
plasp 3: Towards Effective ASP Planning

Y. Dimopoulos1, M. Gebser2, P. Lühne2, J. Romero2, and T. Schaub2

1 University of Cyprus
2 University of Potsdam, Germany

Abstract. We describe the new version of the PDDL-to-ASP translator plasp.
First, it widens the range of accepted PDDL features. Second, it contains novel
planning encodings, some inspired by SAT planning and others exploiting ASP
features such as well-foundedness. All of them are designed for handling multi-
valued fluents in order to capture both PDDL as well as SAS planning formats.
Third, enabled by multi-shot ASP solving, it offers advanced planning algorithms
also borrowed from SAT planning. As a result, plasp provides us with an ASP-
based framework for studying a variety of planning techniques in a uniform
setting. Finally, we demonstrate in an empirical analysis that these techniques
have a significant impact on the performance of ASP planning.

1 Introduction

Reasoning about actions and change constitutes a major challenge to any formalism
for knowledge representation and reasoning. It therefore comes as no surprise that
Automated Planning [4] was among the first substantial application of Answer Set
Programming (ASP [12]). Meanwhile this has led to manifold action languages [9],
various applications in dynamic domains [1], but only few adaptions of Automated
Planning techniques [16]. Although this has provided us with diverse insights into how
relevant concepts are expressed in ASP, almost no attention has been paid to making
reasoning about actions and change effective. This is insofar surprising as a lot of work
has been dedicated to planning with techniques from the area of Satisfiability Testing
(SAT [2]), a field often serving as a role model for ASP.

We address this shortcoming with the third series of the plasp system. From its
inception, the purpose of plasp was to provide an elaboration-tolerant platform to
planning by using ASP. Already its original design [7] foresaw to compile planning
problems formulated in the Planning Domain Definition Language (PDDL [13]) into ASP
facts and to use ASP meta-encodings for modeling alternative planning techniques. These
could then be solved with fixed horizons (and optimization) or in an incremental fashion.
The redesigned plasp 3 system features optional preprocessing by the state-of-the-art
planning system Fast Downward [10] (via the intermediate SAS format), a homogeneous
factual representation capturing both PDDL and SAS input (with multi-valued fluents),
and a normalization step to support advanced PDDL features. Moreover, plasp 3 provides
a spectrum of ASP encodings ranging from adaptions of known SAT encodings [15]
to novel encodings taking advantage of ASP-specific concepts. Finally, plasp 3 offers
sophisticated planning algorithms, also stemming from SAT planning [15], by taking
advantage of multi-shot ASP solving. The common structure of various incremental

2 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

PDDL

translator

Fast Downward
preprocessor

ASP

plan planner

PDDL
specification

ASP
facts

ASP
encoding

SAS
specification

Fig. 1. Solving PDDL inputs with plasp’s workflow (highlighted in blue)

ASP encodings makes plasp’s planning framework also applicable to dynamic domains
beyond PDDL. The usual workflow of plasp 3, though, is summarized in Figure 1.

2 ASP Encodings for Planning

We consider STRIPS-like (multi-valued) planning tasks according to [10], given by a
4-tuple 〈F , s0, s?,O〉, in which

– F is a finite set of state variables, also called fluents, where each x ∈ F has an
associated finite domain xd of possible values for x,

– s0 is a state, i.e., a (total) function such that s0(x) ∈ xd for each x ∈ F ,
– s? is a partial state (listing goal conditions), i.e., a function such that s?(x) ∈ xd for

each x ∈ s̃?, where s̃? denotes the set of all x ∈ F such that s?(x) is defined, and
– O is a finite set of operators, also called actions, where ac and ae in a = 〈ac, ae〉

are partial states denoting the precondition and postcondition of a for each a ∈ O.

Given a state s and an action a ∈ O, the successor state o(a, s) obtained by applying
a = 〈ac, ae〉 in s is defined if ac(x) = s(x) for each x ∈ ãc, and undefined otherwise.
Provided that s′ = o(a, s) is defined, s′(x) = ae(x) for each x ∈ ãe, and s′(x) = s(x)
for each x ∈ F \ ãe. That is, if the successor state o(a, s) is defined, it includes the
postcondition of a and keeps any other fluents unchanged from s. We extend the notion
of a successor state to sequences 〈a1, . . . , an〉 of actions by letting o(〈a1, . . . , an〉, s) =
o(an, o(. . . , o(a1, s) . . .)), provided that o(ai, o(. . . , o(a1, s) . . .)) is defined for all
1 ≤ i ≤ n. Given this, a sequential plan is a sequence 〈a1, . . . , an〉 of actions such that
s′ = o(〈a1, . . . , an〉, s0) is defined and s′(x) = s?(x) for each x ∈ s̃?.

