– a specification of the input and output vocabulary,
– for optimization problems, an integer-valued cost function to be minimized,
– a set of instances,
– a checker program to test the correctness of witnesses and, for optimization prob-

lems, to additionally compute the cost.

Verifying unsatisfiability of an NP-hard decision problem or optimality of a witness
of an NP-hard optimization problem is intractable in general (assuming the polynomial



Benchmark Class Contributors #Instances
HydraulicPlanning Decision,P M. Gelfond, R. Morales and Y. Zhang 15
HydraulicLeaking Decision,P M. Gelfond, R. Morales and Y. Zhang 15
CompanyControls Decision,P Mario Alviano 15
GrammarBasedInformationExtraction Decision,P Marco Manna 29
Reachability Decision,P Giorgio Terracina 15
BlockedNQueens Decision,NP G. Namasivayam and M. Truszczyński 29
Sokoban Decision,NP Wolfgang Faber 29
15Puzzle Decision,NP L. Liu, M. Truszczyński and M. Gebser 16
HamiltonianPath Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
SchurNumbers Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
TravellingSalesperson Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
WeightBoundedDominatingSet Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
Labyrinth Decision,NP Martin Gebser 29
GeneralizedSlitherlink Decision,NP Wolfgang Faber 29
HierarchicalClustering Decision,NP G. Namasivayam and M. Truszczyński 12
ConnectedDominatingSet Decision,NP G. Namasivayam and M. Truszczyński 21
GraphPartitioning Decision,NP G. Namasivayam and M. Truszczyński 13
Hanoi Decision,NP G. Namasivayam, M. Truszczyński and G. Terracina 15
Fastfood Decision,NP Wolfgang Faber 29
WireRouting Decision,NP G. Namasivayam and M. Truszczyński 23
Sudoku Decision,NP Neng-Fa Zhou 10
DisjunctiveScheduling Decision,NP Neng-Fa Zhou 10
KnightTour Decision,NP Neng-Fa Zhou 10
ChannelRouting Decision,NP Neng-Fa Zhou 11
EdgeMatching Decision,NP Martin Brain 29
GraphColouring Decision,NP Martin Brain 29
MazeGeneration Decision,NP Martin Brain 29
Solitaire Decision,NP Martin Brain 27
StrategicCompanies Decision,Σp

2 M. Alviano, M. Maratea and F. Ricca 17
GolombRuler Optimization Martin Brain 24
MaximalClique Optimization Johan Wittocx 29
15PuzzleOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 16
TravellingSalespersonOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 29
WeightBoundedDominatingSetOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 29
LabyrinthOptimize Optimization Martin Gebser 28
SokobanOptimize Optimization Wolfgang Faber 29
FastfoodOptimize Optimization Wolfgang Faber 29
CompanyControlsOptimize Optimization Mario Alviano 15

Table 1. Benchmarks of the Second Answer Set Programming Competition

hierarchy does not collapse). For this reason, checkers only had to test the correctness
of witnesses, and not of the answers UNSATISFIABLE or OPTIMUM FOUND.

Table 1 gives an overview of all benchmarks of the competition. For each problem,
the entry specifies the author(s), the category and the number of instances used in the
competition.

3.1 Detecting Errors

A team was disqualified for a benchmark as soon as an error was detected for one of the
benchmark instances. As we wrote before, checker programs did not test correctness
of UNSATISFIABLE and OPTIMUM FOUND. To check the correctness of those
answers, we used the following incomplete strategy. An erroneous UNSATISFIABLE
answer for an instance is reported if another solver finds a correct witness. An erroneous
OPTIMUM FOUND answer for an instance is reported if another solver finds a strictly



better solution. This method can only detect an erroneous UNSATISFIABLE answer
if at least one solver finds a correct witness. A similar comment holds for erroneous
OPTIMUM FOUND answers.

3.2 Ranking System

Ranking on decision problems. The ranking system for the three decision problem
tracks is very similar to the one used in the first ASP competition. The primary criterion
is the number of instances solved. For each problem instance of each benchmark, the
teams are given a time bound of 600 seconds to solve the instance. Each participant is
assigned points according to the number of instances that can be solved within this time
bound. For each benchmark, a team is awarded points as follows:

– No points, if the solver makes an error on one of the instances of the benchmark.
– Otherwise, 20(S/N) points, where S is the number of instances solved by the team

and N is the number of instances of this benchmark that were solved by at least
one team.

