
Reactive Answer Set Programming

Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub?

Institut für Informatik, Universität Potsdam

Abstract. We introduce the first approach to Reactive Answer Set Programming,
aiming at reasoning about real-time dynamic systems running online in changing
environments. We start by laying the theoretical foundations by appeal to module
theory. With this, we elaborate upon the composition of the various offline and
online programs in order to pave the way for stream-driven grounding and solv-
ing. Finally, we describe the implementation of a reactive ASP solver, oclingo.

1 Introduction

Answer Set Programming (ASP; [1]) has become a popular declarative problem solv-
ing paradigm, facing a growing number of increasingly complex applications. So far,
however, ASP systems are designed for offline usage, lacking any online capacities.
We address this shortcoming and propose a reactive approach to ASP that allows us to
implement real-time dynamic systems running online in changing environments. This
new technology paves the way for applying ASP in many new challenging areas, deal-
ing with agents, (ro)bots, policies, sensors, etc. The common ground of these areas is
reasoning about dynamic systems incorporating online data streams.

For capturing dynamic systems, we take advantage of incremental logic pro-
grams [2], consisting of a triple (B,P,Q) of logic programs, among which P and Q
contain a (single) parameter t ranging over the natural numbers. In view of this,
we sometimes denote P and Q by P [t] and Q[t]. The base program B is meant
to describe static knowledge, independent of parameter t. The role of P is to cap-
ture knowledge accumulating with increasing t, whereas Q is specific for each value
of t. Roughly speaking, we are interested in finding an answer set of the program
B ∪

⋃
1≤j≤i P [t/j] ∪Q[t/i] for some (minimum) integer i ≥ 1.

As a motivating example, consider a very simple elevator controller accepting re-
quests to go to a certain floor whenever it is not already at this floor. At each step, the el-
evator moves either up or down by one floor. If it reaches a floor for which a request ex-
ists, it serves the request automatically until its goal to serve all requests is fulfilled. This
functionality is specified by the incremental logic program (B,P [t], Q[t]) in Fig. 1.1

The answer set of the program B ∪ P [t/1] ∪Q[t/1] is B ∪ {atF loor(2, 1), goal(1)}.2
The elevator moves one floor and sees its goal fulfilled because there were no requests.

Observe that atoms of the form request(F, t), representing incoming requests, are
not defined by P [t]; that is, they do not occur in the head of any rule in P [t]. In fact,

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 We use shorthands ‘1{. . . }1’, ‘..’, ’;’, and ‘:’ following the syntax of gringo (cf. [3]).
2 For simplicity, we identify facts with atoms.

B =

{
floor(1..3)←

atF loor(1, 0)←

}

P [t] =

1 {atF loor(F−1;F+1, t)} 1← atF loor(F, t−1), f loor(F)

← atF loor(F, t),not floor(F)
requested(F, t)← request(F, t), f loor(F),not atF loor(F, t)
requested(F, t)← requested(F, t−1), f loor(F),not atF loor(F, t)

goal(t)← not requested(F, t) : floor(F)

Q[t] =

{
← not goal(t)

}
.

Fig. 1. Incremental logic program for elevator control

requests are coming from outside the system, and their occurrences cannot be foreseen
within an incremental program. Assume we get the request

E[1] = {request(3, 1)←} (1)

telling our controller that a request to serve floor 3 occurred at time 1. While adding
E[1] to the above program yields no answer set, we get one from programB∪P [t/1]∪
P [t/2]∪Q[t/2]∪E[1], in which the elevator takes two steps to move to the third floor:2

B ∪ E[1] ∪ {requested(3, 1), atF loor(2, 1), atF loor(3, 2), goal(2)} . (2)

In fact, reasoning is driven by successively arriving events. No matter when a request
arrives, its logical time step is aligned with the ones used in the incremental program.
In this way, an event like (1) complements the domain description in Fig. 1 and initiates
the subsequent search for an answer set as in (2). The next answer set computation is
started by the following event, that is, upon the next request. As a particular feature
of this methodology, observe that some rules in an encoding like P [t] in Fig. 1 stay
inactive until they get triggered by an event as in (1) adding request(3, 1) as a fact.

Grounding and solving in view of possible yet unknown future events constitutes a
major technical challenge. For guaranteeing redundancy-freeness, the continuous inte-
gration of new program parts has to be accomplished without reprocessing previously
treated programs. Also, simplifications related to events must be suspended until they
become decided. Once this is settled, our approach leaves room for various application
scenarios. While the above example is inspired by Cognitive Robotics [5], our approach
may just as well serve as a platform for Autonomous Agent Architectures [6], Policy
reasoning [7], or Sensor Fusion in Ambient Artificial Intelligence [8]. All in all, our ap-
proach thus serves as a domain-independent framework providing a sort of middle-ware
for specific application areas rather than proposing a domain-specific solution.

