
Answer Set Solving with
Bounded Treewidth Revisited?

Johannes K. Fichte� (0000-0002-8681-7470), Markus Hecher
(0000-0003-0131-6771),

Michael Morak, and Stefan Woltran

Institute of Information Systems, TU Wien, Wien, Austria
lastname@dbai.tuwien.ac.at

Abstract Parameterized algorithms are a way to solve hard problems
more efficiently, given that a specific parameter of the input is small. In
this paper, we apply this idea to the field of answer set programming
(ASP). To this end, we propose two kinds of graph representations of
programs to exploit their treewidth as a parameter. Treewidth roughly
measures to which extent the internal structure of a program resembles
a tree. Our main contribution is the design of parameterized dynamic
programming algorithms, which run in linear time if the treewidth and
weights of the given program are bounded. Compared to previous work,
our algorithms handle the full syntax of ASP. Finally, we report on an
empirical evaluation that shows good runtime behaviour for benchmark
instances of low treewidth, especially for counting answer sets.

Keywords: Parameterized algorithms · Tree decompositions

1 Introduction

Parameterized algorithms [5] have attracted considerable interest in recent years
and allow to tackle hard problems by directly exploiting a small parameter of
the input problem. One particular goal in this field is to find guarantees that the
runtime is exponential exclusively in the parameter, and polynomial in the input
size (so-called fixed-parameter tractable algorithms). A parameter that has been
researched extensively is treewidth [2]. Generally speaking, treewidth measures
the closeness of a graph to a tree, based on the observation that problems on trees
are often easier than on arbitrary graphs. A parameterized algorithm exploiting
small treewidth takes a tree decomposition, which is an arrangement of a graph
into a tree, and evaluates the problem in parts, via dynamic programming (DP)
on the tree decomposition.

ASP [3] is a logic-based declarative modelling language and problem solving
framework where solutions, so called answer sets, of a given logic program directly

? For additional details and proofs, we refer to an extended self-archived version [8]. A
preliminary version of the paper was presented on the workshop TAASP’16. Research
was supported by the Austrian Science Fund (FWF), Grant Y698. The first and
second author are also affiliated with the University of Potsdam, Germany.

2 Fichte et al.

represent the solutions of the modelled problem. Jakl et al. [9] give a DP algorithm
for disjunctive rules only, whose runtime is linear in the input size of the program
and double exponential in the treewidth of a particular graph representation of the
program structure. However, modern ASP systems allow for an extended syntax
that includes, among others, weight rules and choice rules. Pichler et al. [10]
investigated the complexity of programs with weight rules. They also presented
DP algorithms for programs with cardinality rules (i.e., restricted version of
weight rules), but without disjunction.

In this paper, we propose DP algorithms for finding answer sets that are able
to directly treat all kinds of ASP rules. While such rules can be transformed into
disjunctive rules, we avoid the resulting polynomial overhead with our algorithms.
In particular, we present two approaches based on two different types of graphs
representing the program structure. Firstly, we consider the primal graph, which
allows for an intuitive algorithm that also treats the extended ASP rules. While
for a given disjunctive program the treewidth of the primal graph may be larger
than treewidth of the graph representation used by Jakl et al. [9], our algorithm
uses simpler data structures and lays the foundations to understand how we can
handle also extended rules. Our second graph representation is the incidence
graph, a generalization of the representation used by Jakl et al. Algorithms for
this graph representation are more sophisticated, since weight and choice rules can
no longer be completely evaluated in the same computation step. Our algorithms
yield upper bounds that are linear in the program size, double-exponential in the
treewidth, and single-exponential in the maximum weights. We extend our two
algorithms to count optimal answer sets. For this particular task, experiments
show that we are able to outperform existing systems from multiple domains, given
input instances of low treewidth, both randomly generated and obtained from
real-world graphs of traffic networks. Our system is publicly available on github1.

2 Formal Background

Answer Set programming (ASP). ASP is a declarative modeling and problem
solving framework; for a full introduction, see, e.g., [3]. State-of-the-art ASP
grounders support the full ASP-Core-2 language [4] and output smodels input
format [13], which we will use for our algorithms. Let `, m, n be non-negative
integers such that ` ≤ m ≤ n, a1, . . ., an distinct propositional atoms, w, w1, . . .,
wn non-negative integers, and l ∈ {a1,¬a1}. A choice rule is an expression of the
form, {a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an, a disjunctive rule is of the
form a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an and a weight rule is of the
form a` ← w 6 {a`+1 = w`+1, . . . , am = wm, ¬am+1 = wm+1, . . . ,¬an = wn}.
Finally, an optimization rule is an expression of the form l[w]. A rule is
either a disjunctive, a choice, a weight, or an optimization rule. For a choice,
disjunctive, or weight rule r, let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am}, and
B−r := {am+1, . . . , an}. For a weight rule r, let wght(r, a) map atom a to its
corresponding weight wi in rule r if a = ai for `+ 1 ≤ i ≤ n and to 0 otherwise,

1 See https://github.com/daajoe/dynasp/tree/v2.0.0.

https://github.com/daajoe/dynasp/tree/v2.0.0

Answer Set Solving with Bounded Treewidth Revisited 3

d a

c b {a, b, c}
t1

{a, d}
t2

{a}t3 d a b c

r3 r1 r2 {b, c, r1, r2}t1

{a, r1, r2}t2

{a, d, r3}
t3

{a} t4

Figure 1 Graph G1 with a TD of G1 (left) and graph G2 with a TD of G2 (right).

