
Matchmaking with Answer Set Programming

Martin Gebser1, Thomas Glase1,2, Orkunt Sabuncu1, and Torsten Schaub1

1 Universität Potsdam
2 piranha womex AG, Berlin

Abstract. Matchmaking is a form of scheduling that aims at bringing companies
or people together that share common interests, services, or products in order to
facilitate future business partnerships. We begin by furnishing a formal character-
ization of the corresponding multi-criteria optimization problem. We then address
this problem by Answer Set Programming in order to solve real-world matchmak-
ing instances, which were previously dealt with by special-purpose algorithms.

1 Introduction

Matchmaking is a form of scheduling that aims at bringing companies or people to-
gether that share common interests, services, or products in order to facilitate future
business partnerships. The matching process usually starts prior to the actual event and
is based on a simple search and offer principle. It involves a registration phase in which
matchmaking participants declare what they are looking for and what they have to offer.
Based on this information, a human matchmaker, equipped with experience in the com-
munity and the business, identifies promising matches and makes meeting proposals to
the participants, who can then either accept or decline proposed matches.

In this report from the field, we show how we solved the matchmaking problem for
several fairs by means of Answer Set Programming (ASP; [1]). The resulting system is
used by the company piranha womex AG3 for computing matchmaking schedules for
the world music exposition (WOMEX) and other fairs.

We begin by developing a formal characterization of the matchmaking problem in
Section 2. We then address this problem by ASP in Section 3. Section 4 provides an
empirical analysis showing that our ASP-based approach allows for solving real-world
matchmaking instances that were previously dealt with by special-purpose algorithms.

2 Matchmaking Scheduling

Matchmaking events bring companies or people sharing common interests, services, or
products together in order to facilitate future business partnerships. Such events usually
take place at occasions like technology, business, or music and entertainment fairs. A
match is a face-to-face meeting of two parties. While a party may be a representative
of a company, it may also be an individual like an artist or a producer. Given that an
individual can be regarded as a company with one representative, it is viable to view
matches as meetings between company representatives.

3 http://www.piranha.de

A matchmaking event starts with an initial phase in which interests and offers of
participants are analyzed for potential business partnerships. This phase results in a set
of matches recommended to participants, and all accepted recommendations constitute
the final set of matches to be scheduled. Scheduling each match for a time slot and a
location (e.g. a table) yields the matchmaking schedule of an event. In the following,
we formalize these intuitions by defining the matchmaking scheduling problem.

Definition 1. Let T be a linearly ordered set representing time slots. Locations and
companies are represented by sets L and C, respectively. A match is a set consisting of
two companies from C. Let M be the set of all matches to be scheduled and P be the
set of all persons. Each person p ∈ P works for a company w(p) ∈ C and has a time
preference ∅ ⊂ t(p) ⊆ T .

Matchmaking scheduling is the problem of finding a feasible and optimal schedule
S = 〈SC , SP〉, where SC (resp., SP) is a relation from M (resp., P) to T × L. A
schedule S is feasible if SC is a total function, i.e. each match is scheduled once, each
location hosts at most one match at a time, i.e.

∀t∀l∀m1∀m2 : SC(m1, (t, l)) ∧ SC(m2, (t, l))⇒ m1 = m2 , (1)

and for each company in a match, exactly one employee of the company is scheduled:

∀t∀l∀m∀c∃!p : SC(m, (t, l)) ∧ c ∈ m⇒ SP(p, (t, l)) ∧ w(p) = c , (2)

∀t∀l∀p∃m : SP(p, (t, l))⇒ SC(m, (t, l)) ∧ w(p) ∈ m . (3)

A feasible schedule S is optimal if it is not dominated w.r.t. the following ranked
objectives, ordered by their precedence:

– The number of overlaps, where a person has more than one match at a time slot,
should be minimized:

min
∑

p∈P,t∈T,σ(p,t)>0

σ(p, t)− 1 , where σ(p, t) = |{l ∈ L | (p, (t, l)) ∈ SP}| . (O)

– The number of matches at unpreferred time slots of persons should be minimized:

min
∑

p∈P,t∈T\t(p)

|{l ∈ L | (p, (t, l)) ∈ SP}| . (P)