This boils down to the weighted sum over solved instances, the weight of a solved
instance from a particular benchmark being 1/N , where N is the number of instances
of this benchmark that were solved by at least one team. By defining weights in this way
(normalizing with respect to the total number of instances solved within a benchmark),
the method prevents benchmarks with (very) many instances from dominating the score.

Ties are resolved by comparing actual running time where, for UNKNOWN an-
swers, the timeout time is taken as the running time. During the competition, system
failures frequently occurred, most often due to systems running out of memory. When
a system failure occurred on an instance, it was treated as an UNKNOWN answer and
assigned the timeout time as the running time.

Ranking on optimization problems. The ranking of teams on optimization problems
depends on the quality of the solution they find. We recall that each problem has a cost
function mapping a solution to an integer. Solutions with minimal cost are desirable for
each instance. The checker programs of the optimization problems not only check the
correctness of a witness for an instance, but also compute its cost. Teams are awarded
points proportionally to the distance between the cost of the returned solution and the
lowest cost of any solution found by any team. Ties are resolved according to the run-
ning time. Extra points are given to systems that correctly (or not incorrectly) return the
keyword OPTIMUM FOUND.

A team could earn 100 points per instance of a benchmark. These points were dis-
tributed as follows:

– No points, if the solver makes an error on one of the instances of the benchmark.
– 100 points, if the solver correctly outputs UNSATISFIABLE.
– If the solver produces a correct witness:

• it is awarded an initial 25 points;



• in addition, it can receive up to 50 points for the quality of the solution. Let
M be the lowest cost of a solution that was produced by any solver for this
instance. If the cost of the solution produced by the team is Q, then the team is
awarded 50(M/Q) points;

• in addition, 25 points are awarded if the solver correctly outputs OPTIMUM
FOUND.

The ranking score for this category is a weighted sum of the earned points. The
weight for an instance in a benchmark is 1/N , where N is the number of solved in-
stances from that benchmark (by any team). This is done to prevent a disproportionate
effect benchmarks with many instances might otherwise have on the scores.

Global rankings. We also used two global rankings: one for all decision problems, and
another one for all decision and optimization problems. The weighting of individual de-
cision benchmarks within the global decision category is calculated in the same fashion
as described above. The global ranking awards each team a score that is the average
of its score for the global decision raking and its score for the optimization ranking
(divided by 100). This gives equal importance to both categories of the competition.

3.3 Competition Software and Platform

The competition was run on a pool of computers of the DTAI research group of the K.U.
Leuven. The system consisted of one network server through which participants could
login via ssh, one database server for storing state and results, and a pool of five identical
Linux machines reserved for the competition and only accessible through the network
server. One of these machines was reserved for participants to install and test solutions,
while the other four served for the actual testing of solvers on benchmark instances.
The system was installed and maintained by the system group of the Computer Science
Department of the K.U. Leuven, in particular Bart Swennen and Kris Vangeneugden.

The competition software was derived from software that had been developed for
De Vlaamse Programmeerwedstrijd1 (the Flemish Programming competition) by Pieter
Wuille (PhD student of DTAI). Pieter helped us greatly by adapting, maintaining and
running the benchmarking software for this competition.

The operation mode of the competition system can be sketched as follows. When
a team submits a benchmark solution to the competition server, the latter registers it
in its database. The competition software maintains identical copies of all submitted
solvers and benchmarks on the four competition machines. The tests of the instances
are controlled by the database server and four client processes that run on the four test
machines. Each client process requests a task from the database server. The task con-
sists of executing a submitted benchmark script on an instance. The database server
distributes the tasks and maintains their status and the obtained results. When a client
process is assigned a task, it executes it with limited time and memory. When the bench-
mark script returns a witness, the checker script is called on it. For optimization prob-
lems, the checker program is called on the last generated witness. The client process

1 http://www.vlaamseprogrammeerwedstrijd.be/?page=main



collects all necessary data (time, correctness of witness, system error, timeout), sends
the data to the database server and requests a new task.

The five competition machines had identical hardware and software. The installed
Linux version was Kubuntu Hardy (8.04). The details of the hardware are: Dell OptiPlex
745 (1 CPU with 2 cores: GenuineIntel Intel(R) Core(TM)2 CPU 6600 2.40GHz), 4096 MB
RAM (4x1024 MB 667 MHz 1.5 ns), Disk capacity 160 GB (model ATA ST3160815AS 3.AD).
Although these machines have two cores, the choice was made to use only one core per
task and per computer. Thus, effective parallelism was impossible. Benchmark solutions
were executed with a timeout of 600 seconds and a memory limit of 2.79 GB RAM.

