A Simple Distributed Conflict-Driven Answer Set Solver

E. Ellguth!, M. Gebser!, M. Gusowski', R. Kaminski!, B. Kaufmann', S. Liske!,
T. Schaub!*, L. Schneidenbach?, and B. Schnor!

1 TInstitut fiir Informatik, Universitit Potsdam, D-14482 Potsdam, Germany
2 IBM Ireland, Dublin Software Lab, Mulhuddart, Dublin 15, Ireland

Abstract. We propose an approach to distributed Answer Set Solving based on
Message Passing. Our approach aims at taking advantage of modern ASP solvers
rather than proposing a genuine yet involved parallel ASP solver. To this end, we
rely upon a simple master-worker architecture in which each worker amounts to
an off-the-shelf ASP solver augmented with a separate communication module
being only lightly connected to the actual solver. The overall communication is
driven by the workers’ communication modules, which asynchronously exchange
messages with the master. We have implemented our approach and report upon
an empirical study demonstrating its computational impact.

1 Introduction

Despite the progress of sequential Answer Set Solving technology, only little advance-
ment is observed in the parallel setting. This is deplorable in view of the rapidly growing
availability of clustered, multi-processor, and/or multi-core computing devices. We ad-
dress this shortcoming and furnish a distributed approach to ASP solving by focusing
on the parallelization of search. Our approach builds upon the Message Passing Inter-
face (MPI; [1]), realizing communication and data exchange between computing units
via message passing. Interestingly, MPI abstracts from the actual hardware and lets us
execute our system on clusters as well as multi-processor and/or multi-core machines.

We aim at a simple and transparent approach in order to be able to take advantage
of the high performance offered by modern off-the-shelf ASP solvers. To this end, we
have chosen a simple master-worker architecture, in which each worker consists of an
ASP solver along with an attached communication module. The solver is linked to its
communication module via an elementary interface requiring only marginal modifica-
tions to the solver. All major communication is initiated by the workers’ communication
modules exchanging messages with the master in an asynchronous way.

2 Distributed Answer Set Solving

We have implemented our approach in C++ using MPI [1]. The resulting system is
called claspar, alluding to its underlying ASP solver clasp [2]. Although we tried to
keep our design generic, we took advantage of some design features of clasp, whose
basic search procedure can be outlined by means of the following loop [3]:

* Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

loop
propagate /I compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment

else decide /I choose a non-deterministic consequence
else
if top-level conflict then return unsatisfiable
else
analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

At first, the closure under deterministic consequence operations is computed. Then,
four cases are distinguished. In the first one, a non-conflicting complete assignment
is returned. In the second case, an unassigned variable is non-deterministically chosen
and assigned. Or at last, a conflict is encountered. All assignments made before the first
non-deterministic choice constitute the top-level. Hence, a top-level conflict indicates
unsatisfiability. Otherwise, the conflict is analyzed and learned in form of a conflict con-
straint. Then, the algorithm backjumps by undoing a maximum number of successive
assignments so that exactly one literal of the constraint is unassigned.

The clasp solver extends the static concept of a top-level by additionally providing
a dynamic variant referred to as root-level [3]. As with the top-level, conflicts within
the root-level cannot be resolved given that all of its variable assignments are precluded
from backtracking. We build upon this feature for splitting the search space. Splitting
is accomplished according to a so-called guiding path [4], the sequence of all non-

deterministic choices. Given a root-level i—1, a guiding path (v, ..., v;—1, Vi, ..., 0p)
can be divided into a prefix (vy,...,v;—1) of non-splittable variables and a postfix
(vi,...,v,) of splittable variables. We can split the search space at the first split-

table variable by incrementing the root-level by one and dissociating a guiding path
composed of the first i—1 variables and the complement of the ¢th variable, yielding
(v1,...,v;—1,7;). Note that the local assignment remains unchanged, and only the root-
level is incremented to i. We have chosen to split at the first splittable variable because,
first, this results in cutting off the largest part of the search space and, second, this way
the backjumping is least restricted.