Several parallel representations of sequential plans have been investigated in the
literature [4, 15, 17]. We call a set {a1, . . . , ak} ⊆ O of actions confluent if ae

i (x) =
ae

j(x) for all 1 ≤ i < j ≤ k and each x ∈ ãe
i ∩ ãe

j . Given a state s and a confluent set
A = {a1, . . . , ak} of actions, A is

– ∀-step serializable in s if o(〈a′1, . . . , a′k〉, s) is defined for any sequence 〈a′1, . . . ,
a′k〉 such that {a′1, . . . , a′k} = A;

– ∃-step serializable in s if ac(x) = s(x), for each a ∈ A and x ∈ ãc, and o(〈a′1, . . . ,
a′k〉, s) is defined for some sequence 〈a′1, . . . , a′k〉 such that {a′1, . . . , a′k} = A;

– relaxed ∃-step serializable in s if o(〈a′1, . . . , a′k〉, s) is defined for some sequence
〈a′1, . . . , a′k〉 such that {a′1, . . . , a′k} = A.

plasp 3: Towards Effective ASP Planning 3

Note that any ∀-step serializable set A of actions is likewise ∃-step serializable, and sim-
ilarly any ∃-step serializable A is relaxed ∃-step serializable. In particular, the condition
that any sequence built from a ∀-step serializable A leads to a (defined) successor state
implies that the precondition of each action in A must already be established, which
is also required for ∃-step serializable sets, but not for relaxed ∃-step serializable sets.
We extend the three serialization concepts to plans by calling a sequence 〈A1, . . . , Am〉
a ∀-step, ∃-step, or relaxed ∃-step plan if sm(x) = s?(x), for each x ∈ s̃?, and each
set Ai of actions is ∀-step, ∃-step, or relaxed ∃-step serializable, respectively, in si−1
for 1 ≤ i ≤ m, where si(x) = ae(x) for each a ∈ Ai and x ∈ ãe, and si(x) = si−1(x)
for each x ∈ F \

⋃
a∈Ai

ãe. That is, parallel representations partition some sequential
plan such that each part Ai is ∀-step, ∃-step, or relaxed ∃-step serializable in the state
obtained by applying the actions preceding Ai.

Example 1. Consider a planning task 〈F , s0, s?,O〉 with F = {x1, x2, x3, x4, x5}
such that xd

1 = xd
2 = xd

3 = xd
4 = xd

5 = {0, 1}, s0 = {x1 = 0, x2 = 0, x3 = 0,
x4 = 0, x5 = 0}, s? = {x4 = 1, x5 = 1}, and O = {a1, a2, a3, a4}, where a1 =
〈{x1 = 0}, {x1 = 1, x2 = 1}〉, a2 = 〈{x3 = 0}, {x1 = 1, x3 = 1}〉, a3 = 〈{x2 = 1,
x3 = 1}, {x4 = 1}〉, and a4 = 〈{x2 = 1, x3 = 1}, {x5 = 1}〉. One can check
that 〈a1, a2, a3, a4〉 and 〈a1, a2, a4, a3〉 are the two sequential plans consisting of four
actions. The ∀-step plan with fewest sets of actions is given by 〈{a1}, {a2}, {a3, a4}〉.
Similarly, 〈{a1, a2}, {a3, a4}〉 is the ∃-step plan with fewest sets of actions. Finally, the
relaxed ∃-step plan 〈{a1, a2, a3, a4}〉 consists of one set of actions only. �

In ASP, we represent a planning task like the one in Example 1 by facts as follows:

fluent(x1). fluent(x2). fluent(x3). fluent(x4). fluent(x5).
value(x1,0). value(x2,0). value(x3,0). value(x4,0). value(x5,0).
value(x1,1). value(x2,1). value(x3,1). value(x4,1). value(x5,1).

init(x1,0). init(x2,0). init(x3,0). init(x4,0). init(x5,0).
goal(x4,1). goal(x5,1).

action(a1). action(a2). action(a3). action(a4).
prec(a1,x1,0). prec(a2,x3,0). prec(a3,x2,1). prec(a4,x2,1).
post(a1,x1,1). post(a2,x1,1). prec(a3,x3,1). prec(a4,x3,1).
post(a1,x2,1). post(a2,x3,1). post(a3,x4,1). post(a4,x5,1).

The facts can then be combined with encodings such that stable models correspond to se-
quential, ∀-step, ∃-step, or relaxed ∃-step plans. The rules as well as integrity constraints
in Listing 1 form the common core of respective incremental encodings [6] and are
grouped into three parts: a subprogram base, including the rule in Line 1, which is not
preceded by any #program directive; a parameterized subprogram check(t), con-
taining the integrity constraint in Line 5, in which the parameter t serves as placeholder
for successive integers starting from 0; and a parameterized subprogram step(t),
comprising the rules and integrity constraints below the #program directive in Line 7,
whose parameter t stands for successive integers starting from 1. By first instantiat-
ing the base subprogram along with check(t), where t is replaced by 0, and then
proceeding with integers from 1 for t in check(t) and step(t), an incremental

4 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

Listing 1. Common part of sequential and parallel encodings for STRIPS-like planning

1 holds(X,V,0) :- init(X,V).

3 #program check(t).

5 :- query(t), goal(X,V), not holds(X,V,t).

7 #program step(t).

9 {holds(X,V,t) : value(X,V)} = 1 :- fluent(X).

11 {occurs(A,t)} :- action(A).

13 :- occurs(A,t), post(A,X,V), not holds(X,V,t).

15 change(X,t) :- holds(X,V,t-1), not holds(X,V,t).
16 effect(X,t) :- occurs(A,t), post(A,X,V).
17 :- change(X,t), not effect(X,t).