4 Competitors

Sixteen teams registered with participants from more than fifteen universities. Each
team was assigned a user account on a competition machine. Solvers and benchmark
solutions were installed from 1/4/2009 till 15/5/2009 (and later). Most participants did
not submit solutions for all benchmarks, often because of limitations of their systems.
For instance, only four teams proposed a solution for the Strategic Companies problem
(a Σp

2 -complete problem). Some groups submitted multiple systems: Potsdam joined
with two teams each using multiple systems, Helsinki (TKK) with three systems, and
a team uniting the forces of researchers at the universities of Kentucky and of Texas at
Tyler and at Microsoft also submitted three different systems.

The first ASP systems, dlv and (a direct descendant of) smodels, were still in the
competition and scored very well. The Smodels-IE solver is an updated version of
smodels developed at the University of Bath. A variety of languages and of solver
techniques were present in the competition. As for the languages, twelve teams used
different dialects of ASP, three used extensions of first-order logic, and one team used
B-Prolog with CLP(FD) and a planning preprocessor.

Five teams (Potassco, DLV, Claspfolio, Smodels-IE, ASPeRiX) participated with
“native” ASP solvers, the one of ASPeRiX performing grounding on the fly, without a
separate grounder. Other teams used a variety of back-ends: existing or modified SAT
solvers (IDP, CMODELS, SUP, Enfragmo, LP2SAT+MINISAT, sabe), SMT solvers
(LP2DIFF+BCLT, LP2DIFF+YICES), a PB solver (pbmodels) and a new solver for
propositional logic with weight constraints (amsolver). Eight teams used the grounder
gringo and the benchmark solutions available at the Asparagus system [23].

The teams and their systems are summarized in Table 2. Many teams did not partic-
ipate on all benchmarks. Table 3 specifies the benchmarks on which teams competed.

5 Results

This section presents the results of the Second Answer Set Programming System Com-
petition. For each category of decision problems, we report the score of each team,
the number of solved instances, and the total time. For the optimization category, we
report the score and total time per participating team. In the rankings, distinction is



Team Affiliation Language Systems
IDP K.U. Leuven, KRR FO(·) idp (gidl + minisatid)

Potassco U. of Potsdam ASP clasp, claspd, gringo, clingo,
iclingo, clingcon, bingo

DLV U. of Calabria ASP dlv
Claspfolio U. of Potsdam ASP gringo + clasp
Smodels-IE U. of Bath ASP gringo + smodelsie
ASPeRiX U. of Angers ASP asperix
CMODELS U. of Texas at Austin ASP gringo + cmodels
SUP U. of Texas at Austin ASP gringo + sup
BPSolver-CLP(FD) International B-Prolog team CLP(FD) bprolog (tabling, CLP(FD), Bfd

mv )
Enfragmo Simon Fraser U., Computational Logic Laboratory FO(·) enfragmo (grounder + SAT solver)
LP2DIFF+BCLT Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2diff + bclt
LP2SAT+MINISAT Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2exp + minisat
LP2DIFF+YICES Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2diff + yices
pbmodels U. of Kentucky, U. of Texas at Tyler, Microsoft ASP pbmodels (uses minisat+)
sabe U. of Kentucky, U. of Texas at Tyler, Microsoft ASP sabe (uses minisat)
amsolver U. of Kentucky, U. of Texas at Tyler, Microsoft FO(·) amsolver