Upon enumerating answer sets, (locally) using the scheme in [5], the assignment can
contain complements of non-deterministically assigned variables of previously enumer-
ated answer sets. Such complements %y, . .., u; indicate that the search spaces for an-
swer sets containing (v1, ..., v;—1) and at least one of u1, . .., u; have already been ex-
plored, while v; or v; may have belonged to already enumerated answer sets. In order to
avoid repetitions, it is thus important to pass guiding path (v, ..., v;—1,u1,. .., U;, U;)
in response to a split request. This refinement for repetition-free answer set enumeration
is implemented in claspar.

Finally, clasp incorporates constraint database simplifications wrt variables as-
signed at the top-level. In particular, conflict constraints can lead to top-level assign-
ments, in which case the corresponding variables are eliminated from all resident con-
straints. The root-level plays a crucial role for whether such simplifications are applied,
as variables assigned at or below the root-level but beyond the top-level are not sub-
ject to simplification. This feature is also inherited by claspar setting the root-level to

the number of variables in a guiding path. As a consequence, conflicts and resulting
assignments due to a nonempty guiding path (or subproblem, respectively) do not in-
volve simplification, while top-level assignments independent of the guiding path lead
to simplifications.

3 Communication

Our approach to distribution builds upon message passing, accounting for communica-
tion and data exchange. For the sake of simplicity, we have adopted a classical master-
worker model. While the purpose of the single master is to handle the overall message
exchange, each worker amounts to an ASP solver enhanced by message handling ca-
pacities. The workers constitute the active components, initiating all requests, while the
master mainly reacts by processing the workers’ requests.

Master. The main task of the master is the reception and transmission of search
(sub)problems. To accomplish this, the master divides its assigned workers into a set
of active and inactive workers. The active workers, i.e., workers assigned a not yet
processed guiding path, are arranged in a queue ordered by a workload parameter. On
the other hand, the inactive workers have either finished processing their guiding paths
or have not yet been assigned any.

At the beginning, the search space has to be distributed among the workers. As
initially all workers are inactive, the master receives a work request from each worker.
The first incoming work request obtains the empty guiding path, representing the entire
search space. It is then successively split and distributed among the other workers.

The overall routine of the master is driven by load balancing. A work request by a
worker normally results in a split request to another worker. The split request is sent
to a worker with putatively high workload, namely, to one with a short guiding path.
Notably, each worker determines whether and/or how often it is asked (and thus in-
terrupted) for work. The master merely maintains its priority queue according to the
information supplied by the workers.> When a subproblem is returned to the master by
a split response, it is forwarded to the first worker in the request queue or put into a
cache to allow for immediate response to the next work request. Apart from the guiding
path, a split response also contains information on the workload of the sending worker.

Whenever all workers are inactive and the cache is empty, the given problem is
found to be unsatisfiable. As soon as the requested number of answer sets is computed
or unsatisfiability is established, the master asks all workers to gather runtime statistics
and to then terminate. Once all statistics are received, they are aggregated and printed
before the master terminates itself.

Worker. Our worker design is driven by the desire to minimize modifications to
the given ASP solver while keeping the overall approach as simple as possible. To
this end, we attach a module handling communications, providing an interface reacting
to incoming messages during search. The interface is used at the end of the conflict
analysis in the solver loop given in Section 2. This is the only change done to the ASP
solver at hand (except for redirecting its output operations).

3 Currently, this information consists of the length of the initial guiding path and the number of
choices made by the worker’s ASP solver since the guiding path was received.

However, in general, the worker’s communication module has two modes of oper-
ation. When out of work (no guiding path received yet or completed subproblem), the
first mode cares about raising a work request and launching its ASP solver with the guid-
ing path obtained from the master. Notably, upon such a response, claspar reuses the
previously learnt clauses and heuristic information like variable activities. The second
mode addresses split requests. For this purpose, the communication module is equipped
with a heuristic function for deciding whether a guiding path is extracted from the ASP
solver. If so, a guiding path is sent to the master (accompanied with some information
on the workload). The current strategy is to return the shortest guiding path.

