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Abstract. Although parity constraints are at the heart of many relevant reasoning
modes like sampling or model counting, little attention has so far been paid to
their integration into ASP systems. We address this shortcoming and investigate a
variety of alternative approaches to implementing parity constraints, ranging from
rather basic ASP encodings to more sophisticated theory propagators (featuring
Gauss-Jordan elimination). All of them are implemented in the xorro system
by building on the theory reasoning capabilities of the ASP system clingo. Our
comparative empirical study investigates the impact of the number and size of
parity constraints on performance and indicates the merits of the respective imple-
mentation techniques. Finally, we benefit from parity constraints to equip xorro
with means to sample answer sets, paving the way for new applications of ASP.

1 Introduction

Parity constraints constitute the basic building blocks of many relevant reasoning modes
like sampling or (approximate) model counting [19], not to mention their pertinence to
circuit verification and cryptography [18]. Although their application and computational
treatment are very active research topics (cf. [12,11,3,4,23]) in the neighboring area
of Satisfiability Testing (SAT [2]), almost no attention has so far been paid to their
integration into ASP solving [17]. Modest approaches include the (discontinued) support
of #even and #odd aggregates in gringo series 33 and their usage for sampling in
the initial prototype of xorro4 from 2009. In this earlier prototype, parity constraints
were simply implemented via #count aggregates and a modulo-two operation (see
Listing 1.1). An alternative idea was later used in harvey [13] (see Listing 1.2). Unlike
these approaches, several SAT solvers feature rather sophisticated treatments of parity
constraints, most popularly the award-winning solver crypto-minisat [24]. The difficulty
lies in the inadequacy of CDCL-based solvers [9] (and more precisely their underlying
resolution-based learning scheme) to effectively handle parity constraints. In fact, the
translation of parity constraints into conjunctive normal form degrades search [14],
although they could be directly solved with Gauss-Jordan elimination (GJE) in poly-
nomial time [21]. Consequently, solvers like crypto-minisat pursue a hybrid approach,
addressing parity constraints separately with GJE.

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
3 This is achieved by uncompiling them during grounding using meta-encodings.
4 https://sourceforge.net/p/potassco/code/HEAD/tree/branches/xorro
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In what follows, we present the next generation of xorro, a full re-implementation,
providing a wide spectrum of alternative ways for integrating parity constraints into ASP
solving. On the one hand, this re-implementation draws upon the advanced interfaces of
clingo for integrating foreign constraints and corresponding forms of inference. On the
other hand, xorro takes advantage of the sophisticated solving techniques developed in
SAT for handling parity constraints, such as GJE. More precisely, we propose two types
of approaches in Section 2,5 namely eager ones that rely on ASP encodings of parity
constraints, and lazy ones using theory propagators within clingo’s Python interface. We
then empirically evaluate the different approaches in view of their impact on solving
performance, while varying the number and size of parity constraints.

2 Incorporating Parity Constraints into ASP

We expect the reader to be familiar with the basic syntax and semantics of logic pro-
grams as implemented by clingo (see [7,6] for details). In this section, we focus on the
introduction of non-standard concepts needed in this paper.

Towards the definition of parity constraints, let > and ⊥ stand for the Boolean
constants true and false, respectively. Given atoms a1 and a2, the exclusive or (XOR for
short) of a1 and a2 is denoted by a1 ⊕ a2 and it is satisfied if either a1 or a2 is true (but
not both). Generalizing the idea for n distinct atoms a1, . . . , an, we obtain an n-ary XOR
constraint (((a1 ⊕ a2) . . . )⊕ an) by multiple applications of ⊕. Since it is satisfied iff
an odd number of atoms among a1, . . . , an are true, it is called an odd XOR constraint
and it can be written simply as a1⊕ . . .⊕ an due to associativity. Analogously, an even
XOR constraint is defined by a1⊕ . . .⊕ an ⊕> as it is satisfied iff an even number of
atoms among a1, . . . , an hold. Then, e.g., a1 ⊕ a2 ⊕> is satisfied iff none or both of
a1 and a2 hold. In the sequel, we also refer to even and odd XOR constraints as parity
constraints. As shown in [18], any XOR constraint a1⊕ . . .⊕ an can be decomposed
into two XOR constraints a1 ⊕ a2 ⊕ aux and aux⊕ a3⊕ . . .⊕ an ⊕> where aux is a
new atom not used elsewhere. Finally, XOR constraints of forms a⊕⊥ and a⊕> are
called unary.