let wght(r,A) :=
∑
a∈A wght(r, a) for a set A of atoms, and let bnd(r) := w

be its bound. For an optimization rule r, let cst(r) := w and if l = a1, let
B+
r := {a1} and B−r := ∅; or if l = ¬a1, let B−r := {a1} and B+

r := ∅. For
a rule r, let at(r) := Hr ∪ B+

r ∪ B−r denote its atoms and Br := B+
r ∪ {¬b |

b ∈ B−r } its body. A program Π is a set of rules. Let at(Π) := {at(r) | r ∈ Π}
and let CH(Π),DISJ(Π),OPT(Π) and WGT(Π) denote the set of all choice,
disjunctive, optimization and weight rules in Π, respectively. A set M ⊆ at(Π)
satisfies a rule r if (i) (Hr ∪ B−r) ∩ M 6= ∅ or B+

r 6⊆ M for r ∈ DISJ(Π),
(ii) Hr ∩M 6= ∅ or Σai∈M∩B+

r
wi +Σai∈B−r \M wi < bnd(r) for r ∈WGT(Π), or

(iii) r ∈ CH(Π)∪OPT(Π). M is a model of Π, denoted by M � Π, if M satisfies
every rule r ∈ Π. Further, let Mod(C, Π) := {C | C ∈ C, C � Π} for C ⊆ 2at(Π).
The reduct rM (i) of a choice rule r is the set {a← B+

r | a ∈ Hr∩M,B−r ∩M = ∅}
of rules, (ii) of a disjunctive rule r is the singleton {Hr ← B+

r | B−r ∩M = ∅}, and
(iii) of a weight rule r is the singleton {Hr ← w′ 6 [a = wght(r, a) | a ∈ B+

r]}
where w′ = bnd(r) − Σa∈B−r \M wght(r, a). ΠM := {r′ | r′ ∈ rM , r ∈ Π} is

called GL reduct of Π with respect to M . A set M ⊆ at(Π) is an answer set
of program Π if (i) M � Π and (ii) there is no M ′ (M such that M ′ � ΠM ,
that is, M is subset minimal with respect to ΠM . We call cst(Π,M,A) :=
Σr∈OPT(Π), A∩[(B+

r ∩M)∪(B−r \M)]6=∅ cst(r) the cost of model M for Π with respect

to the set A ⊆ at(Π). An answer set M of Π is optimal if its cost is minimal
over all answer sets.

Example 1. Let Π := {
r1︷ ︸︸ ︷

{a; b} ← c;

r2︷ ︸︸ ︷
c← 1 6 {b = 1,¬a = 1};

r3︷ ︸︸ ︷
d ∨ a←}. Then,

the sets {a}, {c, d} and {b, c, d} are answer sets of Π. �

Given a program Π, we consider the problems of computing an answer set (called
AS) and outputting the number of optimal answer sets (called #AspO).

Tree Decompositions. Let G = (V,E) be a graph, T = (N,F, n) a rooted tree,
and χ : N → 2V a function that maps each node t ∈ N to a set of vertices. We
call the sets χ(·) bags and N the set of nodes. Then, the pair T = (T, χ) is a
tree decomposition (TD) of G if the following conditions hold: (i) all vertices
occur in some bag, that is, for every vertex v ∈ V there is a node t ∈ N with
v ∈ χ(t); (ii) all edges occur in some bag, that is, for every edge e ∈ E there
is a node t ∈ N with e ⊆ χ(t); and (iii) the connectedness condition: for any
three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then
χ(t1) ∩ χ(t3) ⊆ χ(t2). We call max{|χ(t)| − 1 | t ∈ N} the width of the TD. The
treewidth tw(G) of a graph G is the minimum width over all possible TDs of G.
For some arbitrary but fixed integer k and a graph of treewidth at most k, we
can compute a TD of width 6 k in time 2O(k3) · |V | [2]. Given a TD (T, χ) with
T = (N, ·, ·), for a node t ∈ N we say that type(t) is leaf if t has no children; join
if t has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); int (“introduce”)

4 Fichte et al.

Algorithm 1: Algorithm DPA(T) for Dynamic Programming on TD T for ASP.

In: Table algorithm A, nice TD T = (T, χ) with T = (N, ·, n) of G(Π) according to A.
Out: Table: maps each TD node t ∈ T to some computed table τt.

1 for iterate t in post-order(T,n) do
2 Child-Tabs := {Tables[t′] | t′ is a child of t in T}
3 Tables[t] := A(t, χ(t), Πt, at≤t,Child-Tabs)

if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem (“removal”) if t
has a single child t′, χ(t) ⊆ χ(t′) and |χ(t′)| = |χ(t)|+ 1. If every node t ∈ N has
at most two children, type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and
the root are empty, then the TD is called nice. For every TD, we can compute a
nice TD in linear time without increasing the width [2]. In our algorithms, we
will traverse a TD bottom up, therefore, let post-order(T, t) be the sequence of
nodes in post-order of the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Example 2. Figure 1 (left) shows a graph G1 together with a TD of G1 that
is of width 2. Note that G1 has treewidth 2, since it contains a clique on the
vertices {a, b, c}. Further, the TD T in Figure 2 is a nice TD of G1. �

Graph Representations of Programs. In order to use TDs for ASP solving, we
need dedicated graph representations of ASP programs. The primal graph P (Π)
of program Π has the atoms of Π as vertices and an edge a b if there exists
a rule r ∈ Π and a, b ∈ at(r). The incidence graph I(Π) of Π is the bipartite
graph that has the atoms and rules of Π as vertices and an edge a r if a ∈ at(r)
for some rule r ∈ Π. These definitions adapt similar concepts from SAT [11].

Example 3. Recall program Π of Example 1. We observe that graph G1 (G2)
in the left (right) part of Figure 1 is the primal (incidence) graph of Π. �

Sub-Programs. Let T = (T, χ) be a nice TD of graph representation H ∈
{I(Π), P (Π)} of a program Π. Further, let T = (N, ·, n) and t ∈ N . The bag-
rules are defined as Πt := {r | r ∈ Π, at(r) ⊆ χ(t)} if H is the primal graph and
as Πt := Π ∩ χ(t) if H is the incidence graph. Further, the set at≤t := {a | a ∈
at(Π) ∩ χ(t′), t′ ∈ post-order(T, t)} is called atoms below t, the program below t
is defined as Π≤t := {r | r ∈ Πt′ , t

′ ∈ post-order(T, t)}, and the program strictly
below t is Π<t := Π≤t \Πt. It holds that Π≤n = Π<n = Π and at≤n = at(Π).