2 Background

This section provides a brief introduction of answer sets of logic programs with choice
rules and integrity constraints (see [1, 9] for details). A rule is an expression of the form

h← a1, . . . , am,not am+1, . . . ,not an (3)

where ai, for 1 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk), and t1, . . . , tk are terms,
viz., constants, variables, or functions. For a rule r as in (3), the head h of r is either an
atom, a cardinality constraint of the form l {h1, . . . , hk}u in which l, u are integers and
h1, . . . , hk are atoms, or the special symbol ⊥. If h is a cardinality constraint, we call r
a choice rule, and an integrity constraint if h = ⊥. We denote the atoms occurring
in h by head(r), i.e., head(r) = {h} if h is an atom, head(r) = {h1, . . . , hk} if
h = l {h1, . . . , hk}u, and head(r) = ∅ if h = ⊥. In the following, we sometimes write
hr to refer to the head h of r, and we skip ⊥ when writing an integrity constraint. The
atoms occurring positively and negatively, respectively, in the body of r are denoted by
body(r)+ = {a1, . . . , am} and body(r)− = {am+1, . . . , an}.

A logic program R is a set of rules of the form (3). By atom(R), we denote the set
of all atoms occurring in R, and head(R) =

⋃
r∈R head(r) is the collection of head

atoms in R. The set of all ground terms constructible from the constants and function
symbols that occur in R (if there is no constant, just add an arbitrary one) forms the
Herbrand universe of R. The ground instance of R, denoted by grd(R), is the set of
all ground rules constructible from rules r ∈ R by substituting every variable in r with
some element of the Herbrand universe of R.3 A set X of ground atoms satisfies a
ground rule r of the form (3) if {a1, . . . , am} ⊆ X and {am+1, . . . , an} ∩ X = ∅
imply that h ∈ X or h = l {h1, . . . , hk}u and l ≤ |{h1, . . . , hk} ∩ X| ≤ u. We call
X a model of R if X satisfies every rule r ∈ grd(R). The reduct of R relative to X is
RX = {a← body(r)+ | r ∈ grd(R), a ∈ head(r) ∩X, body(r)− ∩X = ∅}; X is an
answer set of R if X is a model of R such that no proper subset ofX is a model ofRX .

3 Reactive Answer Set Programming

In this section, we augment the concept of an incremental logic program with asyn-
chronous information, refining the statically available knowledge. To this end, we char-
acterize the constituents of the combined logic program including schematic as well as
online parts, below called online progression.

An online progression represents a stream of events and inquiries. While entire
event streams are made available for reasoning, inquiries act as punctual queries.

Definition 1. We define an online progression (Ei[ei], Fi[fi])i≥1 as a sequence of pairs
of logic programs Ei, Fi with associated positive integers ei, fi.

An online progression is asynchronous in distinguishing stream positions like i from
(logical) time stamps. Hence, each event Ei and inquiry Fi includes a particular time
stamp ei or fi, respectively, indicated by writing Ei[ei] and Fi[fi]. Such time stamps
are essential for synchronization with parameters in the underlying (incremental) logic
programs. Note that different events and/or inquiries may refer to the same time stamp.

Definition 2. Let (Ei[ei], Fi[fi])1≤i≤j be a finite online progression and
(B,P [t], Q[t]) be an incremental logic program. We define

3 We also assume that built-ins of grounders like lparse and gringo (cf. [4, 3]), such as arithmetic
functions, are evaluated upon instantiation.

1. the k-expanded logic program of (Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]) as

Rj,k = B ∪
⋃

1≤i≤k P [t/i] ∪Q[t/k] ∪
⋃

1≤i≤j Ei[ei] ∪ Fj [fj] (4)

for each k such that 1 ≤ e1, . . . , ej , fj ≤ k, and
2. a reactive answer set of (Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]) as an answer set of

a k-expanded logic program Rj,k of (Ei[ei], Fi[fi])1≤i≤j for a (minimum) k ≥ 1.

The incremental program constitutes the offline counterpart of an online progression; it
is meant to provide a general (schematic) description of an underlying dynamic system.
The parameter k represents a valid horizon accommodating all occurring events and
inquiries. Thus, it is bound from below by the time stamps occurring in the online
progression. The goal is then to find a (minimum) horizon k such that Rj,k has an
answer set, often in view of satisfying the global query Q[t/k]. In addition, inquiries,
specific to each j, can be used for guiding answer set search. Unlike this, the whole
stream (Ei[ei])1≤i≤j of events is taken into account. Observe that the number j of
events is independent of the horizon k. Finally, it is important to note that the above
definition of an expanded program is static because its parameters are fixed. The next
section is dedicated to the online evolution of reactive logic programs, characterizing
the transitions fromRj,k toRj+1,k andRj,k toRj,k+1 in terms of constituent programs.