To accommodate parity constraints in the input language, we rely on clingo’s theory
language extension [8] that pertains to the common syntax of aggregates:

1 &odd{ 1 : p(1) }.
2 &even{ X : p(X), X>1 }.

More precisely, xorro extends the input language of clingo by aggregate names &even
and &odd that are followed by a set, whose elements are terms conditioned by con-
junctions of literals separated by commas.6 The semantics of aggregates formed with
keywords &even and &odd is defined by even and odd parity constraints, respectively.
In the current implementation, they are interpreted as directives that select answer sets
satisfying the parity constraint in question.7 For now, parity constraints may not occur

5 The distinction of eager and lazy approaches follows the methodology in Satisfiability modulo
theories [1].

6 In turn, multiple conditional terms within an aggregate are separated by semicolons.
7 Our implementation of parity constraints fits perfectly with the parity constraints used in

sampling and model counting.
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in the bodies nor the heads of rules and the full integration of parity constraints into
rules is left as future work. The parity constraints shown above yield two answer sets,
viz. {p(1)} and {p(1), p(2), p(3)} in the context of a choice rule {p(1..3)}.
Hence, the first constraint filters out answer sets not containing the atom p(1), while
the second requires that either none or both of the atoms p(2) and p(3) are included.

2.1 Eager Encodings of Parity Constraints

In the following, we present three different ways to encode parity constraints using primi-
tives available in standard ASP. We refer to these encodings by nicknames Counting, List,
and Tree, respectively. Each encoding leads to an eager evaluation of the corresponding
parity constraint in terms of nogoods, which are used to invalidate answer sets as well
as to explain reasons behind conflicts encountered by solvers. In the eager approach,
nogoods resulting from parity constraints are generated in advance. As a consequence,
the underlying answer-set solver may freely propagate truth values over (parts of) parity
constraints during search.

Counting. Our first encoding is essentially the same as used in the previous generation
of xorro. As shown in Listing 1.1, the idea is to introduce an analogous counting
aggregate for the number of terms in the set and, in addition, to check that this number
matches with the given parity. Recalling the preceding example in this section, the
given parity constraints translate into integrity constraints embedding #count aggregates
coupled with appropriate modulo 2 conditions. The net effect is that the first constraint
enforces odd parity within {p(1)}, while the latter concerns even parity for the atoms
in {p(2),p(3)}.

1 :- #count{ 1 : p(1) } = N, N\2!=1.
2 :- #count{ X : p(X),X>1 } = N, N\2!=0.

Listing 1.1: Aggregate-based encoding parity constraints (count.lp).

List. The encoding presented in Listing 1.2 is based on an ordered list of terms
expressed using predicates term/1, first/1, last/1, and next/2. The idea is
to perform a sequence of tests for odd parity based on this list.8 Line 1 sets the base
case using the first term of the list. Then, Lines 2 and 3 recursively check for odd parity
following the structure of the list. Note that term(T) holds iff the conditions related
with the term T are satisfied. Line 4 determines if the parity of the entire term sequence is
odd based on the status of last term in the list. Finally, the encoding should be combined
with exactly one of the constraints in Lines 5 and 6. The first eliminates answer sets with
odd parity, while the one commented away in the listing removes the even cases with
respect to the parity constraint in question. The given encoding has been deployed, e.g.,
in the previous gringo versions (2 and 3) [10] as well as randomized testing [13].

1 odd(T) :- first(T), term(T).
2 odd(Y) :- next(X,Y), term(Y), not odd(X).
3 odd(Y) :- next(X,Y), not term(Y), odd(X).
4 odd :- odd(T), last(T).
5 :- odd.

8 This is analogous to parity evaluation using binary decision diagrams (BDDs).
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6 % :- not odd.

Listing 1.2: List-based encoding of parity constraints (list.lp).