Example 4. Intuitively, TDs of Figure 1 enable us to evaluate Π by analyzing
sub-programs ({r1, r2} and {r3}) and combining results agreeing on a. Indeed, for
the given TD of Figure 1 (left), Π≤t1 = {r1, r2}, Π≤t2 = {r3} and Π = Π≤t3 =
Π<t3 = Πt1 ∪Πt2 . For the TD of Figure 1 (right), we have Π≤t1 = {r1, r2} and
at≤t1 = {b, c}, as well as Π≤t3 = {r3} and at≤t3 = {a, d}. Moreover, for TD T of
Figure 2, Π≤t1 =Π≤t2 =Π≤t3 =Π<t4 = ∅, at≤t3 = {a, b} and Π≤t4 = {r1, r2}. �

3 ASP via Dynamic Programming on TDs

In the next two sections, we propose two dynamic programming (DP) algorithms,
DPPRIM and DP INC, for ASP without optimization rules based on two different

Answer Set Solving with Bounded Treewidth Revisited 5

Algorithm 2: Table algorithm PRIM(t, χt, Πt, ·,Child-Tabs).

In: Bag χt, bag-rules Πt and child tables Child-Tabs of node t. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, ∅〉} /* Abbreviations see Footnote 2. */

2 else if type(t) = int, a ∈ χt is introduced and τ ′ ∈ Child-Tabs then

3 τt := {〈M+
a , Mod({M} ∪ [C t {a}] ∪ C, ΠM+

a
t)〉 | 〈M, C〉 ∈ τ ′,M+

a � Πt}
⋃

4 {〈M, Mod(C, ΠM
t)〉 | 〈M, C〉 ∈ τ ′,M � Πt}

5 else if type(t) = rem, a 6∈ χt is removed and τ ′ ∈ Child-Tabs then
6 τt := {〈M−a , {C−a | C ∈ C}〉 | 〈M, C〉 ∈ τ ′}
7 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then
8 τt := {〈M, (C′ ∩ C′′) ∪ (C′ ∩ {M}) ∪ ({M} ∩ C′′)〉 | 〈M, C′〉 ∈ τ ′, 〈M, C′′〉 ∈ τ ′′}

graph representations, namely the primal and the incidence graph. Both algo-
rithms make use of the fact that answer sets of a given program Π are (i) models
of Π and (ii) subset minimal with respect to ΠM . Intuitively, our algorithms
compute, for each TD node t, (i) sets of atoms—(local) witnesses—representing
parts of potential models of Π, and (ii) for each local witness M subsets of M—
(local) counterwitnesses—representing subsets of potential models of ΠM which
(locally) contradict that M can be extended to an answer set of Π. We give the
the basis of our algorithms in Algorithm 1 (DPA), which sketches the general
DP scheme for ASP solving on TDs. Roughly, the algorithm splits the search
space based on a given nice TD and evaluates the input program Π in parts.
The results are stored in so-called tables, that is, sets of all possible tuples of
witnesses and counterwitnesses for a given TD node. To this end, we define the
table algorithms PRIM and INC, which compute tables for a node t of the TD
using the primal graph P (Π) and incidence graph I(Π), respectively. To be more
concrete, given a table algorithm A ∈ {PRIM, INC}, algorithm DPA visits every
node t ∈ T in post-order; then, based on Πt, computes a table τt for node t from
the tables of the children of t, and stores τt in Tables[t].

3.1 Using Decompositions of Primal Graphs

In this section, we present our algorithm PRIM in two parts: (i) finding models
of Π and (ii) finding models which are subset minimal with respect to ΠM .
For sake of clarity, we first present only the first tuple positions (red parts) of
Algorithm 2 (PRIM) to solve (i). We call the resulting table algorithm MOD.

Example 5. Consider program Π from Example 1 and in Figure 2 (left) TD T =
(·, χ) of P (Π) and the tables τ1, . . ., τ12, which illustrate computation results
obtained during post-order traversal of T by DPMOD. Table τ1 = {〈∅〉} as
type(t1) = leaf. Since type(t2) = int, we construct table τ2 from τ1 by taking M1.i

and M1.i ∪ {a} for each M1.i ∈ τ1 (corresponding to a guess on a). Then, t3
introduces b and t4 introduces c. Πt1 = Πt2 = Πt3 = ∅, but since χ(t4) ⊆
at(r1) ∪ at(r2) we have Πt4 = {r1, r2} for t4. In consequence, for each M4.i of
table τ4, we have M4.i � {r1, r2} since MOD enforces satisfiability of Πt in node t.

2 S t {e} := {S ∪ {e} | S ∈ S}, S+
e := S ∪ {e}, and S−e := S \ {e}

6 Fichte et al.

∅ t1

{a} t2

{a, b} t3

{a, b, c} t4

{a, c} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T :

〈M4.i〉
〈{c}〉
〈{a}〉
〈{a, c}〉
〈{b, c}〉
〈{a, b, c}〉

τ4

i

1
2
3
4
5

i

1
2
3

〈M9.i〉
〈{a}〉
〈{d}〉
〈{a, d}〉
τ9

〈M11.i〉
〈∅〉
〈{a}〉

τ11

i

1
2

i

1

〈M1.i〉
〈∅〉

τ1

〈M4.i, C4.i〉
〈{c}, ∅〉
〈{a}, ∅〉
〈{a, c}, {{a}}〉
〈{b, c}, ∅〉
〈{a, b, c}, {{a}}〉

τ4

i

1
2
3
4
5

j

1

1

〈M1.i, C1.i〉
〈∅, ∅〉

τ1

i

1

j

1

i

1
2

3

〈M9.i, C9.i〉
〈{a}, ∅〉
〈{d}, ∅〉
〈{a, d}, {{a},

{d}}〉

τ9

j

1
2

〈M11.i, C11.i〉
〈∅, ∅〉
〈{a}, ∅〉
〈{a}, {{a}}〉

τ11

i

1
2
3

j

1

Figure 2 Selected DP tables of MOD (left) and PRIM (right) for nice TD T .

