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Abstract. Metabolic networks play a crucial role in biology since they capture
all chemical reactions in an organism. While there are networks of high quality
for many model organisms, networks for less studied organisms are often of poor
quality and suffer from incompleteness. To this end, we introduced in previous
work an ASP-based approach to metabolic network completion. Although this
qualitative approach allows for restoring moderately degraded networks, it fails to
restore highly degraded ones. This is because it ignores quantitative constraints
capturing reaction rates. To address this problem, we propose a hybrid approach to
metabolic network completion that integrates our qualitative ASP approach with
quantitative means for capturing reaction rates. We begin by formally reconciling
existing stoichiometric and topological approaches to network completion in a
unified formalism. With it, we develop a hybrid ASP encoding and rely upon the
theory reasoning capacities of the ASP system clingo for solving the resulting
logic program with linear constraints over reals. We empirically evaluate our
approach by means of the metabolic network of Escherichia coli. Our analysis
shows that our novel approach yields greatly superior results than obtainable from
purely qualitative or quantitative approaches.

1 Introduction

Among all biological processes occurring in a cell, metabolic networks are in charge
of transforming input nutrients into both energy and output nutrients necessary for the
functioning of other cells. In other words, they capture all chemical reactions occurring in
an organism. In biology, such networks are crucial from a fundamental and technological
point of view to estimate and control the capability of organisms to produce certain
products. Metabolic networks of high quality exist for many model organisms. In addi-
tion, recent technological advances enable their semi-automatic generation for many less
studied organisms. However, the resulting metabolic networks are of poor quality, due to
error-prone, genome-based construction processes and a lack of (human) resources. As
a consequence, they usually suffer from substantial incompleteness. The common fix
is to fill the gaps by completing a draft network by borrowing chemical pathways from
reference networks of well studied organisms until the augmented network provides the
measured functionality.

In previous work [19], we introduced a logical approach to metabolic network com-
pletion by drawing on the work in [10]. We formulated the problem as a qualitative
combinatorial (optimization) problem and solved it with Answer Set Programming
(ASP [2]). The basic idea is that reactions apply only if all their reactants are available,
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either as nutrients or provided by other metabolic reactions. Starting from given nutrients,
referred to as seeds, this allows for extending a metabolic network by successively adding
operable reactions and their products. The set of metabolites in the resulting network
is called the scope of the seeds and represents all metabolites that can principally be
synthesized from the seeds. In metabolic network completion, we query a database of
metabolic reactions looking for (minimal) sets of reactions that can restore an observed
bio-synthetic behavior. This is usually expressed by requiring that certain target metabo-
lites are in the scope of some given seeds. For instance, in the follow-up work in [4, 15],
we successfully applied our ASP-based approach to the reconstruction of the metabolic
network of the macro-algae Ectocarpus siliculosus, using the collection of reference
networks at http://metacyc.org.

Although we evidenced in [16] that our ASP-based method effectively restores
the bio-synthetic capabilities of moderately degraded networks, it fails to restore the
ones of highly degraded metabolic networks. The main reason for this is that our
purely qualitative approach misses quantitative constraints accounting for the law of
mass conservation, a major hypothesis about metabolic networks. This law stipulates
that each internal metabolite of a network must balance its production rate with its
consumption rate. Such rates are given by the weighted sums of all reaction rates
consuming or producing a metabolite, respectively. This calculation is captured by the
stoichiometry4 of the involved reactions. Hence, the qualitative ASP-based approach fails
to tell apart solution candidates with correct and incorrect stoichiometry and therefore
reports inaccurate results for highly degraded networks.

We address this by proposing a hybrid approach to metabolic network completion
that integrates our qualitative ASP approach with quantitative techniques from Flux
Balance Analysis (FBA5 [12]), the dominating quantitative approach for capturing
reaction rates in metabolic networks. We accomplish this by taking advantage of recently
developed theory reasoning capacities for the ASP system clingo [7]. More precisely,
we use an extension of clingo with linear constraints over reals, as dealt with in Linear
Programming (LP [5]). This extension provides us with an extended ASP modeling
language as well as a generic interface to alternative LP solvers, viz. cplex and lpsolve,
for dealing with linear constraints. We empirically evaluate our approach by means of
the metabolic network of Escherichia coli. Our analysis shows that our novel approach
yields superior results than obtainable from purely qualitative or quantitative approaches.
Moreover, our hybrid application provides a first evaluation of the theory extensions of
the ASP system clingo with linear constraints over reals in a non-trivial setting.