Tree. Our last eager representation resembles the previous encoding but the underly-
ing topology for parity checks is different. A balanced binary tree is created for each
parity constraint and the recursive evaluation proceeds in a bottom-up fashion. The terms
are associated with the leaves of the tree while the root corresponds to the final outcome
of the parity check. The structure of the tree is expressed using predicates leaf/1,
root/1, and edge/2. Line 1 in Listing 1.3 sets the base case using the leaves of the
tree. Lines 2 and 3 accumulate the result of the parity check towards the root of the tree,
the value for each parent P is set based on the values of children C1 and C2 that need not
be ordered by symmetry. The value observed for the root R (see Line 4) sets the result.
In addition to the given rules, we have to include constraints for selecting the intended
parity value as done in Lines 5–6 in Listing 1.2.

1 odd(T) :- leaf(T), term(T).
2 odd(P) :- odd(C1), not odd(C2), edge(P,C1), edge(P,C2)
3 odd(P) :- not odd(C1), odd(C2), edge(P,C1), edge(P,C2).
4 odd :- odd(R), root(R).

Listing 1.3: Tree-based encoding of parity constraints (tree.lp).

2.2 Lazy Evaluation of Parity Constraints

Next, we switch our attention to the lazy evaluation techniques that generate nogoods
related to parity constraints on demand only. This is in contrast with the eager approaches
where such nogoods can be produced a priori. In practice, we have implemented parity
reasoning modules in Python acting as theory propagators [8] for the clingo system. In
what follows, we briefly explain how parity checking can be achieved in a more lazy
fashion.

Lazy Counting. In this approach, the idea is to perform counting (modulo 2) in order
to check parity constraints. However, such checks are performed only when a candidate
answer set for the rest of the program has been found. Therefore, the evaluation of parity
constraints does not interfere with the propagation of truth values while searching for
answer sets. If a particular parity constraint is violated, then a corresponding nogood is
generated.

Watched Literals. The propagation of truth values can be performed on demand by
watching certain literals occurring in a constraint (such as 2 literals per clause [20]).
The rough idea is to check the status of the constraint only if the truth values of the
watched literals are changed. As a result, the constraint might be used for propagation
or the literal(s) being watched is/are changed to some other literal(s). In case of parity
constraints, however, all but one atom involved in a particular constraint must be assigned
before the truth value of the final one is determined [18,24]. E.g., if a1, . . . , ak−1

and ak+1, . . . , an have been assigned false or, more generally, have an even parity in
a1⊕ . . .⊕ an, then ak must be true. Therefore, we have to keep track of both parity
values (even and odd) by watching 2 × 2 literals (two literals both phases) for each
parity constraint. Is important to mention, that all atoms (or terms) contributing to parity
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constraints originate from the underlying logic program. Otherwise, they are removed
by the gringo grounder due to closed world assumption (all occurrences of ⊥ can be
removed from parity constraints).

a⊕ b⊕ c
a

b⊕ c⊕>
¬b

¬c

c⊕ d⊕>

¬d

Fig. 1: Unit propagation involving
parity constraints

Figure 1 illustrates unit propagation over parity
constraints a ⊕ b ⊕ c and c ⊕ d ⊕ >. Given the
truth assignments a and ¬b indicated in gray, the
first constraint simplifies to b ⊕ c ⊕ >. Further-
more, we get ¬c and ¬d through unit propagation.
Had the assumptions originated from a candidate
answer set {a}, no other answer sets would be fea-
sible. The inferences made here can be recorded as
learned nogoods {a,¬b, c} and {¬c, d} in order to
perform similar (ordinary) unit propagation later
on without consulting the parity propagator again.

Gauss-Jordan Elimination. Sets of parity con-
straints can also be cast as linear equation systems
whose solutions can be determined using Gauss-Jordan elimination (GJE) [18,24,15].
The GJE method is complete for parity reasoning because it can be used to decide
whether a conjunction of parity constraints is satisfiable as well as to find implied literals
and equivalences. Plain Gaussian elimination can efficiently detect satisfiability, but not
implied literals nor equivalences. This can be understood from the difference between
the row-echelon and the reduced row-echelon forms for the matrix representations of
parity equation systems.