Table 2. Participating teams and systems

Decision in P Decision in NP Σp
2 Optimization

Team H
yd

ra
ul

ic
Pl

an
ni

ng
H

yd
ra

ul
ic

L
ea

ki
ng

C
om

pa
ny

C
on

tr
ol

s
G

ra
m

m
ar

B
as

ed
In

fo
rm

at
io

nE
xt

ra
ct

io
n

R
ea

ch
ab

ili
ty

B
lo

ck
ed

N
Q

ue
en

s
So

ko
ba

n
15

Pu
zz

le
H

am
ilt

on
ia

nP
at

h
Sc

hu
rN

um
be

rs
Tr

av
el

lin
gS

al
es

pe
rs

on
W

ei
gh

tB
ou

nd
ed

D
om

in
at

in
gS

et
L

ab
yr

in
th

G
en

er
al

iz
ed

Sl
ith

er
lin

k
H

ie
ra

rc
hi

ca
lC

lu
st

er
in

g
C

on
ne

ct
ed

D
om

in
at

in
gS

et
G

ra
ph

Pa
rt

iti
on

in
g

H
an

oi
Fa

st
fo

od
W

ir
eR

ou
tin

g
Su

do
ku

D
is

ju
nc

tiv
eS

ch
ed

ul
in

g
K

ni
gh

tT
ou

r
C

ha
nn

el
R

ou
tin

g
E

dg
eM

at
ch

in
g

G
ra

ph
C

ol
ou

ri
ng

M
az

eG
en

er
at

io
n

So
lit

ai
re

St
ra

te
gi

cC
om

pa
ni

es
G

ol
om

bR
ul

er
M

ax
im

al
C

liq
ue

15
Pu

zz
le

O
pt

im
iz

e
Tr

av
el

lin
gS

al
es

pe
rs

on
O

pt
im

iz
e

W
ei

gh
tB

ou
nd

ed
D

om
Se

tO
pt

im
iz

e
L

ab
yr

in
th

O
pt

im
iz

e
So

ko
ba

nO
pt

im
iz

e
Fa

st
fo

od
O

pt
im

iz
e

C
om

pa
ny

C
on

tr
ol

sO
pt

im
iz

e

IDP y y n y y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y n
Potassco y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y

DLV y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y
Claspfolio y y y y y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y y

Smodels-IE y y y n y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y y
ASPeRiX y y n y y y y y n y n n n n n n n y n n y y n y n n n n n n n n n n n n n n

CMODELS y y y y y y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n
SUP y y y y y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n

BPSolver-CLP(FD) y y y y y y n y y y y y n y y y y y y y y y y y y y y y y y y y y y n n y y
Enfragmo y y y n y y n y y y y y n y y y y y y n y y y n y y n y n n y n n n n n n n

LP2DIFF+BCLT y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n
LP2SAT+MINISAT y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n
LP2DIFF+YICES y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n

pbmodels y y n n y y y y y y y y n y y y y y y y y n y y y y y y n y n n n n n y n n
sabe y y n n y y y y y y y y n y y y y y y y y n y y y y y y n y n y n n n y n n

amsolver n n n n n y n n y y y n n n y y n n n n y n n n n y n n n n n n n n n n n n

Table 3. Submitted benchmark solutions per team

made between single-system and multi-system teams. The latter used multiple sys-
tems/parameter settings for different benchmarks and are marked by *. More statistics
and details are available at [24].



Before actually giving the results, we would like to warn the reader to be careful in
interpreting them. Below, we point out the most important issues:

– The score is a weighted sum of numbers of solved instances per benchmark. Solv-
ing an instance of a benchmark with a large number of instances has a smaller con-
tribution than solving one of a benchmark with fewer instances. Thus, it is possible
that one team solves more instances but has a smaller score than another team. The
weights were introduced to prevent benchmarks with many instances from domi-
nating the competition.

– Most teams did not participate on all benchmarks. The only teams that participated
on all benchmarks are Potassco and DLV. When a benchmark solution was missing,
a team was assigned score 0 and 600 seconds time per instance. Consequently, the
rankings of teams for which benchmark solutions were missing may not give an
accurate account of the quality of their systems. We refer to [24] for detailed data
per benchmark.

– Fine-tuning a benchmark solution (for instance, by adding certain redundant con-
straints) may have a major impact on speed. Not all teams were in a position to
spend the same amount of time and care on this, which complicates an objec-
tive comparison between different solvers. This factor is not significant among the
teams that used the encodings available at [23]: Potassco, Claspfolio, CMODELS,
SUP, Smodels-IE, LP2DIFF+BCLT, LP2SAT+MINISAT and LP2DIFF+YICES.

5.1 Decision Problems: NP

Benchmarks in this track belong to NP and are not known to be in P. These problems
require that solvers search quickly through large search spaces.

The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM
THIRD PLACE WINNER CMODELS SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The ranking of all teams is provided in Figure 1. Figure 2 gives a comprehensive graph-
ical overview of the results of all systems. The x-axis represents the number of (solved)
benchmark instances, and the y-axis represents the maximum time needed for solving
one of these. To compute this plot, the instances solved by each team were ordered ac-
cording to running times, and a point (x, y) in the chart expresses that the xth instance
was solved in y seconds. The more to the right the curve of a team ends, the more
benchmark instances were solved within the allocated time and space.