4 Reactive Modularity

For providing a clear interface between the various programs and guaranteeing their
compositionality, we build upon the concept of a module [10], P, being a triple (P, I,O)
consisting of a (ground) program P and sets I,O of ground atoms such that I ∩O = ∅,
atom(P) ⊆ I ∪ O, and head(P) ⊆ O. The elements of I and O are called input and
output atoms, also denoted by I(P) and O(P), respectively; similarly, we refer to P by
P (P). The join of two modules P and Q, denoted by P tQ, is defined as the module

(P (P) ∪ P (Q) , (I(P) \O(Q)) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)) ,

provided that O(P) ∩ O(Q) = ∅ and there is no strongly connected component in the
positive dependency graph of P (P) ∪ P (Q), i.e., (atom(P (P) ∪ P (Q)), {(a, b) | r ∈
P (P) ∪ P (Q), a ∈ head(r), b ∈ body(r)+}), that shares atoms with both O(P) and
O(Q). A setX of atoms is an answer set of a module P = (P, I,O) ifX is a (standard)
answer set ofP∪{a← | a ∈ I∩X}; we denote the set of all answer sets of P by AS (P).
For two modules P and Q, the composition of their answer sets is AS (P) on AS (Q) =
{XP∪XQ | XP ∈ AS (P), XQ ∈ AS (Q), XP∩(I(Q)∪O(Q)) = XQ∩(I(P)∪O(P))}.
The module theorem [10] shows that the semantics of P and Q is compositional if their
join is defined, i.e., if P tQ is well-defined, then AS (P tQ) = AS (P) on AS (Q).

For turning programs into modules, we follow [2] and associate in Definition 3 a
(non-ground) program P and a set I of (ground) input atoms with a module, denoted by
P(I), imposing certain restrictions on the ground program induced by P . To this end,
for a ground program P and a set X of ground atoms, define P |X as

{hr ← body(r)+ ∪L | r ∈ P, body(r)+ ⊆ X,L = {not c | c ∈ body(r)− ∩X}} .

Note that P |X projects the bodies of rules in P to the atoms of X . If a body con-
tains an atom outside X , either the corresponding rule or literal is removed, depending
on whether the atom occurs positively or negatively. This allows us to associate (non-
ground) programs with (ground) modules, as proposed in [2].

Definition 3. Let P be a logic program and I be a set of ground atoms. We define P(I)
as the module (grd(P)|Y , I, head(grd(P)|X)), where X = I ∪ head(grd(P)) and
Y = I ∪ head(grd(P)|X).

The full ground instantiation grd(P) of P is projected onto inputs and atoms defined in
grd(P). The head atoms of this projection, viz., head(grd(P)|I∪head(grd(P))), serve as
output atoms and are used to simplify grd(P), sparing only input and output atoms.

Unlike offline incremental ASP [2], its online counterpart deals with external knowl-
edge acquired asynchronously. When constructing a ground module, we can thus no
longer expect all of its atoms to be defined by the (ground) rules inspected so far. Rather,
atoms may be defined by an online progression later on. To accommodate this, potential
additions need to be reflected and exempted from program simplifications, as usually
applied wrt (yet) undefined atoms. To this end, we assume in the following each (non-
ground) program P to come along with some set of explicit ground input atoms (cf.
the #external declaration described in Section 5), referred to by IP . Such atoms
provide “hooks” for online progressions to later incorporate new knowledge into an ex-
isting program part. Note that we could simply let IP = ∅ for all program slices P to
resemble offline incremental ASP.

We make use of the join to formalize the compositionality of instantiated modules
induced by the respective programs in Definition 2.

Definition 4. We define an online progression (Ei[ei], Fi[fi])i≥1 as modular wrt an
incremental logic program (B,P [t], Q[t]), if the modules

P0 = B(IB) Pn = Pn−1 t P[t/n](O(Pn−1) ∪ IP [t/n])

E0 = (∅, ∅, ∅) En = En−1 t En[en](O(Pen) ∪O(En−1) ∪ IEn[en])

Rj,k = Pk t Ej tQ[t/k](O(Pk) ∪ IQ[t/k]) t Fj [fj](O(Pfj) ∪O(Ej) ∪ IFj [fj])

are well-defined for all j, k ≥ 1 such that e1, . . . , ej , fj ≤ k.