a b c d p
1 1 1 0 1
0 0 1 1 0
0 1 1 0 0

(a)

a c d p
1 1 0 0
0 1 1 0
0 1 0 1

(b)

a c d p
1 1 0 0
0 1 1 0
0 0 1 1

(c)

a c d p
1 0 0 1
0 1 0 1
0 0 1 1
(d)

Fig. 2: Deducing a, c, and d by GJE after b given

For the sake of
illustrating GJE, let
us use the con-
straints from Fig-
ure 1 along with
b ⊕ c ⊕ >. Figure
2(a) represents the
respective equations as a matrix where the column “p” indicates parities for the equa-
tions. Figure 2(b) shows a column reduction when b is assigned true and reflected to the
parity values. Figure 2(c) shows a row-echelon form for the matrix, already indicating
satisfiability and the truth of d. By further simplification into reduced row-echelon form
in Figure 2(d), we can clearly see how the values for other atoms are determined: a, c,
and d must all be true. After the matrix is reduced, we need to find either a conflict or
implications. If conflict, the nogood is the partial assignment. If implications, the nogood
is the partial assignment coupled with each of the implication literals in negated form.

3 The xorro System

This re-implementation of xorro allows the user to solve parity constraints on top of
an ASP program using a specific approach.9 xorro is built on top of clingo 5.3, and

9 https://github.com/potassco/xorro
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the system architecture is shown in Figure 3. xorro follows the standard grounding-
solving workflow of ASP, plus three additional blocks shown in solid lines which
are preprocessing, transformation, and translation. The preprocessing module has two
optional flags --split and --pre-gje. The split flag takes an integer to cut larger
constraints into smaller ones using auxiliary variables, and the pre-gje flag enables
XOR simplification for more than one constraint. If both flags are used together, GJE
is performed first followed by splitting. The transformation block is performed before
grounding to parse each parity constraint into facts and normal ASP rules. The translation
block is called before solving and it is responsible for building additional features for each
approach. Additionally, this implementation of xorro preserves the same functionality as
its predecessor for near-uniform sampling.

ASP
Program Solution

Pre-
process Transform Translategringo clasp

Build
Random

XORs

Pick
Random

Answer(s)

Fig. 3: Architecture of xorro

The workflow starts with an ASP program with parity constraints. Before grounding,
we preprocess and transform each parity constraint using clingo’s Abstract Syntax Tree
(AST) into auxiliary atoms of the form parity/2 and parity/3. The atom
parity/2 is added as a fact and it contains a numeric identifier and the parity as

odd or even. The atom parity/3 is added in the head of a new rule where the body
corresponds to its conditional literal. This atom contains the same information as the
fact parity/2 plus the tuples of terms involved in the constraint.10 For example, the
transformation of the parity constraints from Figure 2a is shown in Listing 1.4.

1 __parity(0,odd). __parity(1,even). __parity(2,even).
2 __parity(0,odd,(a,)):-a. __parity(0,odd,(b,)):-b.
3 __parity(0,odd,(c,)):-c.
4 __parity(1,even,(c,)):-c. __parity(1,even,(d,)):-d.
5 __parity(2,even,(b,)):-b. __parity(2,even,(c,)):-c.

Listing 1.4: Transformation of parity constraints to ASP.

The translation block depends on the given approach which is given by the flag
--approach followed by a keyword indicating one of the approaches from Sections 2.1
and 2.2. In the case of an eager approach, we add additional structures to the program.
For the eager count approach, we add the count aggregates with respect to the atom
parity/3 for every parity constraint parity/2. For the list and tree approaches,

we benefit from clingo’s Python API by using clingo’s backend class to extend a logic
program by adding statements directly in the intermediate format of ASP (aspif [16]).

For the lazy approaches, we benefit from the theory propagator interface of clingo
which consists of four functions, namely init, propagate, undo, and check. We rely on
them, so each lazy approach performs at a specific part of the search, being during

10 The transformation process mimicks the use of a theory grammar for clingo [8].
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propagation or fixpoints (partial or total assignments). All propagators keep the state of
each parity constraint by its (solver) literals. From the three lazy approaches, the lazy
count works on total assignment whereas the UP and GJE during propagation. The lazy
count approach does not propagate and do not interfere with clasp propagation. On total
assignment under the check method, we count the number of true literals. In case of
conflict, add the nogood (whole assignment per constraint) and let clasp to propagate
again. The Unit-Propagation (UP) propagator performs plain propagation over parity
constraints. As its name suggests, it is performed in the propagate function. The check
method is not implemented, and the state keeps 2x2-watched literals. For implementing
Gauss-Jordan Elimination, two alternatives are proposed, called “gje-fp” and “gje-prop”.
Their main difference is at which point of the search GJE is called. Both extend the UP
approach. For “gje-fp” two propagators are registered, the UP followed by the “gje-fp”
propagator, performing GJE on fixpoints. The “gje-prop” alternative registers only one
propagator performing GJE when a unit clause is detected.