If the worker decides not to split its search space, it can signal to retry later or to
send no further split requests. Once an answer set is found, the worker sends it to the
master. In the case of unsatisfiability, conflict constraints accumulated over time may
eventually yield a top-level conflict that is also signaled to the master, which then asks
all workers to send their statistics and to terminate.

4 Experiments

Our experiments consider claspar4 (0.1.0) based on clasp (1.0.5); they ran under MPI
(mpich2-1.0.7) on the cluster described at http://www.cs.uni-potsdam.de/
bs/research/labs/highland.html, each individual run restricted to 900s
time and 2GB RAM per worker. Each solver instance of claspar was run with the de-
fault settings of clasp (except for the second group of PigeonHole benchmarks).

Table 1 summarizes benchmark results capturing the scaling capacities of claspar.’
We consider a master run on a single machine plus increasing numbers of workers run-
ning on machines with double cores (and thus at most two MPI processes per machine).
The single worker setting amounts to that of a serial run of clasp: the same number
of choices and conflicts are obtained for each run, and the message passing overhead
leads to an increase in execution time of less than one percent. We have selected popular
benchmark classes for evaluating our approach. Among them, BlockedQueens-sat are
satisfiable and terminated after an answer set was obtained. All remaining benchmarks
are unsatisfiable and thus necessitate a complete traversal of the search space. Each set-
ting is described by the sums of times,® and timeouts over all underlying instances.’
Moreover, we give the relative speedup wrt the single worker setting and indicate the
efficiency by normalizing the speedup with the number of workers in each setting. In
general, we observe a steady increase in speedup although the efficiency goes down with
more workers due to greater overhead. An unsteady speedup is observed on the class
of satisfiable benchmarks. Even though the search for one answer set can be boosted
by lucky strikes, it is surprising to see that 8 workers performed better than 16. This is
different on the unsatisfiable instances in BlockedQueens-unsat that show a steady yet
suboptimal speedup. The GraphColoring benchmarks are taken from this year’s ASP

4 Available at http: //potassco.sourceforge.net .

> The detailed table is available at http: //www.cs.uni-potsdam.de/claspar .
% Timeouts are taken as maximum time, viz., 900s.

7 A tarball containing all benchmark instances is available at the URL given in Footnote 5.

l claspar 0.1.0 “ 1 worker [2 workers [4 workers [8 workers [16 workersl

Benchmark BlockedQueens-sat (7 instances)
Time (Timeouts) 678.82 (0) 444.06 (0) 248.47 (0)| 99.74 (0)| 116.23 (0)
Speedup (Efficiency)|| 1.00 (1.00)| 1.53 (0.76)| 2.73 (0.68)| 6.81 (0.85)| 5.84 (0.37)
Benchmark BlockedQueens-unsat (9 instances)

Time (Timeouts) 1528.72 (0)| 1223.84 (0)] 649.57 (0)| 401.74 (0)| 191.31 (0)
Speedup (Efficiency)|| 1.00 (1.00)| 1.25(0.62)| 2.35(0.59)| 3.81 (0.48)| 7.99 (0.50)

Benchmark GraphColoring (20 instances)
Time (Timeouts) 18000 (20)[16993.80 (18)(12841.70 (11)[9910.80 (6)| 7063.68 (3)
Speedup (Efficiency)|| 1.00 (1.00)| 1.06 (0.53)| 1.40 (0.35)| 1.82 (0.23)| 2.55 (0.16)

Benchmark PigeonHole (2 instances)
Time (Timeouts) 975.66 (0) 988.66 (1) 469.45 (0)| 190.48 (0)| 153.20 (0)
Speedup (Efficiency)|| 1.00 (1.00)| 0.99 (0.49)| 2.08 (0.52)| 5.12 (0.64)| 6.37 (0.40)
Benchmark PigeonHole-norestarts (2 instances)
Time (Timeouts) 984.67 (1) 587.38 (0) 293.10 (0)| 169.63 (0)| 85.32(0)