Listing 2. Extension of Listing 1 for encoding sequential plans

19 :- occurs(A,t), prec(A,X,V), not holds(X,V,t-1).

21 :- #count{A : occurs(A,t)} > 1.

encoding can be gradually unrolled. We take advantage of this to capture plans of
increasing length, expressed by the latest integer used to replace t with.

In more detail, the rule in Line 1 of Listing 1 maps facts specifying s0 to atoms
over the predicate holds/3, in which the third argument 0 refers to the given state.
Starting from 0 for the parameter t, the integrity constraint in Line 5 then tests whether
the conditions of s? are established, where the dedicated atom query(t) is set to
true only for the latest integer taken for t. This allows for increasing the plan length
by successively instantiating the subprograms check(t) and step(t) with further
integers. The latter subprogram includes the choice rule in Line 9 to generate a successor
state such that each fluent x ∈ F is mapped to some value in its domain xd. The
other choice rule in Line 11 permits to unconditionally pick actions to apply, expressed
by atoms over occurs/2, in order to obtain a corresponding successor state. Given
that both sequential and parallel plans are such that the postcondition of an applied
action holds in the successor state, the integrity constraint in Line 13 asserts respective
postcondition(s). On the other hand, fluents unaffected by applied actions must remain
unchanged, which is reflected by the rules in Lines 15 and 16 along with the integrity
constraint in Line 17, restricting changed fluents to postconditions of applied actions.

The common encoding part described so far takes care of matching successor states
to postconditions of applied actions, while requirements regarding preconditions are
subject to the kind of plan under consideration and expressed by dedicated additions
to the step(t) subprogram. To begin with, the two integrity constraints added in
Listing 2 address sequential plans by, in Line 19, asserting the precondition of an applied

plasp 3: Towards Effective ASP Planning 5

Listing 3. Extension of Listing 1 for encoding ∀-step plans

19 :- occurs(A,t), prec(A,X,V), not holds(X,V,t-1).

21 :- occurs(A,t), prec(A,X,V), not post(A,X,_), not holds(X,V,t).

23 single(X,t) :- occurs(A,t), prec(A,X,V1), post(A,X,V2), V1 != V2.
24 :- single(X,t), #count{A : occurs(A,t), post(A,X,V)} > 1.

action to hold at the state referred to by t-1 and, in Line 21, denying multiple actions
to be applied in parallel. Note that, if the plan length or the latest integer taken for t,
respectively, exceeds the minimum number of actions required to establish the conditions
of s?, the encoding of sequential plans given by Listings 1 and 2 permits idle states in
which no action is applied. While idle states cannot emerge when using the basic iclingo
control loop [6] of clingo to compute shortest plans, they are essential for the planner
presented in Section 3 in order to increase the plan length in more flexible ways.

Turning to parallel representations, Listing 3 shows additions dedicated to ∀-step
plans, where the integrity constraint in Line 19 is the same as in Listing 2 before. This
guarantees the preconditions of applied actions to hold, while their confluence is already
taken care of by means of the integrity constraint in Line 13. It thus remains to make sure
that applied actions do not interfere in a way that would disable any serialization, which
essentially means that the precondition of an applied action a must not be invalidated
by another action applied in parallel. For a fluent x ∈ ãc that is not changed by a
itself, i.e., x /∈ ãe or ae(x) = ac(x), the integrity constraint in Line 21, which applies
in case of x /∈ ãe, suppresses a parallel application of actions a′ such that x ∈ ã′e

and a′e(x) 6= ac(x). (If ae(x) = ac(x), the integrity constraint in Line 13 already
requires x to remain unchanged.) On the other hand, the situation becomes slightly
more involved when x ∈ ãe and ae(x) 6= ac(x), i.e., the application of a invalidates its
own precondition. In this case, no other action a′ such that x ∈ ã′e can be applied in
parallel, either because a′e(x) 6= ae(x) undermines confluence or since a′e(x) = ae(x)
disrespects the precondition of a. To account for such situations and address all actions
invalidating their precondition regarding x at once, the rule in Line 23 derives an atom
over single/2 to indicate that at most (and effectively exactly) one action affecting x
can be applied, as asserted by the integrity constraint in Line 24. As a consequence, no
action applied in parallel can invalidate the precondition of another action, so that any
serialization leads to the same successor state as obtained in the parallel case.

Example 2. The two sequential plans from Example 1 correspond to two stable models,
obtained with the encoding of sequential plans given by Listings 1 and 2, both includ-
ing the atoms occurs(a1,1) and occurs(a2,2). In addition, one stable model
contains occurs(a3,3) along with occurs(a4,4), and the other occurs(a4,3)
as well as occurs(a3,4), thus exchanging the order of applying a3 and a4. Given
that a3 and a4 are confluent, the independence of their application order is expressed
by a single stable model, obtained with the encoding part for ∀-step plans in Listing 3
instead of the one in Listing 2, comprising occurs(a3,3) as well as occurs(a4,3)
in addition to occurs(a1,1) and occurs(a2,2). Note that, even though the set

6 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

Listing 4. Extension of Listing 1 for encoding ∃-step plans

19 :- occurs(A,t), prec(A,X,V), not holds(X,V,t-1).