As mentioned, this implementation of xorro preserves the functionality of sampling
following the concepts from the XORSample’ algorithm [12], by solving a program with
--s random parity constraints with a density --q. The sampling components are enabled
with --sampling and shown in Figure 3 in dotted rounded-corner squares. Unlike
the algorithm from [12] which calls a model counter, xorro enumerates all remaining
answer sets, and the last module randomly picks n (user-defined) answer sets. The
sampling mode for xorro corresponds to the non-iterative algorithm from [12] recalling
the possibility to get no answer set due to unsatisfiable parity constraints. Finally, the
flag --display prints the random XOR constraints used in sampling.

4 Experiments

Different tests are proposed to measure the impact of solving a single or several parity
constraints with xorro. We considered 301 satisfiable instances from 19 (9 tight, 10 non–
tight) classes using all aforementioned approaches. However, we kept only 126 instances
from eight classes (5 tight, 3 non-tight) for which clingo’s solving time surpasses one
second. These benchmarks problems were taken from the second ASP competition [5],
using encodings of the Potassco team. 11 No encoding or instance has been modified,
just parity constraints are appended. The main objectives of our experiments are built
around the following questions:

1. What is the impact of solving a single random parity constraint of different sizes
ranging from 1, 10, 20, 30, 40, and 50 percent of unassigned variables?

2. Due to SAT solvers’ good performance on small size parity constraints, is there any
benefit of splitting a single parity into small ones? On average from the literature,
the size of a small XOR constraint is 4.

3. Due to sampling using high-density constraints (50 percent of unassigned variables),
what is the impact of solving more than one high-density parity constraint with and
without GJE preprocessing?

11 http://flavioeverardo.com/research/benchmarks/xorro/

http://flavioeverardo.com/research/benchmarks/xorro/
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4. Do the eager approaches count and list used in the previous xorro version, gringo
up to version 3, and in harvey, respectively, scale when solving high-density parity
constraints?

5. Is there any approach outstanding from the rest?

To address these questions, we designed five experiments, each with different tests. Each
test uses the set of instances from the benchmark classes in Table 1 coupled with a single
or several XORs. We use clingo, and Python to randomly build each constraint excluding
facts with the only condition that at least one answer set remains. Table 1 shows the
range of atoms per class and the number of instances under column “#”.

Class # MIN AVG MAX

Tight
15Puzzle 16 9841 10514 11332
BlockedNQueens 15 7996 8008 8012
GraphColouring 9 2707 2837 3087
SchurNumbers 13 1291 1291 1291
Solitaire 22 7687 8702 9920
Non-Tight
ConnectedDomSet 10 804 1463 2519
Labyrinth 29 56482 91733 120192
WireRouting 12 6085 15546 25330

Table 1: Range of atoms per class

For the first experiment, we solved all the
instances each with a single parity constraint
of different sizes ranging from one, 10, 20, 30,
40, to 50 percent of unassigned variables. In
the second experiment, we used the same parity
constraints but we split them into smaller ones
of size four. The auxiliary atoms were added
into each instance as choice rules. For the third,
fourth, and fifth experiments, we increased the
number of high-density XORs to two, three, four,
and five. We first solved the instances without
preprocessing. Then, we reduced the length of
the XORs by applying GJE, and lastly, GJE plus
a split of size four. It is important to remark that
the difference between small XORs and shorter ones due to split, is their shared variables.
If independently drawn small XORs contain variables in common, they mean the same
as a longer XOR with equivalence reasoning.