5.2 Decision Problems: P

Problems in this class are polynomially solvable. Difficulty in solving them stems from
the sheer size of the instances, which grounders may not be able to handle.

The winners in this category are:



Place Team Score #Solved Time
1 Potassco∗ 0.97 491 / 516 = 95% 021253
2 Claspfolio 0.89 451 / 516 = 87% 049513
3 CMODELS 0.85 434 / 516 = 84% 072283
4 IDP 0.83 409 / 516 = 79% 077428
5 LP2SAT+MINISAT 0.82 430 / 516 = 83% 075883
6 SUP 0.80 405 / 516 = 78% 083749
7 DLV 0.76 391 / 516 = 75% 100496
8 LP2DIFF+BCLT 0.73 378 / 516 = 73% 108715
9 LP2DIFF+YICES 0.72 373 / 516 = 72% 096989

10 Smodels-IE 0.61 309 / 516 = 59% 137300
11 Enfragmo 0.59 291 / 516 = 56% 156298
12 BPSolver-CLP(FD)∗ 0.57 274 / 516 = 53% 155559
13 pbmodels 0.44 214 / 516 = 41% 201563
14 sabe 0.40 203 / 516 = 39% 215250
15 amsolver 0.12 83 / 516 = 16% 265833
16 ASPeRiX 0.12 32 / 516 = 06% 293363

Fig. 1. Decision problems in NP: Ranking Fig. 2. Decision problems in NP: Plot

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER BPSolver-CLP(FD)∗

THIRD PLACE WINNER DLV FIRST SINGLE-SYSTEM TEAM
Claspfolio SECOND SINGLE-SYST. TEAM
Smodels-IE THIRD SINGLE-SYSTEM TEAM

The results for all teams are presented in Figure 3 and in Figure 4.

Place Team Score #Solved Time
1 Potassco∗ 1.00 89 / 89 = 100% 00735
2 BPSolver-CLP(FD)∗ 1.00 89 / 89 = 100% 01342
3 DLV 1.00 89 / 89 = 100% 04861
4 Claspfolio 0.80 60 / 89 = 67% 17982
5 Smodels-IE 0.80 60 / 89 = 67% 18021
6 LP2SAT+MINISAT 0.80 60 / 89 = 67% 18270
7 SUP 0.80 60 / 89 = 67% 18606
8 LP2DIFF+BCLT 0.80 60 / 89 = 67% 18713
9 CMODELS 0.80 60 / 89 = 67% 19072

10 LP2DIFF+YICES 0.78 59 / 89 = 66% 18864
11 Enfragmo 0.76 57 / 89 = 64% 24157
12 ASPeRiX 0.69 66 / 89 = 74% 18051
13 IDP 0.54 41 / 89 = 46% 29594
14 sabe 0.41 31 / 89 = 34% 36426
15 pbmodels 0.38 29 / 89 = 32% 36656
16 amsolver 0.00 00 / 89 = 0% 53845

Fig. 3. Decision problems in P: Ranking Fig. 4. Decision problems in P: Plot



5.3 Decision Problems: Global

This track consists of all previous decision problems and one Σp
2 problem, the well-

known Strategic Companies problem.
The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM
THIRD PLACE WINNER CMODELS SECOND SINGLE-SYSTEM TEAM

DLV THIRD SINGLE-SYSTEM TEAM

The global decision problem results are provided in Figure 5 and in Figure 6.

Place Team Score #Solved Time
1 Potassco∗ 0.95 585 / 622 = 94% 029607
2 Claspfolio 0.84 511 / 622 = 82% 077780
3 CMODELS 0.82 498 / 622 = 80% 099721
4 DLV 0.81 497 / 622 = 79% 108448
5 LP2SAT+MINISAT 0.79 490 / 622 = 78% 104438
6 SUP 0.77 465 / 622 = 74% 112641
7 IDP 0.75 450 / 622 = 72% 117223
8 LP2DIFF+BCLT 0.72 438 / 622 = 70% 137713
9 LP2DIFF+YICES 0.70 432 / 622 = 69% 126138

10 BPSolver-CLP(FD)∗ 0.63 365 / 622 = 58% 165902
11 Smodels-IE 0.62 369 / 622 = 59% 165607
12 Enfragmo 0.60 348 / 622 = 55% 190741
13 pbmodels 0.42 243 / 622 = 39% 248505
14 sabe 0.39 234 / 622 = 37% 261961
15 ASPeRiX 0.21 98 / 622 = 15% 321700
16 amsolver 0.10 83 / 622 = 13% 329963

Fig. 5. Decision problems globally: Ranking Fig. 6. Decision problems globally: Plot

5.4 Optimization Problems

The competition included nine optimization problems. Most are optimization versions
of decision benchmarks, with the exception of Golomb Ruler and Maximal Clique.
Only nine of the sixteen teams submitted solutions to optimization problems.