In detail, this definition inspects the joins Pn and En of instantiated cumulative modules
obtained from P [t/n] and En[en], respectively, for all n ≥ 0. The former takes the
instantiation of the static program B as its base case, where the input IB related to B
is considered by the instantiation. A module Pn−1 obtained in this way is then joined
with the instantiation of P [t/n] relative to the atoms defined by preceding cumulative
program slices, viz., O(Pn−1), and the specific inputs IP [t/n], thus obtaining the next
combined module Pn. Observe that this join is independent of an online progression,
yet the inputs collected over successive join operations provide an interface for online
progressions to refine the available knowledge.

The join of the instantiations of online progressions’ cumulative parts En[en] starts
from the empty module E0, given that the first event is provided for n = 1. Then, En−1
is joined with the instantiation of En[en] relative to the defined atoms requested via en,
viz.,O(Pen), the atoms defined by preceding cumulative parts of the online progression,

i.e., O(En−1), and finally the particular inputs IEn[en]. As before, the latter provide
means to refine the information gathered in the combined module En.

A full module Rj,k incorporates all information accumulated in Pk and Ej as well
as the volatile (query) parts Q[t/k] and Fj [fj] of the incremental logic program and the
online progression, respectively. Their instantiations consider all atoms defined by cu-
mulative incremental program slices up to k or fj , i.e., O(Pk) or O(Pfj), respectively,
the specific inputs IQ[t/k] and IFj [fj], and in the case of Fj [fj] also the atoms O(Ej)
defined by events of the online progression. Note that O(Ej) is not used as input for in-
stantiating Q[t/k], which reflects its role of belonging to an incremental logic program
that is independent of and also invariant under particular online progressions. However,
the explicit inputs IQ[t/k] (and IFj [fj]) still admit passing information between (volatile
parts of) the incremental logic program and an online progression.

The condition characterizing modularity of incremental programs and online pro-
gressions is that Rj,k must be well-defined for all j, k ≥ 1, viz., each instantiation must
yield a module and each join must be defined, where the requirement e1, . . . , ej , fj ≤ k
makes sure that the slices of an incremental program requested in an online progression
contribute to Rj,k. However, note that k is not bound to be max{e1, . . . , ej , fj}; rather,
it can be increased beyond that as needed (for obtaining an answer set).

As an example, let us instantiate the incremental logic program in Fig. 1. While
its static and query part, B and Q[t], respectively, do not make use of particular inputs
(IB = IQ[t] = ∅), the incremental part P [t] relies on atoms of the form request(F, t),
which are not defined by P [t]. Unlike offline incremental ASP, where undefined atoms
do not belong to the instantiation of a program slice, they must now be preserved to react
to asynchronous requests. Accordingly, we let IP [t] = {request(1, t), request(2, t),
request(3, t)}; here, the first argument of an input atom is a floor and the second is the
incremental parameter. Given the described inputs, the following ground modules are
derived from the incremental program in Fig. 1 and contribute to R1,2:

P0 = B(∅) = (B, ∅, head(B))

where B =
{
floor(1)← floor(2)← floor(3)← atF loor(1, 0)←

}
P1 = P0 t P[t/1](O(P0) ∪ IP [t/1]) =

(
P (P0) ∪ P1, IP [t/1], O(P0) ∪ head(P1)

)

where P1 =

1 {atF loor(0, 1), atF loor(2, 1)} 1← atF loor(1, 0), f loor(1)
← atF loor(0, 1)
← atF loor(2, 1),not floor(2)

requested(1, 1)← request(1, 1), f loor(1)
requested(2, 1)← request(2, 1), f loor(2),not atF loor(2, 1)
requested(3, 1)← request(3, 1), f loor(3)

goal(1)← not requested(1, 1),
not requested(2, 1),
not requested(3, 1)

Note that the program in P1, viz. P1 = grd(P [t/1])|head(grd(P [t/1])∪B)∪IP [t/1]

, is
obtained by simplifying grd(P [t/1]) relative to the output of the preceding module,
thereby, sparing the inputs IP [t/1] from simplifications (cf. Definition 3 and 4). For in-
stance, input atoms of the form request(F, 1) are not eliminated from P1, while ground

rules including undefined non-input atoms of the form requested(F, 0) in their posi-
tive bodies do not contribute to P1. The same considerations apply to program P2 of P2

below. That is, P2 = grd(P [t/2])|head(grd(P [t/2])∪P1∪B)∪IP [t/2]
is obtained by simpli-

fying grd(P [t/2]) relative to the preceding outputs, while sparing the inputs IP [t/2]:

P2 = P1 t P[t/2](O(P1) ∪ IP [t/2])

=
(
P (P1) ∪ P2, I(P1) ∪ IP [t/2], O(P1) ∪ head(P2)