2 Metabolic Network Completion

We represent a metabolic network as a labeled directed bipartite graph G = (R ∪
M,E, s), where R and M are sets of nodes standing for reactions and metabolites,
respectively. When (m, r) ∈ E or (r,m) ∈ E for m ∈M and r ∈ R, the metabolite m
is called a reactant or product of reaction r, respectively. More formally, for any r ∈ R,
define rcts(r) = {m ∈M | (m, r) ∈ E} and prds(r) = {m ∈M | (r,m) ∈ E}. The

4 See also https://en.wikipedia.org/wiki/Stoichiometry.
5 See also https://en.wikipedia.org/wiki/Flux_balance_analysis.
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Fig. 1. Example of a metabolic network

edge labeling s : E → R gives the stoichiometric coefficients of a reaction’s reactants
and products, respectively. Finally, the activity rate of reactions is bound by lower and
upper bounds, denoted by lbr ∈ R+

0 and ubr ∈ R+
0 for r ∈ R, respectively. Whenever

clear from the context, we refer to metabolic networks with G (or G′, etc) and denote
the associated reactions and metabolites with M and R (or M ′, R′ etc), respectively.

We distinguish a set S ⊆M of metabolites as initiation seeds, that is, compounds
initially present due to experimental evidence. Another set of metabolites is assumed
to be activated by default. These boundary metabolites are defined as: Sb (G) = {m ∈
M | r ∈ R,m ∈ prds(r), rcts(r) = ∅}. For simplicity, we assume that all boundary
compounds are seeds: Sb (G) ⊆ S. Note that concepts like reachability and activity in
network completion are independent of this assumption.

For illustration, consider the metabolic network in Fig. 1 and ignore the shaded part.
The network consists of 8 reactions, rs, re and r0 to r5, and 8 metabolites, A, . . . , F ,
S1, S2. Here, S = {S1, S2}, S1 being the only boundary compound of the network.
Consider reaction r4 : E → 2C transforming one unit of E into two units of C. We
have rcts(r4) = {E}, prds(r4) = {C}, along with s(E, r4) = 1and s(r4, C) = 2.

In biology, several concepts have been introduced to model the activation of reaction
fluxes in metabolic networks, or to synthesize metabolic compounds. To model this,
we introduce a function active that given a metabolic network G takes a set of seeds
S ⊆ M and returns a set of activated reactions activeG(S) ⊆ R. With it, metabolic
network completion is about ensuring that a set of target reactions is activated from seed
compounds in S by possibly extending the metabolic network with reactions from a
reference network (cf. shaded part in Fig. 1).

Formally, given a metabolic network G = (R ∪M,E, s), a set S ⊆ M of seed
metabolites such that Sb (G) ⊆ S, a set RT ⊆ R of target reactions, and a reference
network (R′ ∪M ′, E′, s′), the metabolic network completion problem is to find a set
R′′ ⊆ R′ \R of reactions of minimal size such that RT ⊆ activeG′′(S) where6

G′′ = ((R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′, s′′) , (1)
M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ rcts(r) ∪ prds(r)} , (2)
E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)), and (3)

6 Since s, s′ have disjoint domains we view them as relations and compose them by union.
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s′′ = s ∪ s′ . (4)

We call R′′ a completion of (R ∪M,E, s) from (R′ ∪M ′, E′, s′) wrt S and RT .
Our concept of activation allows us to capture different biological paradigms. Ac-

cordingly, different formulations of metabolic network completion can be characterized:
the stoichiometric, the relaxed stoichiometric, the topological, and the hybrid one. We
elaborate upon their formal characterizations in the following sections.

Stoichiometric Metabolic Network Completion. The first activation semantics has
been introduced in the context of Flux Balance Analysis capturing reaction flux dis-
tributions of metabolic networks at steady state. In this paradigm, each reaction r is
associated with a metabolic flux value, expressed as a real variable vr confined by the
minimum and maximum rates:

lbr ≤ vr ≤ ubr for r ∈ R (5)

Flux distributions are formalized in terms of a system of equations relying on the
stoichiometric coefficients of reactions. Reaction rates are governed by the law of mass
conservation under a steady state assumption, that is, the input and output rates of
reactions consuming and producing a metabolite are balanced:∑

r∈R s(r,m) · vr +
∑

r∈R−s(m, r) · vr = 0 for m ∈M (6)

Given a target reaction rT ∈ RT , a metabolic network G = (R ∪M,E, s) and a set of
seeds S, stoichiometric activation is defined as follows:

rT ∈ activesG(S) iff vrT > 0 and (5) and (6) hold for M and R.