The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM
THIRD PLACE WINNER DLV SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The results for the participating teams are presented in Figure 7 and in Figure 8.



Place Team Score Time
1 Potassco∗ 81.12 74317
2 Claspfolio 69.61 78333
3 DLV 61.04 92889
4 IDP 50.88 101081
5 Smodels-IE 49.88 103176
6 BPSolver-CLP(FD)∗ 35.8 113551
7 sabe 6.74 122848
8 Enfragmo 5.07 121598
9 pbmodels 1.19 135883

Fig. 7. Optimization problems: Ranking Fig. 8. Optimization problems: Plot

5.5 Decision and Optimization Problems: Global

The goal of this track is to select the systems with widest applicability. Scores are
obtained as the average of the scores in the global decision and optimization categories
to give decision and optimization problems the same importance.

The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM
THIRD PLACE WINNER DLV SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The combined results for decision and optimization problems are shown in Figure 9 and
in Figure 10.

5.6 Summary of Results

The Potassco team of the University of Potsdam is the clear winner of the competition.
The team won in every category, and in all but the P track with a margin of around 10%.
Potassco won twenty of the thirty-eight benchmarks. This is the result of a large effort
for developing an excellent library of systems (clasp, claspd, gringo, clingo, iclingo,
clingcon, bingo) and intensive work of an experienced team on benchmark solutions
and parameter tuning. We congratulate the team on this success!

Potassco spent by far the most effort in fine-tuning their systems to each benchmark,
and this paid off. Given that the goal of declarative problem solving is to minimize the
effort of programmers, it is of equal interest to investigate the performance of teams
that used a single collection of systems with uniform parameter settings.



Place Team Score Time
1 Potassco∗ 0.88 103925
2 Claspfolio 0.77 156113
3 DLV 0.71 201338
4 IDP 0.63 218304
5 Smodels-IE 0.56 268783
6 BPSolver-CLP(FD)∗ 0.49 279453
7 CMODELS 0.41 237661
8 LP2SAT+MINISAT 0.39 242378
9 SUP 0.38 250581

10 LP2DIFF+BCLT 0.36 275653
11 LP2DIFF+YICES 0.35 264078
12 Enfragmo 0.32 312339
13 sabe 0.23 384810
14 pbmodels 0.21 384388
15 ASPeRiX 0.10 459640
16 amsolver 0.05 467903

Fig. 9. Global category: Ranking Fig. 10. Global category: Plot

In all rankings except for the P decision track, the best single-system was Clasp-
folio2. Claspfolio ran gringo and the clasp solver whose settings were chosen from
instance features. On decision problems in P, the best team using a single setting for all
benchmarks is DLV. BPSolver-CLP(FD) also performed excellently on P problems.

As for the winners of individual benchmarks, we already mentioned that Potassco
won twenty. Five benchmarks were won by BPSolver-CLP(FD), and four by DLV.
Claspfolio and Smodels-IE each won two, and IDP, Enfragmo and amsolver one each3.

6 Discussion

The principal goals of this competition, namely, taking a snapshot of the state of the
art of declarative programming paradigms and fostering future improvements, are sim-
ilar to related competitions on SAT, PB, QBF, SMT, CP, etc. However, in contrast to
those and the first ASP competition held in 2007, the form of this competition, aim-
ing at openness towards alternative paradigms, was quite different. This manifests itself
in the fact that participants were allowed (and actually required) to provide their indi-
vidual modelings for the benchmarks used in the competition. In contrast to the other
competitions mentioned, the inputs to systems run in this competition were not fixed
by the organizers, except for the (arbitrarily chosen) format of problem instances. As
a consequence, the results of this competition may indicate trends on the simplicity or
difficulty of developing effective problem solutions using particular systems, but they
cannot provide a perfect picture of the efficiency of the systems themselves.

Several SAT, PB and SMT systems were involved in the competition, as back-ends
of ASP or FO(·) systems. Techniques from these areas are also applied in “native” ASP

2 In fact, Claspfolio, just like CMODELS and SUP, used a different grounder for one benchmark.
We can ignore this here because they had a zero score for this benchmark.