We derive tables τ7 to τ9 similarly. Since type(t5) = rem, we remove atom b from
all elements in τ4 to construct τ5. Note that we have already seen all rules where
b occurs and hence b can no longer affect witnesses during the remaining traversal.
We similarly construct τt6 = τ10 = {〈∅〉, 〈a〉}. Since type(t11) = join, we construct
table τ11 by taking the intersection τ6 ∩ τ10. Intuitively, this combines witnesses
agreeing on a. Node t12 is again of type rem. By definition (primal graph and
TDs) for every r ∈ Π, atoms at(r) occur together in at least one common bag.
Hence, Π = Π≤t12 and since τ12 = {〈∅〉}, we can construct a model of Π from
the tables. For example, we obtain the model {a, d} = M11.2 ∪M4.2 ∪M9.3. �

PRIM is given in Algorithm 2. Tuples in τt are of the form 〈M, C〉. Witness M ⊆
χ(t) represents a model of Πt witnessing the existence of M ′ ⊇M with M ′ � Π≤t.
The family C ⊆ 2M contains sets of models C ⊆ M of the GL reduct (Πt)

M .
C witnesses the existence of a set C ′ with counterwitness C ⊆ C ′ (M ′ and
C ′ � (Π≤t)

M ′ . There is an answer set of Π if table tn for root n contains 〈∅, ∅〉.
Since in Example 5 we already explained the first tuple position and thus the
witness part, we only briefly describe the parts for counterwitnesses. In the
introduce case, we want to store only counterwitnesses for not being minimal
with respect to the GL reduct of the bag-rules. Therefore, in Line 3 we construct
for M+

a counterwitnesses from either some witness M (M (M+
a), or of any

C ∈ C, or of any C ∈ C extended by a (every C ∈ C was already a counterwitness
before). Line 4 ensures that only counterwitnesses that are models of the GL
reduct ΠM

t are stored (via Mod(·, ·)). Line 6 restricts counterwitnesses to its bag
content, and Line 8 enforces that child tuples agree on counterwitnesses.

Example 6. Consider Example 5, its TD T = (·, χ), Figure 2 (right), and the
tables τ1, . . ., τ12 obtained by DPPRIM. Since we have at(r1)∪ at(r2) ⊆ χ(t4), we
require C4.i.j � {r1, r2}M4.i for each counterwitness C4.i.j ∈ C4.i in tuples of τ4.
For M4.5 = {a, b, c} observe that the only counterwitness of {r1, r2}M4.5 = {a←
c, b← c, c← 1 ≤ {b = 1}} is C4.5.1 = {a}. Note that witness M11.2 of table τ11
is the result of joining M4.2 with M9.1 and witness M11.3 (counterwitness C11.3.1)
is the result of joining M4.3 with M9.3 (C4.3.1 with C9.3.1), and M4.5 with M9.3

(C4.5.1 with C9.3.2). C11.3.1 witnesses that neither M4.3 ∪M9.3 nor M4.5 ∪M9.3

forms an answer set of Π. Since τ12 contains 〈∅, ∅〉 there is no counterwitness

Answer Set Solving with Bounded Treewidth Revisited 7

Algorithm 3: Table algorithm INC(t, χt, Πt, at≤t,Child-Tabs).

In: Bag χt, bag-rules Πt, atoms-below at≤t, child tables Child-Tabs of t. Out: Tab. τt.
1 if type(t) = leaf then τt := {〈∅, ∅, ∅〉} /* Abbreviations see Footnote 3. */

2 else if type(t) = int, a ∈ χt \Πt is introduced and τ ′ ∈ Child-Tabs then

3 τt := {〈M+
a , σ] SatRules(Π̇

(t,σ)
t ,M+

a), {〈M,σ] SatRules(Π̇
(t,σ,M+

a)
t ,M)〉} ∪

4 {〈C+
a , ρ] SatRules(Π̇

(t,ρ,M+
a)

t , C+
a)〉 | 〈C, ρ〉 ∈ C} ∪

5 {〈C, ρ] SatRules(Π̇
(t,ρ,M+

a)
t , C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

⋃
6 {〈M,σ] SatRules(Π̇

(t,σ)
t ,M),

7 {〈C, ρ] SatRules(Π̇
(t,ρ,M)
t , C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

8 else if type(t) = int, r ∈ χt ∩Πt is introduced and τ ′ ∈ Child-Tabs then

9 τt := {〈M,σ+
r] SatRules({ṙ}(t,σ

+
r }),M),

10 {〈C, ρ+r] SatRules({ṙ}(t,ρ
+
r ,M), C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

11 else if type(t) = rem, a 6∈ χt is removed atom and τ ′ ∈ Child-Tabs then
12 τt := {〈M−a , σ] UpdtWgt(Πt,M, a),
13 {〈C−a , ρ] UpdtWgt&Ch(Πt,M,C, a)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}
14 else if type(t) = rem, r 6∈ χt is removed rule and τ ′ ∈ Child-Tabs then
15 τt := {〈M,σ−{r},

{
〈C, ρ−{r}〉 | 〈C, ρ〉 ∈ C, ρ(r) =∞

}
〉 | 〈M,σ, C〉 ∈ τ ′, σ(r) =∞}

16 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then
17 τt := {〈M,σ′] σ′′, {〈C, ρ′] ρ′′〉 | 〈C, ρ′〉 ∈ C′, 〈C, ρ′′〉 ∈ C′′} ∪
18 {〈M,ρ] σ′′〉 | 〈M,ρ〉 ∈ C′} ∪
19 {〈M,σ′] ρ〉 | 〈M,ρ〉 ∈ C′′}〉 | 〈M,σ′, C′〉 ∈ τ ′, 〈M,σ′′, C′′〉 ∈ τ ′′}

for M11.2, we can construct an answer set of Π from the tables, e.g., {a} can be
constructed from M4.2 ∪M9.1. �

Theorem 1. Given a program Π, the algorithm DPPRIM is correct and runs in

time O(22
k+2 · ‖P (Π)‖) where k is the treewidth of the primal graph P (Π).