– The number of idle time slots between matches of companies should be minimized:

min
∑
c∈C

∣∣∣∣∣
{
t ∈ T

∣∣∣∣∣ (m1, (t1, l1)) ∈ SC , (m2, (t2, l2)) ∈ SC , t1 < t < t2,

c ∈ m1, c ∈ m2, {c ∈ m | (m, (t, l)) ∈ SC} = ∅

}∣∣∣∣∣ . (G)

– The number of location changes between consecutive matches of companies should
be minimized:

min
∑
c∈C

∣∣∣∣∣
{
t ∈ T

∣∣∣∣∣ (m1, (t, l1)) ∈ SC , (m2, (s(t), l2)) ∈ SC , l1 6= l2,

c ∈ m1, c ∈ m2, s(t) is the successor time slot of t

}∣∣∣∣∣ . (T)

– Used resources (time slots and locations) should be minimized:

min (|{t ∈ T | (m, (t, l)) ∈ SC}|+ |{l ∈ L | (m, (t, l)) ∈ SC}|) . (U)

Although a person cannot attend several matches at the same time, we do not impose
objective (O) as a hard constraint. The rationale of scheduling all matches and tolerating
conflicts is to maximize the chances of future business partnerships. In reality, conflicts
may be resolved a posteriori, for instance, by sending more personnel to an event.

Note that the above definition of particular objectives and their precedence reflects
practical needs of matchmaking events organized by piranha womex AG, and variants as
well as extensions (some of which are discussed in [2]) may be useful in other contexts.

3 Matchmaking Scheduling in ASP

In this section, we present our ASP encoding of matchmaking scheduling. A match-
making instance is given by facts as follows: time(t) and location(l) for each
time slot t ∈ T and location l ∈ L, respectively, works_for(p,c) for each w(p) = c,
time_pref(p,t) for each t ∈ t(p), and match(c1,c2) for each {c1, c2} ∈M .

Listing 1 shows our first-order encoding. Following the guess and check method-
ology of ASP, we first generate a schedule (predicate mm provides SC) that assigns at
most one match per time slot and location pair in Line 1. The upper bound of the choice
rule neatly encodes the feasibility constraint (1).4 Given that SC must be a total func-
tion, Line 3–4 force mm to be left-total (all matches have to be scheduled), and Line
6–9 require it to be functional (a match must not be scheduled at multiple time slots
or locations). Line 11–13 encode the feasibility constraints (2) and (3) by associating
exactly one employee per company involved in a scheduled match with the time slot
and location pair of the match (predicate mmperson provides SP).

Line 15–16 implement the overlap objective (O), where an atom overlap(p,t,n)

expresses that n > 0 for n = σ(p, t) − 1. The #minimize statement in Line 16
further asserts that the sum over all n in overlap(p,t,n) atoms of an answer set
ought to be minimal. The time preference objective (P) is encoded in Line 24–25,
where nonpref(p,t,l) indicates that person p has a match at an unpreferred time
slot t /∈ t(p), and the corresponding #minimize statement in Line 25 aims at a mini-
mal number of nonpref(p,t,l) atoms in an answer set. Similarly, the objectives (G),
(T), and (U) are encoded by the program parts in Line 27–30, 34–35, and 37–38, respec-
tively. Note that we rely on consecutive integers for representing the linearly ordered
set T of time slots. Thus, T+1 in Line 34 refers to the successor time slot s(T) of T men-
tioned in objective (T). Likewise, gringo’s built-in comparisons are used in Line 28–29
to check that a company is idle in-between two time slots T1 and T2. Regarding multi-
criteria optimization, levels provided in the encoding (level “@5” in Line 16 for the most
important criterion (O) and then gradually decreasing) represent the precedence of ob-
jectives. Moreover, Line 40 confines the visible output to instances of predicates mm and
mmperson, which together comprise a schedule S.

4 Although one may likewise generate a time slot and location pair per match, experiments with
such an alternative encoding led to performance degradations.