)
where

P2 =

1 {atF loor(1, 2), atF loor(3, 2)} 1← atF loor(2, 1), f loor(2)
← atF loor(1, 2),not floor(1)
← atF loor(3, 2),not floor(3)

requested(1, 2)← request(1, 2), f loor(1),not atF loor(1, 2)
requested(2, 2)← request(2, 2), f loor(2)
requested(3, 2)← request(3, 2), f loor(3),not atF loor(3, 2)

requested(1, 2)← requested(1, 1), f loor(1),not atF loor(1, 2)
requested(2, 2)← requested(2, 1), f loor(2)
requested(3, 2)← requested(3, 1), f loor(3),not atF loor(3, 2)

goal(2)← not requested(1, 2),
not requested(2, 2),
not requested(3, 2)

Q[t/2](O(P2)) = ({← not goal(2)}, O(P2), ∅)

To complete R1,2, we further join P2 and Q[t/2](O(P2)) with the module E1 =
({request(3, 1) ←}, ∅, {request(3, 1)}) stemming from the online progression
({request(3, 1) ←}, ∅), capturing the request E[1] in (1). In view of its five input
atoms, request(1, 1), request(2, 1), request(1, 2), request(2, 2), and request(3, 2),
the full module R1,2 has four answer sets, obtained by augmenting the answer set shown
in (2) with an arbitrary subset of {request(2, 1), request(3, 2)}. (That is, fictitious re-
quests along the way of the elevator do not preclude it from serving floor 3, as required
in view of request(3, 1) ←.) However, note that the answer set in (2) is the only one
that does not assume any of the residual input atoms of R1,2 to hold.

Regarding the formal properties of (modular) incremental logic programs and online
progressions, we have that the module theorem [10] applies to instantiated modules
contributing to Rj,k.

Proposition 1 (Compositionality). Let (B,P [t], Q[t]) be an incremental logic pro-
gram, (Ei[ei], Fi[fi])i≥1 be an online progression, j, k ≥ 1 be such that
e1, . . . , ej , fj ≤ k, and Rj,k as well as Pn,En, for n ≥ 0, be as in Definition 4.

If (Ei[ei], Fi[fi])i≥1 is modular wrt (B,P [t], Q[t]), then we have that

AS (Rj,k) = AS (P0) on AS (P[t/1](O(P0) ∪ IP [t/1])) on · · · on
AS (P[t/k](O(Pk−1) ∪ IP [t/k])) on
AS (E0) on AS (E1[e1](O(Pe1) ∪O(E0) ∪ IE1[e1])) on · · · on
AS (Ej [ej](O(Pej) ∪O(Ej−1) ∪ IEj [ej])) on
AS (Q[t/k](O(Pk) ∪ IQ[t/k])) on
AS (Fj [fj](O(Pfj) ∪O(Ej) ∪ IFj [fj])) .

Note that compositionality holds wrt instantiated modules obtained by passing infor-
mation (output atoms) from one module to another as specified in Definition 4.

Another question of interest concerns conditions under which the answer sets of a
module Rj,k match the ones of a k-expanded logic programRj,k, being the union of in-
cremental logic program slices and programs of an online progression (cf. Definition 2).
The major difference between both constructions is that modules contributing to Rj,k

are instantiated successively wrt an evolving Herbrand universe, while the (non-ground)
programs of Rj,k share a Herbrand universe. To this end, we next provide a sufficient
condition under which incremental and single-pass grounding yield similar answer sets.
The idea is to require that, in the successive construction of Rj,k, atoms that can already
be used before they become defined must be declared to be inputs.

We say that an incremental logic program (B,P [t], Q[t]) and an online progression
(Ei[ei], Fi[fi])i≥1 are mutually revisable if the following conditions hold for all n ≥ 1:

1. atom(grd(B)) ∩ head(grd(
⋃

i≥1(P [t/i] ∪Q[t/i] ∪ Ei[ei] ∪ Fi[fi]))) ⊆ IB ,
2. atom(grd(P [t/n])) ∩ head(grd(

⋃
i>n P [t/i] ∪

⋃
i≥nQ[t/i] ∪

⋃
i≥1(Ei[ei] ∪

Fi[fi]))) ⊆ IP [t/n],
3. atom(grd(Q[t/n])) ∩ head(grd(

⋃
i≥1(Ei[ei] ∪ Fi[fi]))) ⊆ IQ[t/n],

4. atom(grd(En[en])) ∩ head(grd(
⋃

i>en
P [t/i] ∪

⋃
i≥en Q[t/i] ∪

⋃
i>nEi[ei] ∪⋃

i≥n Fi[fi])) ⊆ IEn[en], and
5. atom(grd(Fn[fn])) ∩ head(grd(

⋃
i>fn

P [t/i] ∪
⋃

i≥fn Q[t/i])) ⊆ IFn[fn].