3.2 Using Decompositions of Incidence Graphs

Our next algorithm (DP INC) takes the incidence graph as graph representation
of the input program. The treewidth of the incidence graph is smaller than the
treewidth of the primal graph plus one, cf., [11,7]. More importantly, the primal
graph contains a clique on at(r) for each rule r. The incidence graph, compared
to the primal graph, contains rules as vertices and its relationship to the atoms in
terms of edges. By definition, we have no guarantee that all atoms of a rule occur
together in the same bag of TDs of the incidence graph. For that reason, we
cannot locally check the satisfiability of a rule when traversing the TD without
additional stored information (so-called rule-states that intuitively represent how
much of a rule is already (dis-)satisfied). We only know that for each rule r there
is a path p = tint, t1, . . . , tm, trem where tint introduces r and trem removes r and
when considering trem in the table algorithm we have seen all atoms that occur
in rule r. Thus, on removal of r in trem we ensure that r is satisfied while taking

8 Fichte et al.

rule-states for choice and weight rules into account. Consequently, our tuples will
contain a witness, its rule-state, and counterwitnesses and their rule-states.

A tuple in τt for Algorithm 3 (INC) is a triple 〈M,σ, C〉. The set M ⊆ at(Π)∩
χ(t) represents again a witness. A rule-state σ is a mapping σ : Πt → N0 ∪ {∞}.
A rule state for M represents whether rules of χ(t) are either (i) satisfied by a
superset of M or (ii) undecided for M . Formally, the set SR(Πt, σ) of satisfied
bag-rules Πt consists of each rule r ∈ Πt such that σ(r) =∞. Hence, M witnesses
a model M ′ ⊇M where M ′ � Π<t ∪ SR(Πt, σ). C concerns counterwitnesses.

We compute a new rule-state σ from a rule-state, “updated” bounds for
weight rules (UpdtWgt), and satisfied rules (SatRules, defined below). We define
UpdtWgt(Πt,M, a) := σ′ depending on an atom a with σ′(r) := wght(r, {a} ∩
[(B−r \M)∪ (B+

r ∩M)]), if r ∈WGT(Πt). We use binary operator]3 to combine
rule-states, which ensures that rules satisfied in at least one operand remain
satisfied. Next, we explain the meaning of rule-states.

Example 7. Consider program Π from Example 1 and TD T ′ = (·, χ) of I(Π)
and the tables τ1, . . ., τ18 in Figure 3 (left). We are only interested in the first
two tuple positions (red and green parts) and implicitly assume that “i” refers to
Line i in the respective table. Consider M4.1 = {c} in table τ4. Since Hr2 = {c},
witness M4.1 = {c} satisfies rule r2. As a result, σ4.1(r2) = ∞ remembering
satisfied rule r2 for M4.1. Since c /∈ M4.2 and B+

r1 = {c}, M4.2 satisfies rule r1,
resulting in σ4.2(r1) = ∞. Rule-state σ4.1(r1) represents that r1 is undecided
for M4.2. For weight rule r2, rule-states remember the sum of body weights
involving removed atoms. Consider M6.2 = M6.3 = ∅ of table τ6. We have
σ6.2(r2) 6= σ6.3(r2), because M6.2 was obtained from some M5.i of table τ5 with
b 6∈ M5.i and b occurs in B+

r2 with weight 1, resulting in σ6.3(r2) = 1; whereas
M6.3 extends some M5.j with b /∈M5.j . �

In order to decide in node t whether a witness satisfies rule r ∈ Πt, we check
satisfiability of program Ṙ(r) constructed by Ṙ, which maps rules to state-
programs. Formally, for M ⊆ χ(t) \Πt, SatRules(Ṙ,M) := σ where σ(r) :=∞
if (r,R) ∈ Ṙ and M � R.

Definition 1. Let Π be a program, T = (·, χ) be a TD of I(Π), t be a node of
T , P ⊆ Πt, and σ : Πt → N0 ∪ {∞} be a rule-state. The state-program P(t,σ) is
obtained from P ∪ {← Br | r ∈ CH(P), Hr (at≤t}4 by

1. removing rules r with σ(r) =∞ (“already satisfied rules”);
2. removing from every rule all literals a,¬a with a 6∈ χ(t); and
3. setting new bound max{0,bnd(r)−σ(r)−wght(r, at(r)\at≤t)} for weight rule r.

We define Ṗ(t,σ) : P → 2P
(t,σ)

by Ṗ(t,σ)(r) := {r}(t,σ) for r ∈ P.

Example 8. Observe Π
(t1,∅)
t1 = {{b} ← c,← c, c← 0 ≤ {b = 1}} and Π

(t2,∅)
t2 =

{{a} ←,← 1 ≤ {¬a = 1}} for Πt1 , Πt2 of Figure 1(right). �

3 σ]ρ := {(x, Σ
(x,c1)∈σ

c1+ Σ
(x,c2)∈ρ

c2) | (x, ·) ∈ σ∪ρ}; σ+
r := σ∪{(r, 0)}; σ−S := {(x, y) ∈ σ | x 6∈ S}.

4 We require to add {← Br | r ∈ CH(P), Hr (at≤t} in order to decide satisfiability
for corner cases of choice rules involving counterwitnesses of Line 3 in Algorithm 3.