Listing 1. Matchmaking scheduling encoding
1 { mm(C1,C2,T,L) : match(C1,C2) } 1 :- time(T), location(L). % schedule matches

3 scheduled(C1,C2) :- mm(C1,C2,_,_). % all matches must
4 :- match(C1,C2), not scheduled(C1,C2). % be scheduled

6 match_at_loc(C1,C2,L) :- mm(C1,C2,_,L). % a match must be
7 match_at_time(C1,C2,T) :- mm(C1,C2,T,_). % scheduled once
8 :- match(C1,C2), not { match_at_loc(C1,C2,_) } 1.
9 :- match(C1,C2), not { match_at_time(C1,C2,_) } 1.

11 comp_at_pair(C,T,L) :- mm(C,_,T,L). % schedule persons
12 comp_at_pair(C,T,L) :- mm(_,C,T,L).
13 1 { mmperson(P,T,L) : works_for(P,C) } 1 :- comp_at_pair(C,T,L).

15 overlap(P,T,N-1) :- works_for(P,_), time(T), N = { mmperson(P,T,_) }, 1 < N.
16 #minimize[overlap(P,T,N) = N@5]. % overlap (O)

18 hasoverlap(C) :- overlap(P,_,_), works_for(P,C).
19 matchc(C,MC) :- MC = { match(C,_), match(_,C) }, company(C). % match count
20 peoplec(C,PC) :- PC = { works_for(_,C) }, company(C). % people count
21 timec(TC) :- TC = { time(_) }. % time count
22 :- matchc(C,MC), peoplec(C,PC), timec(TC), PC*TC < MC, not hasoverlap(C).

24 nonpref(P,T,L) :- mmperson(P,T,L), not time_pref(P,T).
25 #minimize{ nonpref(P,T,L)@4 }. % time pref. (P)

27 comp_at_time(C,T) :- comp_at_pair(C,T,_).
28 gap(C,T1,T2-T1-1) :- comp_at_time(C,T1), comp_at_time(C,T2), T1+1 < T2,
29 not comp_at_time(C,T) : time(T) : T1 < T : T < T2.
30 #minimize[gap(C,T,N) = N@3]. % gap (G)

32 :- timec(TC), gap(C,_,N), not { comp_at_time(C,_) } TC-N.

34 tablechange(C,T) :- comp_at_pair(C,T,L1), comp_at_pair(C,T+1,L2), L1 != L2.
35 #minimize{ tablechange(C,T)@2 }. % table change (T)

37 usedtime(T) :- comp_at_time(_,T). usedloc(L) :- match_at_loc(_,_,L).
38 #minimize{ usedtime(T)@1, usedloc(L)@1 }. % used res. (U)

40 #hide. #show mm/4. #show mmperson/3.

Additionally, in Line 18–22 and 32, we make some “redundant” domain knowledge
explicit, which is not necessary but may improve solving performance. The integrity
constraint in Line 22 states that it is impossible to schedule employees of an overbook-
ing company, which participates in more matches than the number of available time
slots multiplied by the man power of the company, without overlap. Furthermore, Line
32 expresses that the length of a gap (a sequence of idle time slots) together with a
company’s scheduled time slots cannot exceed the total number of available time slots.

4 Experiments

In our experiments, we ran gringo (3.0.5) for grounding and clasp (2.1.1) for solv-
ing. All experiments were performed on a 2.5GHz Intel Core Duo machine with 4GB
memory under MacOS X (10.7.5), imposing 3600 seconds as time limit. We configured
clasp to use the VSIDS decision heuristic (--heuristic=Vsids), which was the best