Observe that atoms belonging to the ground instance of the static programB or a cumu-
lative program slice P [t/n] must be consumed as inputs, i.e., belong to IB or IP [t/n],
respectively, if they can be defined by subsequent cumulative or query programs, or
by the online progression. The latter condition must likewise hold for a query program
Q[t/n], which can however ignore atoms defined by program slices IP [t/i], for i > n,
because a different query program Q[t/i] will then be used instead. For the programs
En[en] and Fn[fn] of the online progression, we similarly require in 4. and 5. that all
atoms in their ground instances that can be defined by the incremental program in a step
i > en or i > fn (also i = en or i = fn for Q[t/i]), respectively, must be contained in
IEn[en] or IFn[fn]. The inputs of an event En[en] also need to include atoms that can be
defined later by the online progression, i.e., in Ei[ei] or Fi[fi] for i > n (also i = n for
Fi[fi]). In summary, if all requirements of mutual revisability are met, the instantiated
modules in Rj,k are via their inputs susceptible to atoms defined subsequently, as in the
case of instantiating the full collection Rj,k of (non-ground) programs in a single pass.

The following result formalizes the correspondence between the answer sets ofRj,k

and the ones of Rj,k not including input atoms, provided that mutual revisability applies.

Proposition 2 (Instantiation). Let (B,P [t], Q[t]) be an incremental logic program,
(Ei[ei], Fi[fi])i≥1 be a modular online progression wrt (B,P [t], Q[t]), j, k ≥ 1
be such that e1, . . . , ej , fj ≤ k, Rj,k be the k-expanded logic program of
(Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]), and Rj,k be as in Definition 4.

If (B,P [t], Q[t]) and (Ei[ei], Fi[fi])i≥1 are mutually revisable, then we have that
X is an answer set of Rj,k iff X is an answer set of Rj,k such that X ⊆ O(Rj,k).

Note that, by letting IP [t] = {request(1, t), request(2, t), request(3, t)}, Proposi-
tion 2 applies to the incremental logic program in Fig. 1 along with the online progres-
sion ({request(3, 1) ←}, ∅), capturing the request E[1] in (1). In fact, atoms defined

#base.
floor(1..3).
atFloor(1,0).

#cumulative t.
#external request(F,t) : floor(F).
1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).
:- atFloor(F,t), not floor(F).
requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).
requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).
goal(t) :- not requested(F,t) : floor(F).

#volatile t.
:- not goal(t).

Table 1. elevator.lp

by P [t/n] do not occur in B or P [t/i] for any 1 ≤ i < n, so that IP [t] is sufficient
to reflect facts representing asynchronously arriving requests in instantiated modules.
Hence, the answer set in (2) is obtained both for R1,2 and R1,2. In fact, it is the only
answer set of R1,2 not including any of its residual input atoms, viz., request(1, 1),
request(2, 1), request(1, 2), request(2, 2), and request(3, 2).

To see that incremental instantiation and single pass grounding yield, in general,
different semantics, note that, if IP [t] = ∅, the instantiated modules obtained from
P [t] in Fig. 1 do not include any rule containing an atom of the form request(F, t) in
the positive body. Then, the answer sets of R1,2 would not yield a schedule to satisfy
a request given in an online progression, but merely provide possible moves of the
elevator. Unlike this, a request like in (1) would still be served in an answer set of R1,2.

5 The Reactive ASP Solver oclingo

We implemented a prototypical reactive ASP solver called oclingo, which is available
at [11] and extends iclingo [2] with online functionalities. To this end, oclingo acts as
a server listening on a port, configurable via its --port option upon start-up. Un-
like iclingo, which terminates after computing an answer set of the incremental logic
program it is run on, oclingo waits for client requests. To issue such requests, we im-
plemented a separate controller program that sends online progressions to oclingo and
displays answer sets received in return.

For illustrating the usage of oclingo, consider Table 1 displaying the source code
representation (elevator.lp) of the incremental logic program in Fig. 1. Its three
parts are distinguished via the declarations ‘#base.’, ‘#cumulative t.’, and
‘#volatile t.’, respectively, where t serves as the parameter. Of particular interest
is the declaration preceded by ‘#external’, delineating the input to the cumulative
part provided by future online progressions (cf. IP [t/n] in Definition 4). In fact, the

Algorithm 1: osolve
Input : An incremental logic program (B,P [t], Q[t]).
Internal : A grounder GROUNDER and a solver SOLVER.

i← 01
iold ← 02
j ← 03

P0 ← GROUNDER.ground(B)4
SOLVER.add(P0)5

loop6
j ← j + 17
(Ej , Fj ,mj)← getExternalKnowledge()8

while i < mj do9
i← i+ 110
Pi ← GROUNDER.ground(P [t/i])11
SOLVER.add(Pi)12

Oj ← GROUNDER.ground(Ej ∪ Fj(βj))13
SOLVER.add(Oj ∪ {← βj−1})14

repeat15
if iold < i then16

Qi ← GROUNDER.ground(Q[t/i](αi))17
SOLVER.add(Qi ∪ {← αiold})18
iold ← i19

χ← SOLVER.solve({αi, βj})20

if χ = ∅ then21
i← i+ 122
Pi ← GROUNDER.ground(P [t/i])23
SOLVER.add(Pi)24

until χ 6= ∅25

send({X \ {αi, βj} | X ∈ χ})26

declaration instructs oclingo to not apply any simplifications in view of yet undefined
instances of request(F,t), where F is a floor.