Note that the condition vrT > 0 strengthens the flux condition for rT ∈ R in the second
part. More generally, observe that activated target reactions are not directly related to the
network’s seeds S. However, the activation of targets highly depends on the boundary
metabolites in Sb (G) for which (6) is always satisfied and thus initiates the fluxes.

To solve metabolic network completion with flux-balance activated reactions, Linear
Programming can be used to maximize the flux rate vrT provided that the linear con-
straints are satisfied. This problem turns out to be hard to solve in practice and existing
approaches scale poorly to real-life applications (cf. [13]).

This motivated the use of approximate methods. The relaxed problem is obtained by
weakening the mass-balance equation (6) as follows:∑

r∈R s(r,m) · vr +
∑

r∈R−s(m, r) · vr ≥ 0 for m ∈M (7)

This lets us define the concept of relaxed stoichiometric activation:

rT ∈ activerG(S) iff vrT > 0 and (5) and (7) hold for M and R.

The resulting problem can now be efficiently solved with Linear Programming [18]. Note
however that for strict steady-state modeling an a posteriori verification of solutions is
needed to warrant the exact mass-balance equation (6).

In our draft network G, consisting of all bold nodes and edges depicted in Fig. 1 (viz.
reactions rs, re and r0 to r5 and metabolitesA, . . . , F , S1 and S2 and r5 the single target
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reaction) and the reference network G′, consisting of the shaded part of Fig 1, (viz. reac-
tions r6 to r9 and metabolite G) a strict stoichiometry-based completion aims to obtain
a solution with r5 ∈ activesG′′({S1, S2}) where vr5 is maximal. This can be achieved
by adding the completion R′′

1 = {r6, r9}. The cycle made of compounds E,C,D is
already balanced and notably self-activated. Such self-activation of cyclic pathways is
an inherent problem of purely stoichiometric approaches to network completion. This
is a drawback of the semantics since the effective activation of the cycle requires the
additional (and unchecked) condition that at least one of the compounds was present as
the initial state of the system [16]. The instance of Equation (6) controlling the reaction
rates related to metabolite C is 2 · vr4 − vr2 − vr5 = 0.

Existing systems addressing strict stoichiometric network completion either cannot
guarantee optimal solutions [11] or do not support a focus on specific target reactions [21].
Other approaches either partially relax the problem [22] or solve the relaxed problem
based on Equation (7), like the popular system gapfill [18].

Topological Metabolic Network Completion. A qualitative approach to metabolic
network completion relies on the topology of networks for capturing the activation of
reactions. Given a metabolic network G, a reaction r ∈ R is activated from a set of
seeds S if all reactants in rcts(r) are reachable from S. Moreover, a metabolite m ∈M
is reachable from S if m ∈ S or if m ∈ prds(r) for some reaction r ∈ R where all
m′ ∈ rcts(r) are reachable from S. The scope of S, written ΣG(S), is the closure of
metabolites reachable from S. In this setting, topological activation of reactions from a
set of seeds S is defined as follows:

rT ∈ activetG(S) iff rcts(rT ) ⊆ ΣG(S).

Note that this semantics avoids self-activated cycles by imposing an external entry to all
cycles. The resulting network completion problem can be expressed as a combinatorial
optimization problem and effectively solved with ASP [19].

For illustration, consider again the draft and reference networks G and G′ in Fig. 1.
We get ΣG({S1, S2}) = {S1, S2, B}, indicating that target reaction r5 is not activated
from the seeds with the draft network because A and C are not reachable. This changes
once the network is completed. Valid minimal completions are R′′

2 = {r6, r7} and
R′′

3 = {r6, r8} because r5 ∈ activetG′′
i
({S1, S2}) since {A,C} ⊆ ΣG′′

i
({S1, S2}) for

all extended networks G′′
i obtained from completions R′′

i of G for i ∈ {2, 3}. Relevant
elements from the reference network are given in dashed gray.