21 apply(A1,t) :- action(A1),
22 ready(A2,t) : post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

24 ready(A,t) :- action(A), not occurs(A,t).
25 ready(A,t) :- apply(A,t).
26 :- action(A), not ready(A,t).

Listing 5. Replacement of Lines 21–26 in Listing 4 by #edge statement

21 #edge((A1,t),(A2,t)) : occurs(A1,t),
22 post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

{a1, a2} is confluent, it is not ∀-step serializable (in s0), and a parallel application is
suppressed in view of the atom single(x1,1), derived since a1 invalidates its pre-
condition regarding x1. Moreover, the requirement that the precondition of an applied
action must be established in the state before permits only 〈{a1}, {a2}, {a3, a4}〉 as
∀-step plan or its corresponding stable model, respectively, with three sets of actions. �

Additions to Listing 1 addressing ∃-step plans are given in Listing 4. As before,
the integrity constraint in Line 19 is included to assert the precondition of an applied
action to hold at the state referred to by t-1. Unlike with ∀-step plans, however, an
applied action may invalidate the precondition of another action, in which case the other
action must come first in a serialization, and the aim is to make sure that there is some
compatible serialization. To this end, the rule in Lines 21–22 expresses that an action can
be safely applied, as indicated by a respective instance of the head atom apply(A1,t),
once all other actions whose preconditions it invalidates are captured by corresponding
instances of ready(A2,t). The latter provide actions that are not applied or whose
application is safe, i.e., no yet pending action’s precondition gets invalidated, and are
derived by means of the rules in Lines 24 and 25. In fact, the least fixpoint obtained via
the rules in Lines 21–25 covers all actions exactly if the applied actions do not circularly
invalidate their preconditions, and the integrity constraint in Line 26 prohibits any such
circularity, which in turn means that there is a compatible serialization. Excluding
circular interference also lends itself to an alternative implementation by means of the
#edge directive [5] of clingo, in which case built-in acyclicity checking [3] is used.
A respective replacement of Lines 21–26 is shown in Listing 5, where the #edge
directive in Lines 21–22 asserts edges from an applied action to all other actions whose
preconditions it invalidates, and acyclicity checking makes sure that the graph induced
by applied actions remains acyclic.

The encoding part for relaxed ∃-step plans in Listing 6 deviates from those given so
far by not necessitating the precondition of an applied action to hold in the state before.
Rather, the preconditions of actions applied in parallel may be established successively,

plasp 3: Towards Effective ASP Planning 7

Listing 6. Extension of Listing 1 for encoding relaxed ∃-step plans

19 reach(X,V,t) :- holds(X,V,t-1).
20 reach(X,V,t) :- occurs(A,t), apply(A,t), post(A,X,V).

22 apply(A1,t) :- action(A1), reach(X,V,t) : prec(A1,X,V);
23 ready(A2,t) : post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

25 ready(A,t) :- action(A), not occurs(A,t).
26 ready(A,t) :- apply(A,t).
27 :- action(A), not ready(A,t).

where confluence along with the condition that an action is applicable only after other
actions whose preconditions it invalidates have been processed guarantee the existence
of a compatible serialization. In fact, the rules in Lines 22–26 are almost identical to
their counterparts in Listing 4, and the difference amounts to the additional prerequisite
‘reach(X,V,t) : prec(A1,X,V)’ in Line 22. Instances of reach(X,V,t) are
derived by means of the rules in Lines 19 and 20 to indicate fluent values from the state
referred to by t-1 along with postconditions of actions whose application has been
determined to be safe. The prerequisites of the rule in Lines 22–23 thus express that
an action can be safely applied once its precondition is established, possibly by means
of other actions preceding it in a compatible serialization, and if it does not invalidate
any pending action’s precondition. Similar to its counterpart in Listing 4, the integrity
constraint in Line 27 then makes sure that actions are not applied unless their application
is safe in the sense of a relaxed ∃-step serializable set.

Example 3. The ∀-step plan 〈{a1}, {a2}, {a3, a4}〉 from Example 1 can be condensed
into 〈{a1, a2}, {a3, a4}〉 when switching to ∃-step serializable sets. Corresponding sta-
ble models obtained with the encodings given by Listing 1 along with Listing 4 or 5
include occurs(a1,1), occurs(a2,1), occurs(a3,2), and occurs(a4,2).
Regarding the #edge directive in Listing 5, these atoms induce the graph ({(a1,1),
(a2,1)}, {〈(a2,1),(a1,1)〉}), which is clearly acyclic. Its single edge tells us that
a1 must precede a2 in a compatible serialization, while the absence of a cycle means
that the application of a1 does not invalidate the precondition of a2. In terms of the
encoding part in Listing 4, apply(a1,1) and ready(a1,1) are derived first, which
in turn allows for deriving apply(a2,1) and ready(a2,1). The requirement that
the precondition of an applied action must be established in the state before, which
is shared by Listings 4 and 5, however, necessitates at least two sets of actions for
an ∃-step plan or a corresponding stable model, respectively. Unlike that, the encod-
ing of relaxed ∃-step plans given by Listings 1 and 6 yields a stable model contain-
ing occurs(a1,1), occurs(a2,1), occurs(a3,1), and occurs(a4,1), cor-
responding to the relaxed ∃-step plan 〈{a1, a2, a3, a4}〉. The existence of a compatible
serialization is witnessed by first deriving, amongst other atoms, reach(x1,0,1)
and reach(x3,0,1) in view of s0. These atoms express that the preconditions of a1
and a2 are readily established, so that apply(a1,1) along with reach(x2,1,1)
and ready(a1,1) are derived next. The latter atom indicates that a1 can be safely