After launching oclingo on file elevator.lp, it proceeds according to Algo-
rithm 1, which is basically an extension of iclingo’s isolve algorithm [2]. The base
part is grounded in Line 4 and added to the solver in Line 5. Then, the main loop starts
by waiting for external knowledge (Line 8), passed to oclingo by a client. For instance,
the external knowledge representing the online progression in (1) is provided as follows:

#step 1. request(3,1). #endstep.

Here ‘#step 1.’ specifies the time stampm1 = 1, andE1 is ‘request(3,1).’, as
signaled via ‘#endstep.’ A program for F1 could be provided by specifying rules af-

ter a ‘#volatile.’ declaration, but this functionality is not yet supported by oclingo.
If it were, note that m1 is supposed to be the maximum of e1 and f1 (cf. Definition 1).

After receiving the external knowledge, since i = 0 < m1 = 1 in Line 9, osolve
proceeds by incrementing i and processing a first slice of the incremental program’s
cumulative part. This includes grounding P [t/1] and adding the ground program to the
solver. Similarly, in Line 13 and 14, E1 (and F1(β1) = ∅) are grounded and added to
the solver. The notation Fj(βj) indicates that a fresh atom βj is inserted into the body of
each rule in Fj , so that the inquiry can in step j + 1 be discarded in Line 14 via adding
the integrity constraint ← βj to the solver (cf. [12, 2]). Note that oclingo currently
supports ground external input only, so that the “grounding” in Line 13 merely maps
textual input to an internal representation.

The repeat loop starting in Line 15 is concerned with unrolling the incremental
program in view of satisfying Q[t]. In our example, Q[t/1](α1) is grounded and then
added to the solver (Line 17 and 18), where a fresh atom αi is used to mark volatile
rules to enable their discarding via adding an integrity constraint ← αiold later on.
(Note that the step number mj passed as external knowledge may cause jumps of i in
query programs Q[t/i], which are not possible with P [t] in view of the loop starting
in Line 9, and iold is used to address a volatile part becoming obsolete.) The solving
accomplished in Line 20 checks for an answer set in the presence of Q1, stipulating
the absence of pending requests for the elevator at time step 1. Note that α1 and β1
are passed as assumptions (cf. [12, 2]) to the solver, telling it that queries in Q1 and
F1 must be fulfilled. On the other hand, oclingo makes sure that yet undefined input
atoms, i.e., elevator requests that did not arrive, are not subject to “guessing.” In this
case, request(1,1) and request(2,1) must not belong to an answer set, as no
such external knowledge has been provided.

Given the pending request for floor 3, no answer set is obtained in Line 20, i.e.,
χ = ∅. Thus, the next cumulative program slice, P [t/2], is grounded and added to the
solver (Line 23 and 24). Then, the repeat loop is re-entered, where the queryQ[t/2](α2)
is added and Q[t/1](α1) discarded (Line 17 and 18). Afterwards, the answer set in (2)
is found in Line 20. As mentioned above, it contains request(3,1) as the only ex-
ternally provided atom: although Q[t/2](α2) would stay satisfied if request(2,1)
and/or request(3,2) were assumed to be true, oclingo eliminates these options by
disallowing undefined input atoms to hold. Finally, the obtained answer set (without α2

and β1) is sent back to the client for further processing (Line 26) before oclingo waits
for new external knowledge in Line 8. In practice, this process terminates when the
client sends ‘#stop.’ (rather than ‘#step mj. ... #endstep.’) to oclingo.

As already described, the current version of oclingo does not yet support non-
ground or volatile external input. Furthermore, it includes no modularity checks for
successively obtained ground program slices (cf. Definition 3). As a consequence, it is
the responsibility of the user to make sure that all programs are modularly composable
(cf. Definition 4) in order to guarantee that the answer sets computed wrt the jth on-
line program and the incremental program up to step k match the ones of the combined
module Rj,k that do not assume residual inputs to hold. (The successive grounding per-
formed by oclingo yields answer sets of Rj,k rather than of Rj,k (cf. Definition 2); see
Proposition 2 for sufficient conditions guaranteeing their correspondence.) Note that

modularity between incremental and online programs is easiest achieved at the predi-
cate level, primarily, by not using atoms over input predicates in the heads of rules in
the incremental program; e.g., elevator.lp follows this methodology. Of course,
one also ought to take the modularity of the incremental program, when it is unrolled,
into account (cf. [2]).