Our tests follow the notation “cNxMperc” where N represents the number of parity
constraints times M percentage or density per parity. For example the test “c03x50perc”
solves an instance containing three XORs of 50% each. Our comparison considers
solving each instance without parity constraints using clingo 5.3 in its default setting as
benchmark reference. We ran clingo two times, once for the first two experiments and
once more for the last three.

The experiments were run in parallel under Linux on an Intel Xeon E5-2650v4 high
performance cluster equipped with 2.20 GHz processors. Each benchmark instance (in
smodels output format, generated offline with gringo plus the parity constraints) was run
three times per solver (clingo and xorro). Each run is restricted to 600 seconds time with
4 GB RAM. A run finished when the solver found an answer set or was aborted due to
time or memory exhaustion.

4.1 Results

Our experiments’ results are summarized in Tables 2a–3c giving average runtimes in
seconds (using PAR–1 score) and the number of aborted runs is shown in parentheses.12

12 For more detailed benchmarks results, including individual times per classes please go to
http://flavioeverardo.com/research/benchmarks/xorro/

http://flavioeverardo.com/research/benchmarks/xorro/
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All the tables show the experiments and clingo’s runtimes without parity constraints
on the left side followed by the corresponding lazy and eager approaches. The last
row of each table shows the average runtimes followed by the total number of time or
memory exhaustion. All tables show the best score from each test in bold. Tables 2a
and 2b correspond to the results from the first two experiments addressing questions 1
and 2, respectively. Both experiments divide the search space into two parts. However,
the results are completely contrasting. The counting approach with aggregates does not
scale from the 10 percent size when solving the parity constraint as it is. However, this
approach scales when the XORs are split. The grounding becomes the bottleneck on
longer XORs causing timeouts or memory exhaustion on most of the instances and runs,
whereas roles switch with shorter XORs. Despite the best performance of the lazy count
approach on four out of six tests, the best PAR–1 score belongs to the tree approach.
Both approaches perform better than clingo in five out of six tests in the first experiment.
Contrary, both approaches perform worst when splitting XORs. A similar case occurs
with the two worst approaches when solving non-split XORs (the count with aggregates
and the UP). Both outperform the rest if the XORs are split. The best PAR–1 score from
the second experiment belongs to the UP approach. We can see from both experiments
the feasibility to reach an answer set faster than clingo when solving with a single XOR.

To resume, the length of the parity constraint matters depending on the approach
to use. To solve a single parity constraint without a split, better use the tree or the lazy
counting approach. On shorter XORs or a longer split XOR, better use UP or the eager
counting.

lazy eager
test clingo count up list count tree

1x01perc 883.19 (11) 1220.65 (15) 644.72 (8) 1035.84 (13) 1038.58 (13) 806.43 (10)
1x10perc 909.21 (11) 802.27 (10) 1026.35 (13) 951.96 (12) 2998.6 (39) 876.34 (11)
1x20perc 908.98 (11) 802.52 (10) 952.37 (12) 837 (10) 5025.73 (66) 882.33 (11)
1x30perc 884.17 (11) 827.38 (10) 1180.09 (15) 875.56 (11) 6885.11 (90) 782.72 (10)
1x40perc 884.07 (11) 878.19 (11) 1178.58 (15) 1103.47 (14) 7933.01 (104) 904.66 (11)
1x50perc 959.49 (12) 877.13 (11) 1178.37 (15) 959.15 (12) 8638.37 (113) 878.6 (11)

AVG (SUM) 904.85 (67) 901.36 (67) 1026.74 (78) 960.5 (72) 5419.9 (425) 855.18 (64)

(a) Average solving runtimes on a single XOR constraint ranging from 1 to 50 percent.

lazy eager
test clingo count up list count tree

1x01perc 883.19 (11) 1196.01 (15) 647.96 (8) 804.07 (10) 1035.91 (13) 808.8 (10)
1x10perc 909.21 (11) 658.57 (8) 653.47 (8) 644.19 (8) 648.15 (8) 955.17 (12)
1x20perc 908.98 (11) 962.7 (12) 722.71 (9) 732.31 (9) 568.47 (7) 871.84 (11)
1x30perc 884.17 (11) 965.12 (12) 571.27 (7) 802.18 (10) 800.14 (10) 1029.28 (13)
1x40perc 884.07 (11) 1451.29 (18) 1032.9 (13) 1023.5 (13) 963.23 (12) 880.07 (11)
1x50perc 959.49 (12) 1512.16 (19) 725.18 (9) 1026.21 (13) 508.78 (6) 945.73 (12)

AVG (SUM) 904.85 (67) 1124.31 (84) 725.58 (54) 838.74 (63) 754.11 (56) 915.15 (69)

(b) Average solving runtimes on split XORs of size 4, ranging from 1 to 50 percent.