8 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

applied before a2, which then leads to apply(a2,1) along with reach(x3,1,1).
Together reach(x2,1,1) and reach(x3,1,1) reflect that the precondition of a3
as well as a4 can be established by means of a1 and a2 applied in parallel, so that
apply(a3,1) and apply(a4,1) are derived in turn. �

In order to formalize the soundness and completeness of the presented encodings,
let B stand for the rule in Line 1 of Listing 1, Q(i) for the integrity constraint in Line 5
with the parameter t replaced by some integer i, and S(i) for the rules and integrity
constraints below the #program directive in Line 7 with i taken for t. Moreover,
we refer to specific encoding parts extending S(i), where the parameter t is likewise
replaced by i, by Ss(i) for Listing 2, S∀(i) for Listing 3, S∃(i) for Listing 4, SE(i) for
Line 19 of Listing 4 along with Listing 5, and SR(i) for Listing 6. Given that SE(i)
includes an #edge directive subject to acyclicity checking, we understand stable models
in the sense of [3], i.e., the graph induced by a (regular) stable model, which is empty in
case of no #edge directives, must be acyclic.

Theorem 1. Let I be the set of facts representing planning task 〈F , s0, s?,O〉, 〈a1, . . . ,
an〉 be a sequence of actions, and 〈A1, . . . , Am〉 be a sequence of sets of actions. Then,

– 〈a1, . . . , an〉 is a sequential plan iff I ∪B ∪Q(0) ∪
⋃n

i=1(Q(i) ∪ S(i) ∪ Ss(i)) ∪
{query(n).} has a stable model M such that {〈a, i〉 | occurs(a,i) ∈M} =
{〈ai, i〉 | 1 ≤ i ≤ n};

– 〈A1, . . . , Am〉 is a ∀-step (resp., ∃-step or relaxed ∃-step) plan iff I ∪B ∪Q(0) ∪⋃m
i=1(Q(i)∪S(i)∪Sp(i))∪{query(m).}, where Sp(i) = S∀(i) (resp., Sp(i) ∈
{S∃(i), SE(i)} or Sp(i) = SR(i)) for 1 ≤ i ≤ m, has a stable model M such that
{〈a, i〉 | occurs(a,i) ∈M} = {〈a, i〉 | 1 ≤ i ≤ m, a ∈ Ai}.

Let us note that, with each of the considered encodings, any plan corresponds to a
unique stable model, as the latter is fully determined by atoms over occurs/2, i.e.,
corresponding (successor) states as well as auxiliary predicates functionally depend on
the applied actions. Regarding the encoding part for relaxed ∃-step plans in Listing 6,
we mention that acyclicity checking cannot (in an obvious way) be used instead of
rules dealing with the safe application of actions. To see this, consider 〈F , s0, s?,O〉
with F = {x1, x2, x3} such that xd

1 = xd
2 = xd

3 = {0, 1}, s0 = {x1 = 0, x2 = 0,
x3 = 0}, s? = {x3 = 1}, and O = {a1, a2}, where a1 = 〈∅, {x1 = 1, x2 = 1}〉
and a2 = 〈{x1 = 1, x2 = 0}, {x3 = 1}〉. There is no sequential plan for this task
since only a1 is applicable in s0, but its application invalidates the precondition of a2.
Concerning the (confluent) set {a1, a2}, the graph ({(a1,1),(a2,1)}, {〈(a1,1),
(a2,1)〉}) is acyclic and actually includes the information that a2 should precede a1 in
any compatible serialization. However, if the prerequisite in Line 23 of Listing 6 were
dropped to “simplify” the encompassing rule, the application of a1 would be regarded as
safe, and then the precondition of a2 would seem established as well. That is, it would
be unsound to consider the establishment and invalidation of preconditions in separation,
no matter the respective implementation techniques.

As regards encoding techniques, common ASP-based approaches, e.g., [12], define
successor states, i.e., the predicate holds/3, in terms of actions given by atoms over
occurs/2. Listing 1, however, includes a respective choice rule, which puts it inline with

plasp 3: Towards Effective ASP Planning 9

SAT planning, where our intention is to avoid asymmetries between fluents and actions,
as either of them would in principle be sufficient to indicate plans [11]. Concerning
(relaxed) ∃-step plans, the encoding parts in Listings 4 and 6 make use of the built-in
well-foundedness requirement in ASP and do, unlike [15], not unfold the order of actions
applied in parallel. In contrast to the SAT approach to relaxed ∃-step plans in [17], we do
not rely on a fixed (static) order of actions, and to our knowledge, no encoding similar to
the one in Listing 6 has been proposed so far.

3 A Multi-Shot ASP Planner

Planning encodings must be used with a strategy for fixing the plan length. For example,
the first approaches to planning in SAT and ASP follow a sequential algorithm starting
from 0 and successively incrementing the length by 1 until a plan is found.