Speedup (Efficiency)|| 1.00 (1.00)| 1.68 (0.84)| 3.36 (0.84)| 5.80 (0.73)|11.54 (0.72)
Table 1. Scaling claspar from 1 to 16 workers.

l claspar 0.1.0 “ 1 worker [2 workers [4 workers [8 workers [16 workers ‘
Benchmark ClumpyGraphs (12 instances)
Models 83,866,664 |153,764,698(312,272,614(610,673,252|1,247,804,500

Speedup (Efficiency)|| 1.00 (1.00)| 1.83 (0.92)| 3.72 (0.93)| 7.28 (0.91)| 14.88 (0.93)
Table 2. Scaling claspar’s enumeration of answer sets within 900s from 1 to 16 workers.

competition. Here the speedup values are insignificant because one worker alone can-
not even solve a single instance. However, increasing the number of workers leads to
a steady decrease of timeouts, demonstrating that distribution can make a difference.
Finally, we consider the well-known PigeonHole example, spanning a very uniform
search tree. The default behavior of claspar allows solver instances to restart, which has
a negative effect on the individual and thus global solver performance. Once restarts are
inhibited, reasonable speedups are obtained.

Finally, we consider in Table 2 how claspar scales regarding the enumeration of
answer sets. For this, we substitute runtimes by the number of answer sets obtained
within 900s. We consider Hamiltonian cycles in ClumpyGraphs, a benchmark designed
in [6] for showing the advantage of conflict-driven learning ASP solvers. We observe
that the distribution of search incurs only minor overhead in claspar’s efficiency, and
the speedup closely follows the number of workers. This nicely demonstrates the com-
putational impact of distributed ASP solving.

5 Discussion

We proposed a simple approach to distributed ASP solving based on the well-known
Message Passing Interface. To this end, we rely upon a master-worker architecture in
which each worker amounts to an off-the-shelf ASP solver augmented with a separate

communication module being only lightly connected to the actual solver. The simplicity
is pragmatically best reflected by the fact that claspar changes less than a dozen lines
of code in clasp while adding another ~350 lines for handling distribution.

Our approach differs from existing work in several respects. In fact, it provides the
first distributed version of an ASP solver using conflict-driven learning. Unlike this,
existing distributed ASP solvers rely on classical backtracking schemes that provide a
much tighter control over the search space. Second, our approach endows each solver
instance with great independence, principally allowing for a variety of different ASP
solvers at the same time. Although the platypus framework [7, 8] also aims at a certain
genericity, this applies only to the deterministic part of the solvers, while distributed
search is controlled by platypus itself. The approach of [9, 10] goes even further in
building a genuine parallel solver based on sequential ASP solver smodels.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/8-1.

References

1. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing
Interface. MIT Press (1999)

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
Proceedings IJCAT’07, AAAI Press/MIT Press (2007) 386-392

3. Eén, N., Sorensson, N.: An extensible SAT-solver. Proceedings SAT’03. (2003) 502-518

4. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: a distributed propositional prover and its
application to quasigroup problems. Journal of Symbolic Computation 21(4) (1996) 543—
560

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumera-
tion. Proceedings LPNMR’07, Springer (2007) 136-148

6. Ward, J., Schlipf, J.: Answer set programming with clause learning. Proceedings LP-
NMR’04, Springer (2004) 302-313

7. Gressmann, J., Janhunen, T., Mercer, R., Schaub, T., Thiele, S., Tichy, R.: Platypus: A
platform for distributed answer set solving. Proceedings LPNMR’05, Springer (2005) 227—
239

8. Gressmann, J., Janhunen, T., Mercer, R., Schaub, T., Thiele, S., Tichy, R.: On probing and
multi-threading in platypus. Proceedings ECAI’06, IOS Press (2006) 392-396

9. Pontelli, E., Balduccini, M., Bermudez, F.: Non-monotonic reasoning on Beowulf platforms.
Proceedings PADL’03, Springer (2003) 37-57

10. Balduccini, M., Pontelli, E., El-Khatib, O., Le, H.: Issues in parallel execution of non-

monotonic reasoning systems. Parallel Computing 31(6) (2005) 608-647