Answer Set Solving with Bounded Treewidth Revisited 9

∅ t1

{c} t2

{c, r1} t3

{c, r1, r2} t4

{b, c, r1, r2}

{c, r1, r2} t6

{r1, r2}

{a, r1, r2}

{a, r1}
t9
{a}

∅ t11

{a} t12

{a, r3} t13

{a, d, r3} t14

{a, d} t15

{a}

{a}t17

∅t18T ′:

〈M4.i, σ4.i〉 τ4

〈{c}, {r1:0, r2:∞}〉
〈∅, {r1:∞, r2:0}〉

〈M15.i, σ15.i〉
〈{a}, ∅〉
〈{d}, ∅〉
〈{a, d}, ∅〉

τ15

〈M6.i, σ6.i〉 τ6

〈{c}, {r1:0, r2:∞}〉
〈∅, {r1:∞, r2:0}〉
〈∅, {r1:∞, r2:1}〉

〈M9.i, σ9.i〉
〈{a}, {r1:∞}〉
〈∅, {r1:∞}〉

τ9

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

〈M4.i, σ4.i, C4.i〉 τ4

〈{c}, {r1:0, r2:∞}, {
(∅, {r1:∞, r2:0})}〉

〈∅, {r1:∞, r2:0}, ∅〉

〈M1.i, σ1.i, C1.i〉 τ1
〈∅, ∅, ∅〉

〈M6.i, σ6.i, C6.i〉 τ6

〈{c}, {r1:0, r2:∞}, {
(∅, {r1:∞, r2:0})}〉

〈{c}, {r1:0, r2:∞}, {
({c}, {r1:1, r2:∞}),
(∅, {r1:∞, r2:0}),
(∅, {r1:∞, r2:1})}〉

〈∅, {r1:∞, r2:0}, ∅〉
〈∅, {r1:∞, r2:1}, {

(∅, {r1:∞, r2:0})}〉

〈M9.i, σ9.i, C9.i〉 τ9

〈{a}, {r1:∞}, ∅〉
〈{a}, {r1:∞}, {(∅,{r1:0}),

({a}, {r1:∞})}〉
〈{a}, {r1:∞}, {

(∅, {r1:0}),(∅, {r1:1}),
({a}, {r1:∞}),
({a}, {r1:1})}〉

〈∅, {r1:∞}, ∅〉
〈∅, {r1:∞}, {(∅, {r1:1})}〉

〈M15.i, σ15.i, C15.i〉 τ15
〈{a}, ∅, ∅〉
〈{d}, ∅, ∅〉
〈{a, d}, ∅, {({a}, ∅),

({d}, ∅)}〉

Figure 3 Selected DP tables of IMOD (left) and INC (right) for nice TD T ′.

The following example provides an idea how we compute models of a given
program using the incidence graph. The resulting algorithm IMOD is the same
as INC, except that only the first two tuple positions (red and green parts) are
considered.

Example 9. Again, we consider Π of Example 1 and in Figure 3 (left) T ′ as well
as tables τ1, . . ., τ18. Table τ1 = {〈∅, ∅〉} as type(t1) = leaf. Since type(t2) = int
and t2 introduces atom c, we construct τ2 from τ1 by taking M2.1 := M1.1 ∪
{c} and M2.2 := M1.1 as well as rule-state ∅. Because type(t3) = int and t3
introduces rule r1, we consider state program L3 := {r1}(t3,{(r1,0)}) = {← c}
for SatRules(L̇3,M2.1) = {(r1, 0)} as well as SatRules(L̇3,M2.2) = {(r1,∞)}
(according to Line 9 of Algorithm 3). Because type(t4) = int and t4 introduces
rule r2, we consider M3.1 := M2.1 and M3.2 := M2.2 and state program L4 :=
{r2}(t4,{(r2,0)}) = {c← 0 6 {}} = {c←} for SatRules(L̇4,M3.1) = {(r2,∞)} as
well as SatRules(L̇4,M3.2) = {(r2, 0)} (see Line 9). Node t5 introduces b (table
not shown) and node t6 removes b. Table τ6 was discussed in Example 7. When
we remove b in t6 we have decided the “influence” of b on the satisfiability of r1
and r2 and thus all rules where b occurs. Tables τ7 and τ8 can be derived similarly.
Then, t9 removes rule r2 and we ensure that every witness M9.1 can be extended
to a model of r2, i.e., witness candidates for τ9 are M8.i with σ8.i(r2) =∞. The
remaining tables are derived similarly. For example, table τ17 for join node t17 is
derived analogously to table τ17 for algorithm PRIM in Figure 2, but, in addition,
also combines the rule-states as specified in Algorithm 3. �

Since we already explained how to obtain models, we only briefly describe how
we handle the counterwitness part. Family C consists of tuples (C, ρ) where
C ⊆ at(Π) ∩ χ(t) is a counterwitness in t to M . Similar to the rule-state σ the
rule-state ρ for C under M represents whether rules of the GL reduct ΠM

t are
either (i) satisfied by a superset of C or (ii) undecided for C. Thus, C witnesses
the existence of C ′ (M ′ satisfying C ′ � (Π<t ∪ SR(Πt, ρ))M

′
since M witnesses

a model M ′ ⊇M where M ′ � Π<t ∪ SR(Πt, ρ). In consequence, there exists an

10 Fichte et al.

Algorithm 4: Algorithm #OINC(t, χt, Πt, at≤t,Child-Tabs).

In: Bag χt, bag-rules Πt, atoms-below at≤t, child tables Child-Tabs of t. Out: Tab. τt.
/* For 〈M,σ, C, c, n〉, we only state affected parts (cost c and count n);

‘‘. . . ’’ indicates computation as before. * . . . + denotes a multiset. */

1 if type(t) = leaf then τt := {〈∅, . . . , 0, 1〉}
2 else if type(t) = int, a ∈ χt \Πt is introduced and τ ′ ∈ Child-Tabs then
3 τt := {〈M, . . . , cst(Π, ∅, {a}) + c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′}

⋃
4 {〈M+

a , . . . , cst(Π, {a}, {a}) + c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′}
5 else if type(t) = int or rem, removed or introduced r ∈ Πt, τ ′ ∈ Child-Tabs then
6 τt := {〈M, . . . , c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′, . . .}
7 else if type(t) = rem, a /∈ χt is removed atom and τ ′ ∈ Child-Tabs then
8 τt := cnt(kmin(*〈M−a , . . . , c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′+))
9 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then

10 τt := cnt(kmin(*〈M, . . . , c′ + c′′ − cst(Π,M,χt), n
′ · n′′〉

11 | 〈M,σ′, C′, c′, n′〉 ∈ τ ′, 〈M,σ′′, C′′, c′′, n′′〉 ∈ τ ′′+))

answer set of Π if the root table contains 〈∅, ∅, ∅〉. In order to locally decide rule
satisfiability for counterwitnesses, we require state-programs under witnesses.