Hybrid Metabolic Network Completion. The idea of hybrid metabolic network com-
pletion is to combine the two previous activation semantics: the topological one accounts
for a well-founded initiation of the system from the seeds and the stoichiometric one
warrants its mass-balance. We thus aim at network completions that are both topologi-
cally functional and flux balanced (without suffering from self-activated cycles). More
precisely, a reaction rT ∈ RT is hybridly activated from a set S of seeds in a network
G, if both criteria apply:

rT ∈ activehG(S) iff rT ∈ activesG(S) and rT ∈ activetG(S)

Applying this to our example in Fig. 1, we get the (minimal) hybrid solutions R′′
4 =

{r6, r7, r9} and R′′
5 = {r6, r8, r9}. Both (topologically) initiate paths of reactions from
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the seeds to the target, ie. r5 ∈ activetG′′
i
({S1, S2}) since {A,C} ⊆ ΣG′′

i
({S1, S2})

for both extended networks G′′
i obtained from completions R′′

i of G for i ∈ {4, 5}. Both
solutions are as well stoichiometrically valid and balance the amount of every metabolite,
hence we also have r5 ∈ activesG′′

i
({S1, S2}).

3 Answer Set Programming with Linear Constraints

For encoding our hybrid problem, we rely upon the theory reasoning capacities of the
ASP system clingo that allows us to extend ASP with linear constraints over reals (as
addressed in Linear Programming). We confine ourselves below to features relevant to
our application and refer the interested reader for details to [7].

As usual, a logic program consists of rules of the form

a0 :- a1,...,am,not am+1,...,not an

where each ai is either a (regular) atom of form p(t1,...,tk) where all ti are terms
or a linear constraint atom of form7 ‘&sum{a1*x1;. . .;al*xl} <= k’ that stands for
the linear constraint a1 · x1 + · · · + al · xl ≤ k. All ai and k are finite sequences of
digits with at most one dot8 and represent real-valued coefficients ai and k. Similarly all
xi stand for the real-valued variables xi. As usual, not denotes (default) negation. A
rule is called a fact if n = 0.

Semantically, a logic program induces a set of stable models, being distinguished
models of the program determined by stable models semantics [9]. Such a stable model
X is an LC-stable model of a logic program P ,9 if there is an assignment of reals
to all real-valued variables occurring in P that (i) satisfies all linear constraints asso-
ciated with linear constraint atoms in P being in X and (ii) falsifies all linear con-
straints associated with linear constraint atoms in P being not in X . For instance, the
(non-ground) logic program containing the fact ‘a("1.5").’ along with the rule
‘&sum{R*x} <= 7 :- a(R).’ has the stable model
{a("1.5"), &sum{"1.5"*x}<=7}.

This model is LC-stable since there is an assignment, e.g. {x 7→ 4.2}, that satisfies
the associated linear constraint ‘1.5 ∗ x ≤ 7’. We regard the stable model along with
a satisfying real-valued assignment as a solution to a logic program containing linear
constraint atoms.

To ease the use of ASP in practice, several extensions have been developed. First of
all, rules with variables are viewed as shorthands for the set of their ground instances. Fur-
ther language constructs include conditional literals and cardinality constraints [20]. The
former are of the form a:b1,...,bm, the latter can be written as s{d1;...;dn}t,
where a and bi are possibly default-negated (regular) literals and each dj is a conditional
literal; s and t provide optional lower and upper bounds on the number of satisfied liter-
als in the cardinality constraint. We refer to b1,...,bm as a condition. The practical
value of both constructs becomes apparent when used with variables. For instance, a

7 In clingo, theory atoms are preceded by ‘&’.
8 In the input language of clingo, such sequences must be quoted to avoid clashes.
9 This corresponds to the definition of T -stable models using a strict interpretation of theory

atoms [7], and letting T be the theory of linear constraints over reals.
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conditional literal like a(X):b(X) in a rule’s antecedent expands to the conjunction of
all instances of a(X) for which the corresponding instance of b(X) holds. Similarly,
2{a(X):b(X)}4 is true whenever at least two and at most four instances of a(X)
(subject to b(X)) are true. Finally, objective functions minimizing the sum of weights
wi subject to condition ci are expressed as #minimize{w1:c1;. . .;wn:cn}.

In the same way, the syntax of linear constraints offers several convenience features.
As above, elements in linear constraint atoms can be conditioned, viz.