Table 2: Experiments solving a single parity constraint from different sizes.
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For the last three experiments, the search space is divided into four, eight, 16 and
32 parts showing the solving performance over more than one parity constraint. From
here on, we include the GJE elimination approaches and we exclude for now the eager
counting approach which only performs on shorter (or split) XORs. Table 3a shows the
results from experiment number three. The hardness of solving dense XORs starts to arise.
lazy countinging outperforms the rest when solving with two XORs, opposed to clingo
which performs the best in the remaining tests. Both eager approaches (tree and list)
perform badly as the number of XORs increases. Lastly, there is a big difference between
both GJE approaches. One (gje-prop) performing in between the eager and the other lazy
approaches, whereas the other (gje-fp) does not scale at all. Both use the same routines to
operate over columns, rows, detect conflicts, propagation and so on. Also, both perform
exactly the same concerning the number of choices, restarts, conflicts, backjumps, etc.
To recall, GJE outputs one of three results: variable(s) to propagate, conflict(s) or neither
of both. The runtime difference occurs when performing GJE on fixpoints results in
finding neither of both in most of the time. For example, “gje-prop” solves instances of
the 15Puzzle class with an average of 10 calls to GJE without propagating or conflict.
The same instances with “gje-fp” called on average over 5,000 times more GJE without
finding a conflict or a literal to propagate.

lazy eager
test clingo count up gje-fp gje-prop list tree

2x50perc 1113.02 (14) 902.33 (11) 952.39 (12) 3806.57 (48) 1025.23 (13) 960.53 (12) 1144.23 (14)
3x50perc 934.33 (12) 976.59 (12) 1028.65 (13) 4038.56 (51) 1097.16 (14) 1567.05 (20) 1570.77 (20)
4x50perc 1034.74 (13) 1105.75 (14) 1182.47 (15) 4347.56 (55) 1421.77 (18) 1546 (20) 1622.86 (21)
5x50perc 1009.25 (13) 1189.58 (15) 1032.25 (13) 4655.35 (59) 1468.04 (19) 1770.75 (23) 1928.74 (25)

AVG (SUM) 1022.83 (63) 1043.56 (64) 1048.94 (68) 4212.01 (228) 1253.05 (79) 1461.08 (87) 1566.65 (91)

(a) Average solving runtimes from two to five high-density constraints.

lazy eager
test clingo count up gje-prop list tree

2x50perc 1113.02 (14) 877.85 (11) 956.17 (12) 1026.36 (13) 1261.7 (16) 736.64 (9)
3x50perc 934.33 (12) 1027.76 (13) 1028.87 (13) 1095.95 (14) 981.04 (12) 1343.69 (17)
4x50perc 1034.74 (13) 1006.4 (13) 1112.8 (14) 1374.6 (18) 1729.47 (22) 1711.62 (22)
5x50perc 1009.25 (13) 1112.83 (14) 1187.97 (15) 1470.44 (19) 1852.3 (24) 2151.83 (28)

AVG (SUM) 1022.83 (63) 1006.21 (62) 1071.45 (69) 1241.84 (79) 1456.13 (90) 1485.94 (91)

(b) Average solving runtimes from two to five high-density with GJE preprocess.

lazy eager
test clingo count up gje-prop list count tree

2x50perc 1113.02 (14) 2333.18 (30) 729.96 (9) 8613.63 (111) 941.51 (12) 1060.47 (13) 1042.54 (13)
3x50perc 934.33 (12) 2413.15 (31) 947.77 (12) 9177.39 (118) 1917.18 (25) 1215.5 (15) 1798.67 (23)
4x50perc 1034.74 (13) 2321.53 (30) 1776.73 (23) 9579.91 (123) 2130.86 (28) 1668.8 (21) 2284.37 (30)
5x50perc 1009.25 (13) 2417.51 (31) 1927.46 (25) 9438.35 (122) 2367.49 (31) 1552 (19) 2278.92 (30)

AVG (SUM) 1022.83 (51) 2371.34 (122) 1345.48 (69) 9202.32 (474) 1839.26 (96) 1374.19 (68) 1851.13 (97)

(c) Average solving runtimes from two to five high-density with GJE and split preprocess.