clasp
Instance #m #t #l #c #p O P O P G O P G T O P G T U

2on2 2 2 2 3 3 ∗0 0 ∗0 0 0 ∗0 0 0 0 ∗0 0 0 0 3
3on2 3 2 2 3 3 ∗1 0 ∗1 0 0 ∗1 0 0 1 ∗1 0 0 1 4
39on14 39 14 20 15 15 ∗0 0 ∗0 0 0 0 0 22 23 0 0 16 36 31
180on4 180 4 80 100 100 36 0 88 0 69 84 0 43 134 90 0 52 119 80
ffm11li 13 10 26 9 9 ∗0 0 ∗0 0 0 ∗0 0 0 7 ∗0 0 0 7 9
ffm11cr 19 10 26 13 16 ∗1 0 ∗1 0 0 1 0 0 9 1 0 0 8 14
ffm11mu 24 11 26 14 16 ∗0 1 ∗0 1 0 0 1 0 14 0 1 0 14 11
wmx10 77 8 14 26 51 ∗0 0 ∗0 0 0 0 0 0 70 0 0 0 72 22
wmx11 69 8 14 26 26 13 3 15 4 1 15 4 13 83 15 5 12 69 22
wmx11e 59 8 14 26 26 0 6 0 6 1 0 6 2 64 0 6 2 70 22
wmx11m 82 8 14 26 26 22 12 22 11 16 22 14 28 89 22 13 20 87 22
wmx11p 69 8 14 26 52 7 32 0 23 25 8 33 34 63 6 29 19 73 22
wmx12 60 7 14 54 54 ∗1 0 ∗1 0 0 1 0 0 26 1 0 0 30 19
wmx12m 89 7 14 54 54 5 2 5 2 29 8 2 29 81 6 2 36 82 21
wmx12p 60 7 14 54 75 ∗0 0 ∗0 0 0 0 0 0 23 0 0 0 24 19
Table 1. Benchmark results with gradually increasing hierarchy of objectives

configuration we found so far. We also tried clasp options for dedicated multi-criteria
optimization [3], but we did not achieve performance improvements with them. More-
over, note that we are unaware of any other freely available matchmaking scheduling
system that would be directly comparable with our ASP-based approach.

Table 1 displays benchmark results. The first two columns list instances and their
properties, where #m, #t, #l, #c, and #p are numbers of matches, time slots, locations,
companies, and persons, respectively. While the first four instances are crafted, the oth-
ers are real-world instances from Frankfurter Musikmesse 2011 and WOMEX 2010–
2012 as well as extended versions of them with additional matches or persons. The
columns O, P, G, T, and U show objective values for (O), (P), (G), (T), and (U), respec-
tively, w.r.t. the best answer set found by clasp within the allotted time. We started with
a relaxed problem using only (O) and (P) as objectives (results shown in the third col-
umn) and then gradually added more objectives in the order of precedence, leading to
the full problem with all objectives (results shown in the last column). Whenever clasp
proved a solution to be optimal, the corresponding entry starts with ∗. For instance,
the entry “∗1 0 0” for the ffm11cr instance indicates that a schedule with one over-
lap but no unpreferred time slots or gaps has been found and proven to be optimal by
clasp. Although more objectives add to the difficulty of multi-criteria optimization, the
gradual solutions for instances show only slight degradations. For example, objective
values for (P) on the wmx11m instance vary between 11 and 14, and the values are not
monotonically increasing with the number of objectives. According to piranha womex
AG, schedules computed with our ASP-based approach are satisfactory and on some
real-world instances even better than previous hand-made schedules.

5 Discussion

We presented an ASP-based approach to matchmaking scheduling, which is a highly
combinatorial multi-criteria optimization problem. Our approach allows for solving
real-world matchmaking instances that were previously dealt with by special-purpose
algorithms. The presented ASP methods are used by piranha womex AG for computing
matchmaking schedules for the world music exposition (WOMEX) and other fairs.

Although matchmaking scheduling can be regarded as a form of timetabling, to our
knowledge, it has not yet received much attention from the timetabling community.
Common search methods for timetabling include local search [4], constraint program-
ming [5], and satisfiability solving [6]. Moreover, an extension of disjunctive logic pro-
gramming by soft constraints was proposed for modeling school timetabling [7]. The
commercial matchmaking scheduling system b2match [8] supports only gap minimiza-
tion among the various objectives we considered.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/9-1.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Glase, T.: Timetabling with answer set programming. Diploma thesis, Institute for Informat-
ics, University of Potsdam (2012)

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer
set programming. In ICLP’11, Dagstuhl Publishing (2011) 1–10

4. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and constraint
programming for the post enrolment-based course timetabling problem. Annals of Operations
Research 194(1) (2012) 111–135

5. Baptiste, P., Pape, C., Nuijten, W.: Constraint-Based Scheduling. Springer (2001)
6. Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.

Annals of Operations Research (2012) Published online
7. Faber, W., Leone, N., Pfeifer, G.: Representing school timetabling in a disjunctive logic pro-

gramming language. In WLP’98, (1998) 43–52
8. b2match: http://www.b2match.com/info/pages/scheduling/