3 This list does not include the multiple ex aequo winners of HydraulicLeaking and Hydraulic-
Planning.



solvers like those used by Potassco and Claspfolio. That there were no teams from these
areas in the competition, and only one team from CLP, may have different explanations.
These fields have their own, well-established competitions, while the ASP competition
is relatively recent and open to them only for the first time. Another explanation is that
the difficulty of modeling the benchmark problems was very high for them. We know
of one SAT team that considered to participate in the competition, but gave up because
of this reason. Despite the flexibility of CLP(FD) in modeling constraint problems,
BPSolver-CLP(FD) had difficulties in modeling certain benchmarks and did not submit
solutions for all of the planning problems. ASP and FO(·) appear to offer superior mod-
eling facilities, which is hardly surprising given that these languages were developed
for knowledge representation. On the other hand, BPSolver-CLP(FD) came in second
in the P track and won on three benchmarks of the NP track. This shows that tabling as
well as the constraint programming techniques featured in B-Prolog can be very useful
for some kinds of problems, in particular, those in which large domains would make
exhaustive grounding blow up in space. Other new entrants in the competition were
the FO-based systems IDP, Enfragmo and amsolver. IDP ended fourth in the NP and
global track but was less successful for P decision problems. Enfragmo and amsolver
performed very well on certain benchmarks but did not compete in enough benchmarks
to obtain a good ranking.

In their invited talks at LPNMR 2007, both Nicola Leone4 and Jack Minker5 ap-
pealed for using real-world application problems in the ASP competition. Although the
benchmarks of the current contest covered a variety of different modeling or compu-
tational aspects, only a few benchmarks came from such applications. This issue was
discussed with several contributors of benchmarks. The problem is not that there are
no real-world applications. In fact, the contrary is shown in the application summary
track of LPNMR 2009. But such real-world problems tend to be very complex, making
it harder for a contributor to describe the problem in an informal yet unambiguous way
and to create suitable problem instances. Moreover, the effort of modeling such prob-
lems may become too high for some contestants. This problem is inherent to a Model
and Solve competition and does not occur in competitions where the formal theory is
given, as in the SAT competition or the categories SCore, SCore-v and SLparse of the
first ASP competition.

As motivated in Section 2, teams were free to fine-tune their solving systems to-
wards particular benchmarks. To this end, they could use a number of instances that
were available during the installation phase. Two teams effectively fine-tuned their sys-
tems in this way. BPSolver-CLP(FD) may have no option than to do so, since the pro-
grammer needs to specify the search strategy in B-Prolog. Potassco took the opportu-
nity to test its library of systems and system parameters for controling preprocessing,
heuristics and restarts6. In the previous section, we therefore distinguished these teams
from the other single-system teams. Given that Claspfolio and Potassco used the same
benchmark solutions and mostly the same technology, the competition gives a fairly
accurate account of the impact of Potassco’s effort on fine-tuning. Globally, Claspfolio

4 http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf
5 http://lpnmr2007.googlepages.com/LPNMR-07.ppt
6 For details, see Potassco’s team webpage [24].



lost 10% on Potassco and it was outperformed by Potassco in a few benchmarks. On
the one hand, this shows that in the current state of the art, fine-tuning pays off and may
be imperative to build hard real-world applications. On the other hand, the long term
goal of declarative problem solving is to allow a programmer to focus on the declara-
tive properties of the problem and to relieve him or her of tedious control issues. The
example of Potassco and Claspfolio allows us to evaluate our current progress towards
this goal. In this respect, it is encouraging to see that globally, Claspfolio lost by only
10%.

We would like to end with some reflections and recommendations on the competi-
tion format. We believe that an open model and solve competition like this one fosters
cross-fertilization between different areas of declarative programming and gives valu-
able global information on the quality of modeling and solving technologies. On the
other hand, it does not allow for a precise and unbiased comparison of system perfor-
mance, due to the use of different encodings. To allow for more detailed and objective
comparisons, separate competitions are needed in which problem encodings are given
and fixed. This is the format used in the SAT competition and also in the SCore, SCore-
v and SLparse tracks of the previous ASP competition. In future competitions, it would
be of interest to have such tracks for both grounders and solvers. Such tracks will not
be accessible for areas that do not rely on grounding and solving. A further prerequi-
site is the availability of common input languages. As regards a grounder competition,
a common high-level fragment of ASP and FO(·) is currently lacking and should be
strived for. For an unbiased comparison of solvers, some low-level language similar to
DIMACS for SAT, Lparse for ASP or MNF for FO(·) would need to be selected.