Table 3: Experiments on multiple high-density parity constraints.
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The fourth experiment solves the same parity constraints but with a GJE prepro-
cessing step to reduce their length. The results are shown in Table 3b. From the five
approaches, all except UP benefit from preprocessing. The tree and the lazy counting
approaches got a speedup of 5.2 and 3.6% respectively. However, the tree approach
remains worst, and the lazy counting now performs better than clingo.

The last experiment takes another notch by splitting the preprocessed XORs after
GJE. We include the eager counting approach due to its performance on split constraints.
The results from Table 3c show clingo outperforming the rest in three out of four tests,
and also, in the overall score. The UP has the best score in only one test. Similarly to
experiment number two, the lazy counting and the tree approaches perform poorly with
shorter XORs. UP and the eager counting approach have the best scores but still quite
far from clingo’s performance. None of the five approaches from the fourth experiment
benefit from splitting in the fifth. It is the opposite. The tree, list, and UP downgrade their
performance by 24-26%. The lazy counting by 135% and GJE by 600%. We confirm
that splitting high-density parity constraints does not scale without further preprocessing.
When split, we add more XORs and more variables (rows and columns respectively for
GJE). We passed from five dense to 670 smaller constraints in the best case (Connected
Dom Set class) against 100,160 shorter parity constraints in the worst (Labyrinth class).
From a GJE perspective, we increased the size of the matrix from five rows and 402
columns in the best case, to 670 rows and 536 columns. The worst case passes from five
rows and 64,596 columns to 100,160 rows and 86,128 columns. This makes our GJE
implementation fail to scale without additional preprocessing. As stated in [18], so far,
for larger matrices, the computational overhead of Gaussian elimination is significant.
Also, [24,22] state that for efficient solving, the number of parity constraints and their
density should be low. The tests show most of the approaches performed better with
longer XORs. Additional preprocessing like equivalence reasoning reduces the number
of constraints by creating longer XORs.

After running all experiments, we can see that the eager counting and list approaches
stay behind when solving high-density constraints without any preprocessing (as in
the previous xorro and harvey implementations). In contrary, they improved their per-
formance especially when a split occurs. Also, it is difficult to identify an approach
outstanding from the rest. From 24 tests, the lazy counting has the best score on six,
followed by the UP and the tree approaches with four and three respectively. Plain clingo
performs best on eight tests. On the other hand, depending on the number and the density
of the parity constraints, some approaches perform best. From experiment number two,
some xorro approaches perform better on XORs of lower densities than n/2 variables.
This is sufficient for approximate model counting, but not for sampling [11].

5 Discussion

We presented different means of implementing parity constraints, ranging from ASP
encodings to theory propagators. The fully re-implemented system xorro takes advantage
of the hybrid reasoning capacities of the ASP system clingo for solving parity constraints
on top of logic programs, providing an opening to develop new applications in ASP
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including sampling, (approximate) model counting, cryptography, and probabilistic
reasoning.

Our experiments show that xorro scales depending on the combination of the number,
density, and preprocessing of the parity constraints. For instance, cutting the search
space by half helps xorro to reach an answer set faster than clingo even when using a
high-density constraint. Some approaches scaled when splitting a single XOR as opposed
to others who perform without preprocessing. On the other hand, solving high-density
parity constraints hinders xorro performance compared to clingo’s, but there is evidence
that preprocessing can lead to a significant speedup.

For future work, we plan to extend clingo’s input language with parity aggregates
and investigate the performance of clingo’s multi-shot capabilities by incrementally
solving parity constraints as an application for sampling. Finally, to improve our GJE
approach, and inspired by [24,18], we want to explore an incremental GJE and strategies
like ordered columns and turning GJE on/off automatically as well as cutoff values, rows
and columns elimination with equivalence reasoning.
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