A
2 2

4

9

16

13

8

4
2 2 3

0 2 4 6 8 10
plan length

B

so
lv

in
g

tim
e

1 3 5 7 9

Fig. 2. Exemplary solving times

For parallel planning in SAT, more flexible strate-
gies were proposed in [15], based on the following
ideas. First, minimal parallel plans do not coincide
with shortest sequential plans. Hence, it is unclear
whether parallel plans should be minimal. Second,
solving times for different plan lengths follow a cer-
tain pattern, which can be exploited. To illustrate
this, consider the solving times of a typical instance
in Figure 2. For lengths 0 to 4, in gray, the instance
is unsatisfiable, and time grows exponentially. Then,
the first satisfiable instances, in light green, are still hard, but they become easier for
greater plan lengths. However, for even greater plan lengths, the solving time increases
again because the size becomes larger. Accordingly, [15] suggests not to minimize
parallel plan length but rather avoid costly unsatisfiable parts by moving early to easier
satisfiable lengths.

The sequential algorithm (S) solves the instance in Figure 2 in 46 time units, viz.
2 + 2 + 4 + 9 + 16 + 13, by trying plan lengths 0 to 4 until it finds a plan at 5. The idea
of algorithm A [15] is to simultaneously consider n plan lengths. In our example, fixing
n to 5, A starts with lengths 0 to 4. After 2 time units, lengths 0 and 1 are finished, and
5 and 6 are added. Another 2 units later, length 2 is finished, and 7 is started. Finally,
at time 8, length 7 yields a plan. The times spent by A for each length are indicated in
Figure 2, and summing them up amounts to 40 time units in total. Algorithm B [15]
distributes time non-uniformly over plan lengths: if length n is run for t time units, then
lengths n + i are run for t ∗ γi units, where i ≥ 1 and γ lies between 0 and 1. In our
example, we set γ to 0.8. When length 3 has been run for 6 units, previous lengths are
already finished, and the times for the following lengths are given by curve B in Figure 2.
At this point, length 8 is assigned 2 units (6 ∗ 0.85) and yields a plan, leading to a total
time of 38 units: 8 units for lengths 0 to 2, and 30 for the rest. (The 30 units correspond
to the area under the curve from length 3 on.) Note that both A and B find a plan before
finishing the hardest instances and, in practice, often save significant time over S.

We adopted algorithms A (S if n = 1) and B, and implemented them as planning
strategies of plasp via multi-shot ASP solving. In general, they can be applied to any

10 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

incremental encoding complying with the threefold structure of base, step(t), and
check(t) subprograms. Assuming that the subprograms adhere to clingo’s modularity
condition [6], they are assembled to ASP programs of the form

P (n) = base ∪
⋃n

i=0 check(i) ∪
⋃n

i=1 step(i)

where n gives the length of the unrolled encoding. The planner then looks for an integer
n such that P (n) ∪ {query(n).} is satisfiable, and algorithms S, A, and B provide
different strategies to approach such an integer.

The planner is implemented using clingo’s multi-shot solving capacities, where one
clingo object grounds and solves incrementally. This approach avoids extra grounding
efforts and allows for taking advantage of previously learned constraints. The planner
simulates the parallel processing of different plan lengths by interleaving sequential
subtasks. To this end, the clingo object is used to successively unroll an incremental
encoding up to integer(s) n. In order to solve a subtask for some m < n, the unrolled
part P (n) is kept intact, while query(m) is set to true instead of query(n). That
is, the search component of clingo has to establish conditions in check(m), even
though the encoding is unrolled up to n ≥ m. For this approach to work, we require
that P (m) ∪ {query(m).} is satisfiable iff P (n) ∪ {query(m).} is satisfiable
for 0 ≤ m ≤ n. An easy way to guarantee this property is to tolerate idle states
in-between m and n, as is the case with the encodings given in Section 2.

4 System and Experiments

Like its predecessor versions, the third series of plasp3 provides a translator from PDDL
specifications to ASP facts. Going beyond the STRIPS-like fragment, it incorporates
a normalization step to support advanced PDDL features such as nested expressions
in preconditions, conditional effects, axiom rules, as well as existential and universal
quantifiers. Moreover, plasp allows for optional preprocessing by Fast Downward,
leading to an intermediate representation in the SAS planning format. This format
encompasses multi-valued fluents, mutex groups, conditional effects, and axiom rules,
which permit a compact (propositional) specification of planning tasks and are (partially)
inferred by Fast Downward from PDDL inputs. Supplied with PDDL or SAS inputs,
plasp produces a homogeneous factual representation, so that ASP encodings remain
independent of the specific input format.4

To empirically contrast the different encodings and planning algorithms presented in
Sections 2 and 3, we ran plasp on PDDL specifications from the International Planning
Competition. For comparison, we also include two variants of the state-of-the-art SAT
planning system Madagascar [14], where M stands for the standard version and Mp

for the use of a specific planning heuristic. All experiments were performed on a Linux