‘&sum{a1*x1:c1;...;al*xl:cn} <= y’
where each ci is a condition. Moreover, the theory language for linear constraints offers
a domain declaration for real variables, ‘&dom{lb..ub} = x’ expressing that all val-
ues of x must lie between lb and ub. And finally the maximization (or minimization) of
an objective function can be expressed with &maximize{a1*x1:c1;...;al*xl:cn}
(by minimize). The full theory grammar for linear constraints over reals is available
at https://potassco.org.

4 Solving Hybrid Metabolic Network Completion

In this section, we present our hybrid approach to metabolic network completion. We
start with a factual representation of problem instances. A metabolic network G with
a typing function t : M ∪ R → {d,r,s,t}, indicating the origin of the respective
entities, is represented as follows:

F (G, t) = {metabolite(m,t(m)) | m ∈M}
∪ {reaction(r,t(r)) | r ∈ R}
∪ {bounds(r,lbr,ubr)| r ∈ R} ∪ {objective(r,t(r))| r ∈ R}
∪ {reversible(r) | r ∈ R, rcts(r) ∩ prds(r) 6= ∅}
∪ {rct(m,s(m, r),r,t(r))| r ∈ R,m ∈ rcts(r)}
∪ {prd(m,s(r,m),r,t(r))| r ∈ R,m ∈ prds(r)}

While most predicates should be self-explanatory, we mention that reversible
identifies bidirectional reactions. Only one direction is explicitly represented in our
fact format. The four types d, r, s, and t tell us whether an entity stems from the draft
or reference network, or belongs to the seeds or targets.

In a metabolic network completion problem, we consider a draft network G =
(R ∪M,E, s), a set S of seed metabolites, a set RT of target reactions, and a reference
network G′ = (R′ ∪M ′, E′, s′). An instance of this problem is represented by the
set of facts F (G, t) ∪ F (G′, t′). In it, a key role is played by the typing functions that
differentiate the various components:

t(n) =

d, if n ∈ (M \ (T ∪ S)) ∪ (R \ (RSb
∪RT ))

s, if n ∈ S ∪RSb

t, if n ∈ T ∪RT

and t′(n) = r,

where T = {m ∈ rcts(r) | r ∈ RT } is the set of target metabolites and RSb
= {r ∈

R | m ∈ Sb (G),m ∈ prds(r)} is the set of reactions related to boundary seeds.
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1 edge(R,M,N,T) :- reaction(R,T), rct(M,_,R,T), prd(N,_,R,T).
2 edge(R,M,N,T) :- reaction(R,T), rct(N,_,R,T), prd(M,_,R,T), reversible(R).

4 scope(M,d) :- metabolite(M,s).
5 scope(M,d) :- edge(R,_,M,T), T!=r, scope(N,d):edge(R,N,_,T’), N!=M, T’!=r.

7 scope(M,x) :- scope(M,d).
8 scope(M,x) :- edge(R,_,M,_), scope(N,x):edge(R,N,_,_), N!=M.

10 { completion(R) : edge(R,M,N,r), scope(N,x), scope(M,x) }.

12 scope(M,c) :- scope(M,d).
13 scope(M,c) :- edge(R,_,M,T), T!=r, scope(N,c):edge(R,N,_,T’), T’!=r, N!=M.
14 scope(M,c) :- completion(R), edge(R,_,M,r), scope(N,c):edge(R,N,_,r), N!=M.

16 :- metabolite(M,t), not scope(M,c).

18 &dom{L..U} = R :- bounds(R,L,U).

20 &sum{ IS*IR : prd(M,IS,IR,T), T!=r; IS’*IR’ : prd(M,IS’,IR’,r), completion(IR’);
21 -OS*OR : rct(M,OS,OR,T), T!=r; -OS’*OR’ : rct(M,OS’,OR’,r), completion(OR’)
22 } = "0" :- metabolite(M,_).

24 &sum{ R } > "0" :- reaction(R,t).

26 &maximize{ R : objective(R,t) }.
27 #minimize{ 1,R : completion(R) }.

Listing 1. Encoding of hybrid metabolic network completion

Our encoding of hybrid metabolic network completion is given in Listing 1. Roughly,
the first 10 lines lead to a set of candidate reactions for completing the draft network.
Their topological validity is checked in lines 12–16 with regular ASP, the stoichiometric
one in lines 18–24 in terms of linear constraints. (Lines 1–16 constitute a revision of the
encoding in [19].) The last two lines pose a hybrid optimization problem, first minimizing
the size of the completion and then maximizing the flux of the target reactions.