A final recommendation concerns the participation of SAT teams or systems in the
competition. SAT technology is heavily used in ASP and FO(·). The model and solve
track would be a good occasion to compare different SAT systems in the context of typ-
ical ASP benchmarks. Participation of a SAT team can be made very easy by providing
a grounder to DIMACS, benchmark solutions in the language of the grounder and a
script translating SAT output into the competition format. The grounders of Enfragmo
and LP2SAT+MINISAT could be used for this purpose.

Acknowledgments

A great number of people have contributed to the success of this competition. We thank
the members of the program committee who helped to set up the competition format.
We are indebted to all members of the ASP and CLP community that submitted bench-
marks. We are extremely grateful to everyone that participated in the contest. Thank
you for your enthusiasm and your encouragements.

We wish to thank the DTAI group of the K.U. Leuven for providing the pool of
computers on which the competition was run. Special thanks go to Pieter Wuille for de-
veloping and managing the competition software, and to Bart Swennen and Kris Van-
geneugden for setting up the computer infrastructure. We are grateful also to Hanne
Vlaeminck and Maarten Mariën, who together with the first three authors formed the
local organization team. The KRR group participated in the competition with the IDP



team, mostly through the efforts of Johan Wittocx who did 90% of the work. The group
thanks him for this.

On behalf of the program committee and the participants, Martin Gebser and
Mirosław Truszczyński would like to thank the KRR group of the K.U. Leuven for
the huge efforts taken to prepare and to conduct this competition. Their excellent work
was invaluable to make this competition, first, possible and, second, a great success for
the ASP community in the most general sense, in view of presenting and representing
a broad spectrum of alternative yet tightly bonded modeling and solving approaches.

Martin Gebser acknowledges partial funding by DFG under Grant SCHA 550/8-1.

References

1. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In Apt, K., Marek, W., Truszczyński, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective, Springer (1999) 375–398

2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

4. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4) (1991) 365–385

5. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication homme-
machine en Francais. Technical report, University of Marseille (1973)

6. Kowalski, R.: Predicate logic as a programming language. In Rosenfeld, J., ed.: Proceedings
of the Congress of the International Federation for Information Processing, North Holland
(1974) 569–574

7. McCarthy, J.: Circumscription — a form of nonmonotonic reasoning. Artificial Intelligence
13(1-2) (1980) 27–39

8. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,

R., Bowen, K., eds.: Proceedings of the International Conference on Logic Programming,
MIT Press (1988) 1070–1080

10. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, Springer (1997)
364–375

11. Niemelä, I., Simons, P.: Smodels — an implementation of the stable model and well-founded
semantics for normal logic programs. In Dix, J., Furbach, U., Nerode, A., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (1997) 420–429

12. Lifschitz, V.: Answer Set Planning. In De Schreye, D., ed.: Proceedings of the International
Conference on Logic Programming, MIT Press (1999) 23–37

13. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.: Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemelä, I., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (2004) 3–7

14. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
first answer set programming system competition. In Baral, C., Brewka, G., Schlipf, J.,



eds.: Proceedings of the International Conference on Logic Programming and Nonmonotonic
Reasoning, Springer (2007) 3–17

15. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS Press
(2009)

16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
53(6) (2006) 937–977

17. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Elsevier
(2006)

18. Denecker, M., Kakas, A.: Abduction in Logic Programming. In Kakas, A., Sadri, F., eds.:
Computational Logic: Logic Programming and Beyond, Springer (2002) 402–436

19. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems.
In Veloso, M., Kambhampati, S., eds.: Proceedings of the National Conference on Artificial
Intelligence, AAAI Press / MIT Press (2005) 430–435

20. Kakas, A., Michael, A: Air-Crew scheduling through abduction. In Imam, I., Kodratoff,
Y., El-Dessouki, A., Ali, M., eds.: Proceedings of the International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems, Springer (1999)
600–611

21. Pelov, N., De Mot, E., Denecker, M.: Logic programming approaches for representing and
solving constraint satisfaction problems: A comparison. In Parigot, M., Voronkov, A., eds.:
Proceedings of the International Conference on Logic for Programming and Automated Rea-
soning, Springer (2000) 225–239

22. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press (1989)
23. http://asparagus.cs.uni-potsdam.de
24. http://www.cs.kuleuven.be/∼dtai/events/ASP-competition