Definition 2. Let Π be a program, T = (·, χ) be a TD of I(Π), t be a node of
T , P ⊆ Πt, ρ : Πt → N0 ∪{∞} be a rule-state and M ⊆ at(Π). We define state-

program P(t,ρ,M) by [S(t,ρ)]M where S := P ∪ {← Br | r ∈ CH(P), ρ(r) > 0},
and Ṗ(t,ρ,M) : P → 2P

(t,ρ,M)

by Ṗ(t,ρ,M)(r) := {r}(t,ρ,M) for r ∈ P.

We compute a new rule-state ρ for a counterwitness from an earlier rule-state,
satisfied rules (SatRules), and both (a) “updated” bounds for weight rules or
(b) “updated” value representing whether the head can still be satisfied (ρ(r) ≤ 0)
for choice rules r (UpdtWgt&Ch). Formally, UpdtWgt&Ch(Πt,M,C, a) := σ′

depending on an atom a with (a) σ′(r) := wght(r, {a} ∩ [(B−r \M)∪ (B+
r ∩C)]),

if r ∈WGT(Πt); and (b) |{a} ∩Hr ∩ (M \ C)|, if r ∈ CH(Πt).

Theorem 2. The algorithm DP INC is correct.

Proof. (Idea) A tuple at a node t guarantees that there exists a model for the
sub-program induced by the subtree rooted at t, which works for all node types.
While traversing the tree decomposition, every answer set is indeed considered.

Theorem 3. Given a program Π, algorithm DP INC runs in time O(22
k+2·`k+1 ·

‖I(Π)‖), where k := tw(I(Π)), and ` := max{3,bnd(r) | r ∈WGT(Π)}.

The runtime bounds stated in Theorem 3 appear to be worse than in Theorem 1.
However, tw(I(Π)) ≤ tw(P (Π)) + 1 and tw(P (Π)) ≥ max{|at(r)| | r ∈ Π}
for a given program Π. Further, there are programs where tw(I(Π)) = 1, but
tw(P (Π)) = k, e.g., a program consisting of a single rule r with |at(r)| =
k. Consequently, worst-case runtime bounds of DPPRIM are at least double-
exponential in the rule size and DPPRIM will perform worse than DP INC on input
programs containing large rules. However, due to the rule-states, data structures

Answer Set Solving with Bounded Treewidth Revisited 11

0.1

1

10

60
120

300

0 50 100 150

C
P

U
 ti

m
e

[s
]

Cachet 1.21
Clasp 3.1.4(usc)
DynASP 2(INC)
DynASP 2(PRIM)
SharpSAT 12.08

ASP/SAT-TGrid

inst. #

C
P

U

s][
tim

e

0.1

1

10

60
120

300

0 50 100 150 200

C
P

U
 ti

m
e

[s
]

Clasp 3.1.4(usc)
DepQBF0
DynASP 2(INC)
DynASP 2(PRIM)

2ASP/2QBF-TGrid

inst. # 0.1

1

10

60
120

300

0 50 100 150 200 250

C
P

U
 ti

m
e

[s
]

Clasp 3.1.4(usc)
DynASP 2(INC)
DynASP 2(PRIM)

sVc

inst. #

Figure 4 Results of randomly generated and selected real-world instances.

of DP INC are much more complex than of DPPRIM. In consequence, we expect
DPPRIM to perform better in practice if rules are small and incidence and primal
treewidth are therefore almost equal. In summary, we have a trade-off between
(i) a more general parameter decreasing the theoretical worst-case runtime and
(ii) less complex data structures decreasing the practical overhead to solve AS.

3.3 Extensions for Optimization and Counting

In order to find an answer set of a program with optimization statements or
the number of optimal answer sets (#AspO), we extend our algorithms PRIM
and INC. Therefore, we augment tuples stored in tables with an integers c and n
describing the cost and the number of witnessed sets. Due to space restrictions, we
only present adaptions for INC. We state which parts of INC we adapt to compute
the number of optimal answer sets in Algorithm 4 (#OINC). To slightly simplify
the presentation of optimization rules, we assume without loss of generality that
whenever an atom a is introduced in bag χ(t) for some node t of the TD, the
optimization rule r, where a occurs, belongs to the bag χ(t). First, we explain
how to handle costs making use of function cst(Π,M,A) as defined in Section 2.
In a leaf (Line 1) we set the (current) cost to 0. If we introduce an atom a
(Line 2–4) the cost depends on whether a is set to true or false in M and we
add the cost of the “child” tuple. Removal of rules (Line 5–6) is trivial, as we
only store the same values. If we remove an atom (Line 7–8), we compute the
minimum costs only for tuples 〈M−a , σ, C, c, n〉 where c is minimal among M−a ,
σ, C, that is, for a multiset S we let kmin(S) := *〈M−a , σ, C, c, n〉 | c = min{c′ :
〈M−a , σ, C, c′, ·〉 ∈ S}, 〈M−a , σ, C, c, n〉 ∈ S+. We require a multiset notation for
counting (see below). If we join two nodes (Line 9–11), we compute the minimum
value in the table of one child plus the minimum value of the table of the other
child minus the value of the cost for the current bag, which is exactly the value we
added twice. Next, we explain how to handle the number of witnessed sets that
are minimal with respect to the cost. In a leaf (Line 1), we set the counter to 1. If
we introduce/remove a rule or introduce an atom (Line 2–6), we can simply take
the number n from the child. If we remove an atom (Line 7–8) we first obtain a
multiset from computing kmin, which can contain several tuples for M−a , σ, C, c as
we obtained M−a either from M \{a} if a ∈M or M if a /∈M giving rise multiple
solutions, that is, cnt(S) := {〈M,σ, C, c,