In more detail, we begin by defining the auxiliary predicate edge/4 representing
directed edges between metabolites connected by a reaction. With it, we calculate in
Line 4 and 5 the scope ΣG(S) of the draft network G from the seed metabolites in S; it
is captured by all instances of scope(M,d). This scope is then extended in Line 7/8
via the reference network G′ to delineate all possibly producible metabolites. We draw
on this in Line 10 when choosing the reactions R′′ of the completion (cf. Section 2)
by restricting their choice to reactions from the reference network whose reactants are
producible. This amounts to a topological search space reduction.

The reactions in R′′ are then used in lines 12–14 to compute the scope ΣG′′(S)
of the completed network. And R′′ constitutes a topologically valid completion if all
targets in T are producible by the expanded draft network G′′: Line 16 checks whether
T ⊆ ΣG′′(S) holds, which is equivalent to RT ⊆ activetG′′(S). Similarly, R′′ is
checked for stoichiometric validity in lines 18–24. For simplicity, we associate reactions
with their rate and let their identifiers take real values. Accordingly, Line 18 accounts
for (5) by imposing lower and upper bounds on each reaction rate. The mass-balance
equation (6) is enforced for each metabolite M in lines 20–22; it checks whether the sum
of products of stoichiometric coefficients and reaction rates equals zero, viz. IS*IR,
-OS*OR, IS’*IR’, and -OS’*OR’. Reactions IR, OR and IR’, OR’ belong to the
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F(BB) F(USC) F(BB+USC) VERIFIED

DEGRADATION #SOLS #OPTS #SOLS #OPTS #SOLS #OPTS F(BB+USC) M G

10% (900) 900 900 892 892 900 900 900 660 56
20% (900) 830 669 793 769 867 814 867 225 52
30% (900) 718 88 461 344 780 382 780 61 0
all (2700) 2448 1657 2146 2005 2547 2096 2547 946 108

Table 1. Comparison of qualitative results.

F(BB) F(USC)
CONFIGURATION T TO T TO

DEFAULT 377 121 190 46
CORE-50 358 109 230 75

CORE-0 350 96 233 76
PROP-50 363 112 226 69

PROP-100 386 105 360 139
HEURISTIC 542 178 252 28

Table 2. Comparison of system options.

F(VBS) VERIFIED

DEGRADATION #SOLS #OPTS F(VBS) M G

10% (900) 900 900 900 660 56
20% (900) 896 855 896 225 52
30% (900) 848 575 848 61 0
40% (900) 681 68 681 29 0
all (3600) 3325 2398 3325 975 108

Table 3. Results using best system options.

draft and reference network, respectively, and correspond toR∪R′′. Finally, by enforcing
rT > 0 for rT ∈ RT in Line 24, we make sure that RT ⊆ activesG′′(S).

In all, our encoding ensures that the set R′′ of reactions chosen in Line 10 induces
an augmented network G′′ in which all targets are activated both topologically as well
as stoichiometrically, and is optimal wrt the hybrid optimization criteria.

5 System and Experiments

In this section, we introduce fluto, our new system for hybrid metabolic network comple-
tion, and empirically evaluate its performance. The system relies on the hybrid encoding
described in Section 4 along with the hybrid solving capacities of clingo [7] for im-
plementing the combination of ASP and LP. We use clingo 5.2.0incorporating as LP
solvers either cplex 12.7.0.0 or lpsolve 5.5.2.5 via their respective Python interfaces. We
describe the details of the underlying solving techniques in a separate paper and focus
below on application-specific aspects.

The output of fluto consists of two parts. First, the completion R′′, given by instances
of predicate completion, and second, an assignment of floats to (metabolic flux
variables vr for) all r ∈ R ∪R′′. In our example, we get

R′′ = {completion(r6),completion(r8),completion(r9)}
and {rs = 49999.5, r9 = 49999.5, r3 = 49999.5, r2 = 49999.5, re = 99999.0, r6 =
49999.5, r5 = 49999.5, r4 = 49999.5}. Variables assigned 0 are omitted. Note the flux
value r8 = 0 even though r8 ∈ R′′. This is to avoid the self-activation of cycle C, D
and E. By choosing r8, we ensure that the cycle has been externally initiated at some
point but activation of r8 is not necessary at the current steady state.