Note that, in view of the incremental approach, the step counter i is never decreased
within osolve. Hence, it does not admit a “step back in time” wrt successive online
programs and can, in general, not guarantee the k in answer sets of Rj,k to be minimal.
(The minimal k′, k such that Rj−1,k′ and Rj,k admit answer sets may be such that k <
k′.) To support minimality, one could add optimization statements (like #minimize
and #maximize) to incremental programs, which is a subject to future work.

The application-oriented features of oclingo also include declarations
‘#forget t.’ in external knowledge to signal that yet undefined input atoms,
declared at a step smaller or equal to t are no longer exempted from simplifications,
so that they can be falsified irretrievably by the solver in order to compact its internal
representation of accumulated incremental program slices (cf. [12, 2]). Furthermore,
oclingo supports an asynchronous reception of input, i.e., the call in Line 8 of Algo-
rithm 1 is processed also if solving in Line 20, relative to a previous online program,
is still ongoing. If new input arrives before solving is finished, the running solving
process is aborted, and the solver is relaunched wrt the new external knowledge.

6 Further Case Studies

The purpose of our reactive framework is to provide a middle-ware for various appli-
cation areas. For the sake of utility and versatility, we have conducted a set of assorted
case studies, all of which are available at [11].

First of all, we have experimented with a more complex elevator control than given
above, involving opening and closing doors as well as more elaborated control knowl-
edge. The strategy is to never change directions, as long as there is an active request in
a current direction. Also, this use case adds an external input indicating the respective
position of the elevator. A second case study is an extension of the well-known blocks-
world example [13]. Our extension allows for new, falling blocks thwarting previously
computed states and/or plans. This scenario aims at studying dynamic adaptions to new
(unexpected) situations. Our third use case deals with position tracking by means of sen-
sor networks. In contrast to the above planning tasks, this scenario looks for histories
and is thus directed backward in time. It is inspired by [14], where a person moves in
a home environment (given as a 2D grid) involving doors, rooms, obstacles, walls, etc.
Interestingly, missing sensor information may lead to alternative histories. Moreover,
these histories may change with the arrival of further sensor readings.

Our last two scenarios deal with simple games. The first one considers the well-
known Wumpus world [15]. An agent moves on a grid and tries to find gold in the dark,
while avoiding pits and the Wumpus. The moving Wumpus is externally controlled
and the agent has to react to the bad Wumpus’ smell. The latter is obtained through
events within an online progression. This is a typical agent-oriented scenario in which
an agent has to react in view of its changing environment. The second game-based

use case implements a simplistic TicTacToe player. This scenario is interesting from
a technical point of view because it allows for having two ASP players compete with
each other. Interestingly, each move has to be communicated to both players in order to
keep the game history coherent.

7 Discussion

We introduced the first genuinely reactive approach to ASP. For this purpose, we de-
veloped a module theory guaranteeing an incremental composition of programs, while
avoiding redundancy in grounding and solving. Unlike offline incremental ASP [2],
reactive ASP includes dedicated support of the input/output interface from (ground)
module theory [10]; in practice, inputs can be declared conveniently at the predicate
level. Our approach has a general, domain-independent nature and may thus serve as a
middle-ware opening up numerous new reactive applications areas to ASP. To this end,
we have implemented the reactive ASP solver oclingo and conducted a variety of case
studies demonstrating the utility and versatility of our approach. The implementation
along with all case studies are freely available at [11].

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In ICLP’08, Springer (2008) 190–205

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo. http://potassco.sourceforge.net

4. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
5. Reiter, R.: Knowledge in Action. The MIT Press (2001)
6. Balduccini, M., Gelfond, M.: The autonomous agent architecture. Newsletter ALP 23 (2010)
7. Son, T., Lobo, J.: Reasoning about policies using logic programs. In ASP’01, AAAI/The

MIT Press (2001)
8. Mileo, A., Merico, D., Bisiani, R.: Non-monotonic reasoning supporting wireless sensor

networks for intelligent monitoring. In LPNMR’09, Springer (2009) 585–590
9. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
10. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In ECAI’06,

IOS Press (2006) 412–416
11. http://www.cs.uni-potsdam.de/wv/oclingo
12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes

in TCS 89(4) (2003)
13. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan

Kaufmann (2004)
14. Mileo, A., Schaub, T., Merico, D., Bisiani, R.: Knowledge-based multi-criteria optimization

to support indoor positioning. In RCRA’10, CEUR-WS.org (2010)
15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2010)