3 Available at: https://github.com/potassco/plasp
4 The encodings given in Section 2 focus on STRIPS-like planning tasks with multi-valued fluents

as well as mutex groups, where the latter have been omitted for brevity. In contrast to the ease
of incorporating mutex groups, extending parallel encodings to conditional effects or axiom
rules is not straightforward [15], while sequential encodings for them are shipped with plasp.

plasp 3: Towards Effective ASP Planning 11

76/76 0.97 0.03 0.02 0.54 0.02 0.07 4.73

76/76 1.18 0.08 0.02 0.15 0.02 0.15 6.44

75/76 15.48 1.73 0.47 3.10 0.89 10.44 74.31

72/76 98.06 416.21 46.15 79.34 0.77 129.58 15.66

60/76 238.64 39.90 46.16 637.86 10.90 305.45 146.29

59/76 257.40 51.85 46.22 654.63 10.62 392.52 149.02

56/76 255.12 34.30 46.10 657.20 2.37 413.98 139.97

54/76 348.67 134.96 44.49 741.69 66.72 547.06 274.72

49/76 412.90 622.39 62.83 517.26 89.37 669.86 460.33

48/76 402.64 516.33 46.12 537.78 434.63 283.20 251.81

47/76 389.78 720.20 46.18 590.74 317.76 261.66 140.42

solved ⌀ time gripper driverlogdepotselevatorblockslogistics

Table 1. Solved instances and average runtimes without preprocessing by Fast Downward

machine equipped with Intel Core i7-2600 processor at 3.8 GHz and 16 GB RAM,
limiting time and memory per run to 900 seconds and 8 GB, while charging 900 seconds
per aborted run in the tables below.

Regarding plasp, we indicate the encoding of a particular kind of plan by a superscript
to the planning algorithm (denoted by its letter), where s stands for sequential, ∀ for
∀-step, ∃ for ∃-step, E for ∃-step by means of acyclicity checking, and R for relaxed
∃-step plans; e.g., B∃ refers to algorithm B applied to the encoding of ∃-step plans
given by Listings 1 and 4. Moreover, each combination of algorithm and encoding can
optionally be augmented with a planning heuristic [8], which has been inspired by Mp

and is denoted by an additional subscript p, like in B∃p . (The parameters of A and B are
set to n = 16 or γ = 0.9, respectively, as suggested in [15].)

Tables 1 and 2 show total numbers of solved instances and average runtimes, in total
and for individual domains of PDDL specifications, for the two Madagascar variants
and different plasp settings. In case of Table 1, all systems take PDDL inputs directly,
while preprocessing by Fast Downward is used for plasp in Table 2. Note that the tables
refer to different subsets of instances, as we omit instances solved by some plasp setting
in less than 5 seconds or unsolved by all of them within the given resource limits. To
give an account of the impact of preprocessing, we list the best-performing plasp setting
with or without preprocessing in the last row of the respective other table. As the B∃

setting of plasp, relying on algorithm B along with the (pure) ASP encoding of ∃-step
plans, turns out to perform generally robust as well as comparable to the alternative
implementation provided by BE , we choose it as the baseline for varying the planning
algorithm, encoding, or heuristic.

In Table 1, where plasp takes PDDL inputs directly, we first observe that the Mada-
gascar variants solve the respective instances rather easily. Unlike that, we checked that
the size of ground instantiations often becomes large and constitutes a bottleneck with
all plasp settings, which means that the original PDDL specifications are not directly
suitable for ASP-based planning. The sequential algorithm or encoding, respectively,
of S∃ and Bs is responsible for increased search efforts or plan lengths, so that these
settings solve considerably fewer instances than the baseline provided by B∃, which is

12 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, T. Schaub

136/136 2.76 0.78 0.04 13.09 4.11 1.92 0.02 0.59 0.22 0.21

135/136 12.89 1.40 0.34 13.18 71.07 1.12 0.03 18.91 7.38 3.16

121/136 131.03 72.14 5.89 76.82 282.99 27.52 2.22 656.76 40.22 27.91

116/136 159.52 460.51 19.29 32.12 345.20 7.47 1.92 655.19 135.48 206.84

114/136 168.44 63.01 19.42 32.80 351.92 21.48 2.00 656.47 223.28 208.59

114/136 174.68 297.15 15.62 32.93 362.73 21.50 2.01 656.49 234.51 218.26

107/136 231.49 459.96 277.92 48.00 387.43 4.92 4.95 652.87 344.64 289.63

105/136 248.73 481.89 35.34 206.25 474.35 58.31 9.15 660.35 374.21 316.21

103/136 255.83 71.41 771.20 32.89 292.88 21.49 82.91 656.95 130.63 203.49

88/136 367.90 451.49 699.70 754.42 89.69 3.13 9.23 104.12 755.56 597.61

51/136 584.52 900.00 668.33 900.00 900.00 625.17 2.10 900.00 429.19 118.06

solved ⌀ time grid driverlogdepotsfreecellelevatorblocksmysterylogisticsgripper

Table 2. Solved instances and average runtimes with preprocessing by Fast Downward

closely followed by the A∃ setting that uses algorithm A instead of B. While encodings
of (relaxed) ∃-step plans help to reduce plan lengths, the more restrictive ∀-step plans
aimed at by B∀ are less effective, especially in the gripper and elevator domains. Apart
from a few outliers, the alternative implementations of ∃-step plans in B∃ and BE per-
form comparable, while further reductions by means of relaxed ∃-step plans turn out
to be minor and cannot compensate for the more sophisticated encoding of BR. With
the exception of the gripper domain, the planning heuristic applied by B∃p significantly
boosts search performance, and the last row of Table 1 indicates that this plasp setting
even comes close to Madagascar once preprocessing by Fast Downward is used.