We analyze (i) the quality of fluto’s approach to metabolic network completion and
(ii) the impact of different system configurations. To have a realistic setting, we use
degradations of a functioning metabolic network of Escherichia coli [17] comprising
1075 reactions. The network was randomly degraded by 10, 20, and 30 percent, creating
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10 networks for each degradation by removing reactions until the target reactions were
inactive according to Flux Variability Analysis [3]. 90 target reactions with varied
reactants were randomly chosen for each network, yielding 2700 problem instances in
total. The reference network consists of reactions of the original metabolic network.

We ran each benchmark on a Xeon E5520 2.4 GHz processor under Linux limiting
RAM to 20 GB. At first, we investigate two alternative optimization strategies for com-
puting completions of minimum size. The first one, branch-and-bound (BB), iteratively
produces solutions of better quality until the optimum is found and the other, unsatisfi-
able core (USC), relies on successively identifying and relaxing unsatisfiable cores until
an optimal solution is obtained. Note that we are not only interested in optimal solutions
but if unavailable also solutions activating target reactions without trivially restoring the
whole reference network. In clingo, BB naturally produces these solutions in contrast
to USC. Therefore, we use USC with stratification [1], which provides at least some
suboptimal solutions. Each obtained best solution was checked with cobrapy 0.3.2 [6], a
renowned system implementing an FBA-based gold standard (for verification only).

Table 1 gives the number of solutions (#SOLS) and optima (#OPTS) obtained
by fluto (F) in its default setting within 20 minutes for BB, USC and the best of
both (BB+USC), individually for each DEGRADATION and overall. For 94.3% of the
instances fluto(BB+USC) found a solution within the time limit and 82.3% of them were
optimal. We observe that BB provides overall more useful solutions but USC acquires
more optima, which was to be expected by the nature of the optimization techniques.
Additionally, each technique finds solutions to problem instances where the other ex-
ceeds the time limit, underlining the merit of using both in tandem. Column VERIFIED
compares the quality of solutions provided by fluto, meneco 1.4.3 (M) [16] and gap-
fill10(G) [18]. Both meneco and gapfill are systems for metabolic network completion.
While meneco pursues the topological approach, gapfill applies the relaxed stoichiomet-
ric variant using Equation (7). The numbers represent how many problem instances had
verified solutions for each system.11 All solutions found by fluto could be verified by
cobrapy. In detail, fluto found a smallest set of reactions completing the draft network
for 77.6%, a suboptimal solution for 16.7%, and no solution for 5.6% of the problem
instances. In comparison, for meneco 35.0%, and for gapfill merely 4.0% of its solutions
passed verification. The ignorance of menecoregarding stoichiometry leads to possibly
unbalanced networks, which particularly outcrops for higher degradation. The simplified
view of gapfillin terms of stoichiometry misguides the search for possible completions
and eventually leads to unbalanced networks. Moreover, gapfill’s ignorance of network
topology results in self-activated cycles. By exploiting both topology and stoichiometry,
fluto avoids such cycles and scales much better with increasing reference network size
and degradation of the network.

The configuration space of fluto is huge. In addition to its own parameters, the ones
of clingo and the respective LP solver amplify the number of options. We thus focus
on distinguished features revealing an impact in our experiments. First, the fluto option
CORE-n invokes the irreducible inconsistent set algorithm [14] whenever n% of atoms

10 Update of 2011-09-23 see http://www.maranasgroup.com/software.htm
11 The results for meneco and gapfill are taken from previous work [16], where they were run to

completion with no time limit.
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are decided. This algorithm extracts a minimal set of conflicting linear constraints for a
given conflict. Second, PROP-n controls the frequency of LP propagation: the consistency
of linear constraints is only checked if n% of atoms are decided. Finally, HEURISTIC
allows for using clingo’s domain-specific heuristics. Such heuristics are expressed in the
input language with the directive #heuristic. In fluto, we use the statement
#heuristic completion(R) : interesting(R). [1,true]

to make the solver first decide interesting reactions and assign them true. A reaction
of G′ is interesting if it is on a direct path in G′ ∪G from a seed metabolite to a
target metabolite. The DEFAULT is to use CORE-100, PROP-0, disable HEURISTIC, and
use LP solver cplex. This allows us to detect conflicts among the linear constraints as
soon as possible and only perform expensive conflict analysis on the full assignment.