∑
〈M,σ,C,c,n′〉∈S n

′〉 | 〈M,σ, C, c, n〉 ∈ S}.
If we join nodes (Line 7–9), we multiply the number n′ from the tuple of one

12 Fichte et al.

2Col 3Col Ds St cVc sVc

Clasp(usc) 31.72 (21) 0.10(0) 8.99 (3) 0.21 (0) 29.88 (21) 98.34 (71)
DynASP2(PRIM) 1.54 (0) 0.53(0) 0.68 (0) 79.36 (221) 0.99 (0) 1.30 (0)
DynASP2(INC) 1.43 (0) 0.58(0) 0.54 (0) 115.02 (498) 0.68 (0) 0.78 (0)

Table 1 Runtimes (given in sec.; #timeouts in brackets) on real-world instances.

child with the number n′′ from the tuple of the other child, restrict results with
respect to minimum costs, and sum up the resulting numbers.

Corollary 1. Given a program Π, algorithm #OINC runs in time O(log(m) ·
22
k+2·`k+1‖I(Π)‖2), where k := tw(I(Π)), ` := max{3,bnd(r) : r ∈WGT(Π)},

and m := Σr∈OPT(Π) wght(r).

4 Experimental Evaluation

We implemented the algorithms DPPRIM and DP INC into a prototypical solver
DynASP2(·) and performed experiments to evaluate its runtime behavior. Clearly,
we cannot hope to solve programs with graph representations of high treewidth.
However, programs involving real-world graphs such as graph problems on transit
graphs admit TDs of small width. We used both random and structured instances
for our benchmarks5, see also [8]. The random instances (Sat-TGrid, 2QBF-
TGrid, ASP-TGrid, 2ASP-TGrid) were designed to have a high number of
variables and solutions and treewidth at most three. The structured instances
model various graph problems (2Col, 3Col, Ds, St cVc, sVc) on real world
mass transit graphs. For a graph, program 2Col counts all 2-colorings, 3Col
counts all 3-colorings, Ds counts all minimal dominating sets, St counts all
Steiner trees, cVc counts all cardinality-minimal vertex covers, and sVc counts
all subset-minimal vertex covers. In order to draw conclusions about the efficiency
of DynASP2, we mainly inspected the cpu running time and number of timeouts
using the average over three runs per instance (three fixed seeds allow certain
variance [1] for heuristic TD computation). We limited available memory (RAM)
to 4GB (to run SharpSAT on large instances), and cpu time to 300 seconds,
and then compared DynASP2 with the dedicated #SAT solvers SharpSAT [14]
and Cachet [12], the QBF solver DepQBF0, and the ASP solver Clasp. Figure 4
illustrates runtime results as a cactus plot. Table 1 reports on the average running
times, numbers of solved instances and timeouts on the structured instance sets.

Summary. Our empirical benchmark results confirm that DynASP2 exhibits
competitive runtime behavior if the input instance has small treewidth. Compared
to modern Asp and Qbf solvers, DynASP2 has an advantage in case of many
solutions, whereas Clasp and DepQBF0 perform well if the number of solutions
is relatively small. However, DynASP2 is still reasonably fast on structured
instances with few solutions as it yields the result mostly within less than 10

5 https://github.com/daajoe/lpnmr17 experiments

https://github.com/daajoe/lpnmr17_experiments

Answer Set Solving with Bounded Treewidth Revisited 13

sec. We observed that INC seems to be the better algorithm in our setting,
indicating that the smaller width obtained by decomposing the incidence graph
generally outweighs the benefits of simpler solving algorithms for the primal graph.
However, if INC and PRIM run with graphs of similar width, PRIM benefits from
its simplicity. A comparison to #SAT solvers suggests that, on random instances,
they have a lower overhead (which is not surprising, since our algorithms are
built for ASP), but after about 150 sec. our algorithms solve more instances.

5 Conclusion

We presented novel DP algorithms for ASP, extending previous work [9] in
order to cover the full ASP syntax. Our algorithms are based on two graph
representations of programs and run in linear time with respect to the treewidth
of these graphs and weights used in the program. Experiments indicate that our
approach seems to be suitable for practical use, at least for certain classes of
instances with low treewidth, and hence could fit into a portfolio solver. A further
use of our techniques could be for extensions of ASP such as HEX [6].

References

1. M. Abseher, F. Dusberger, N. Musliu, and S. Woltran. Improving the efficiency of
dynamic programming on tree decompositions via machine learning. In IJCAI’15.

2. H. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

3. G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

4. F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, and T. Schaub. ASP-core-2 input language format, 2013.

5. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

6. T. Eiter, M. Fink, G. Ianni, T. Krennwallner, and P. Schüller. Pushing efficient
evaluation of hex programs by modular decomposition. In LPNMR’11, 2011.

7. J. K. Fichte and S. Szeider. Backdoors to tractable answer-set programming.
Artificial Intelligence, 220:64–103, 2015.

8. J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. Answer set solving with
bounded treewidth revisited. CoRR, abs/cs/arXiv:1702.02890, 2017.

9. M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded
treewidth. In IJCAI’09, volume 2, 2009.

10. R. Pichler, S. Rümmele, S. Szeider, and S. Woltran. Tractable answer-set program-
ming with weight constraints: bounded treewidth is not enough. Theory Pract. Log.
Program., 14(2), 2014.

11. M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1), 2010.

12. T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combining component
caching and clause learning for effective model counting. In SAT’04, 2004.

13. T. Syrjänen. Lparse 1.0 user’s manual. tcs.hut.fi/Software/smodels/lparse.ps, 2002.
14. M. Thurley. sharpSAT – counting models with advanced component caching and

implicit BCP. In SAT’06, 2006.

tcs.hut.fi/Software/smodels/lparse.ps

	Answer Set Solving with Bounded Treewidth Revisited