Table 2 turns to plasp settings run on SAS inputs provided by Fast Downward.
Beyond information about mutex groups, which is not explicitly available in PDDL, the
preprocessing yields multi-valued fluents that conflate several Booleans from a PDDL
specification. This makes ground instantiations much more compact than before and
significantly increases the number of instances plasp can solve. However, a sequential
algorithm or encoding as in S∃ and Bs remains less effective than the other settings, also
with SAS format. Interestingly, the encoding of ∀-step plans used in B∀ leads to slightly
better overall performance than the relaxed ∃-step plans of BR, although variations are
domain-specific, as becomes apparent when comparing gripper and logistics. Given that
the parallel plans permitted by BR are most general, this tells us that the overhead of
encoding them does not pay off in the domains at hand, while yet lacking optimizations,
e.g., based on disabling–enabling-graphs [17], still leave room for future improvements.
As with PDDL inputs, ∃-step plans again constitute the best trade-off between benefits
and efforts of a parallel encoding, where the planning algorithm of B∃ is comparable
to A∃. The alternative implementation by means of acyclicity checking in BE improves
the performance on the instances in Table 2 to some extent but not dramatically. Unlike
that, the planning heuristic of B∃p leads to substantial performance gains, now also in
the gripper domain, whose PDDL specification had been problematic for the heuristic
before. The large gap in comparison to B∃p on direct PDDL inputs in the last row confirms
the high capacity of preprocessing by Fast Downward. Finally, we note that the two
Madagascar variants remain significantly ahead of the B∃p setting of plasp, which is

plasp 3: Towards Effective ASP Planning 13

related to their streamlined yet planning-specific implementation of grounding, while
plasp brings the advantage that first-order ASP encodings can be used to prototype and
experiment with different features.

5 Summary

We presented the key features of the new plasp system. Although it addresses PDDL-
based planning, plasp’s major components, such as the encodings as well as its planner,
can be applied to dynamic domains at large. While our general-purpose approach cannot
compete with planning-specific systems at eye level, we have shown how careful encod-
ings and well-engineered solving processes can boost performance. This is reflected, e.g.,
by an increase of 25 additional instances solved by B∃p over S∃ in Table 1. A further sig-
nificant impact is obtained by extracting planning-specific constraints, as demonstrated
by the increase of the performance of B∃p from 51 to 121 solved instances in Table 2.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/9.

References
1. C. Baral, M. Gelfond. Reasoning agents in dynamic domains. In Logic-Based Artificial

Intelligence, 257–279. Kluwer, 2000.
2. A. Biere, M. Heule, H. van Maaren, T. Walsh. Handbook of Satisfiability. IOS, 2009.
3. J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, T. Schaub. Answer set programming

modulo acyclicity. Fundamenta Informaticae, 147(1):63–91, 2016.
4. Y. Dimopoulos, B. Nebel, J. Köhler. Encoding planning problems in nonmonotonic logic

programs. In Proceedings ECP, 169–181. Springer, 1997.
5. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko. Theory solving

made easy with clingo 5. In Technical Comm. ICLP, 2:1–2:15. OASIcs, 2016.
6. M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub. Clingo = ASP + control: Preliminary

report. In Technical Comm. ICLP, arXiv:1405.3694, 2014.
7. M. Gebser, R. Kaminski, M. Knecht, T. Schaub. plasp: A prototype for PDDL-based planning

in ASP. In Proceedings LPNMR, 358–363. Springer, 2011.
8. M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, P. Wanko. Domain-specific

heuristics in answer set programming. In Proceedings AAAI, 350–356. AAAI, 2013.
9. M. Gelfond, V. Lifschitz. Action languages. Electronic Transactions on Artificial Intelligence,

3(6):193–210, 1998.
10. M. Helmert. The fast downward planning system. Journal of Artificial Intelligence Research,

26:191–246, 2006.
11. H. Kautz, D. McAllester, B. Selman. Encoding plans in propositional logic. In Proceedings

KR, 374–384. Morgan Kaufmann, 1996.
12. V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-

2):39–54, 2002.
13. D. McDermott. PDDL — the planning domain definition language. TR Yale, 1998.
14. J. Rintanen. Madagascar: Scalable planning with SAT. In Proc. IPC, 66–70, 2014.
15. J. Rintanen, K. Heljanko, I. Niemelä. Planning as satisfiability: Parallel plans and algorithms

for plan search. Artificial Intelligence, 170(12-13):1031–1080, 2006.
16. T. Son, C. Baral, T. Nam, S. McIlraith. Domain-dependent knowledge in answer set planning.

ACM Transactions on Computational Logic, 7(4):613–657, 2006.
17. M. Wehrle, J. Rintanen. Planning as satisfiability with relaxed ∃-step plans. In Proceedings

AI, 244–253. Springer, 2007.