For our experiments, we selected at random three networks with at least 20 instances
for which BB and USC could find the optimum in 100 to 600 seconds. With the resulting
270 medium to hard instances, we compared DEFAULT as baseline, n ∈ {0, 50, 100}
for CORE-n and PROP-n, respectively, and HEURISTIC, limiting time to 600 seconds.
Table 2 gives the overall average time in seconds (T) and number of timeouts (TO). The
first column reflects the CONFIGURATIONs. We focus on the impact of distinguished
parameters wrt the default setting and leave a more exhaustive exploration to future
work.12 Overall, USC performs best as regards average time, and USC and HEURISTIC
yield the least number of timeouts. BB works well with frequent conflict analysis (CORE-
0), while it weakens USC’s performance. On the other hand, unlike BB, USC favors
frequent theory propagation (DEFAULT). BB learns weaker constraints while optimizing
only pertaining to the best known bound, thus the improvement step is less constraint
compared to USC. Due to this, conflicts are more likely to appear later on and be of less
quality, enhancing the potential of conflict analysis and hampering the usefulness of
frequent LP propagation. USC on the other hand, aims at quickly identifying unsatisfiable
partial assignments and learning structural constraints building upon each other, which
is enhanced by frequent conflict detection. Thus, higher quality conflicts are likely
detected earlier where conflict minimization has less potential and produces overhead.
HEURISTIC reduces performance for BB. Even though the bound of the initial solution
might be lower, the solver derives no additional information from this bound, and the
heuristic hurts the unsatisfiability proof at the end. USC works surprisingly well with
HEURISTIC. Since all heuristically modified variables are part of the optimization, the
first USC optimization step disregards the heuristics entirely because no reactions from
the reference network are selected. Afterward, the learned unsatisfiable core is relaxed
by choosing heuristically modified reactions first. This might lead to unsatisfiable cores
with higher quality since they arguably include relevant reactions. Iterating this process,
the solver appears to learn shortcuts, fixing sets of important reactions that have to be
included in solutions, thus reducing the complexity of the remaining search. Note that
instead of modifying all atoms in the optimization statement which was shown to be
unsuccessful in [8], we specifically select topologically relevant reactions.

Finally, we take the best configurations and examine how fluto scales on harder
instances. To this end, we use configurations with bold rows in Table 2. We rerun the
first experiment after adding 900 instances degraded by 40% (Table 3). F(VBS) denotes

12 Also, we do not present results of lpsolve since it produced inferior results.
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the virtual best results, meaning for each problem instance the best known solution
among the three configurations was verified. For 20% and 30% degradation, we obtain
additional 29 and 68 solutions and 41 and 193 optima, respectively. Overall, we find
solutions for 92.4% out of the 3600 instances and 72.1% of them are optimal. The
number of solutions decreases slightly and the number of optima more drastically with
higher degradation. While again 100% of fluto’s solutions could be verified, only 27.1%
and 3% are obtained for meneco and gapfill, respectively.

6 Discussion

We presented the first hybrid approach to metabolic network completion by combining
topological and stoichiometric constraints in a uniform setting. To this end, we elabo-
rated a formal framework capturing different semantics for the activation of reactions.
Based upon these formal foundations, we developed a hybrid ASP encoding reconciling
disparate approaches to network completion. The resulting system, fluto, thus combines
the advantages of both approaches and yields greatly superior results compared to purely
quantitative or qualitative existing systems. Our experiments show that fluto scales to
more highly degraded networks and produces useful solutions in reasonable time. In fact,
all of fluto’s solutions passed the biological gold standard. The exploitation of the net-
work’s topology guides the solver to more likely completion candidates, and furthermore
avoids self-activated cycles, as obtained in FBA-based approaches. Also, unlike other
systems, fluto allows for establishing optimality and address the strict stoichiometric
completion problem without approximation.

fluto takes advantage of the hybrid reasoning capacities of the ASP system clingo
for extending logic programs with linear constraints over reals. This provides us with a
practically relevant application scenario for evaluating this hybrid form of ASP. To us,
the most surprising empirical result was the observation that domain-specific heuristic
allow for boosting unsatisfiable core based optimization. So far, such heuristics have only
been known to improve satisfiability-oriented reasoning modes, and usually hampered
unsatisfiability-oriented ones (cf. [8]).
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